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Abstract—This paper utilizes deep learning (DL) in tone
reservation (TR) to reduce the peak-to-average power ratio
(PAPR) of orthogonal frequency division multiplexing (OFDM).
We propose TR based on DL (DL-TR) algorithm by considering
each iteration of the classical TR algorithm as a layer of a
deep neural network (DNN), and then train the network offline
to obtain the clipping ratio of each layer which can minimize
the loss function that is the sum of PAPR and the increased
transmit power. Compared with the conventional TR method,
the simulation results show that the proposed DL-TR provides a
better PAPR reduction and bit-error-rate (BER) performance.

Index Terms—deep learning (DL), orthogonal frequency divi-
sion multiplexing (OFDM), peak-to-average power ratio (PAPR),
tone reservation (TR).

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is
widely used in many wireless communication system such as
802.11ac for its potential to increase spectral efficiency and
robustness against multipath fading. However, when multiple
sub-carriers align with the same phase, high peak-to-average
power ratios (PAPRs) are generated, which leads to signal
distortion, out-of-band radiation , and so on.

To deal with the PAPR problem, many methods have
been proposed [1], [2], for examples, clipping (CL), clipping-
filtering, block coding, selective mapping (SLM), partial trans-
mit sequence (PTS), tone reservation (TR) and others. Among
them, TR by Tellado and Cioffi [3], [4] has two significant
advantages: (a) PAPR is reduced without increasing bit-error-
rate (BER) or other signal distortions and (b) no side infor-
mation is exchanged between transmitter and receiver. This
method reserves a small number of sub-carriers to generate
a time-domain peak-canceling signal to nullify high peaks in
the OFDM signal. To find the optimal peak-canceling signal,
a sub-optimal gradient algorithm with iterative updates is
developed [3]. In few iterations, the TR method suppresses
peak values that exceeds predefined target clipping ratio. So
the overall PAPR suppression depends on the target clipping
ratio. However, this TR algorithm also has two drawbacks: (a)
the difficulty for knowing optimal target clipping ratio a-prior
and (b) the excessive growth of the total transmit power due
to the power allocated to the peak-reduction tones.

Recently, [5] proposed PRNet which is a novel PAPR reduc-
tion scheme based on the autoencoder of deep learning. But
too many training parameters of deep learning require more

training data and training time. To overcome it, many method
based on model-driven [6] in deep learning have recently
emerged to obtain faster convergence in physics layer of com-
munication, for instance, the improved belief propagation (BP)
decoding algorithm using deep learning for BCH codes [7]
and polar codes [8], learned iterative shrinkage/thresholding
algorithm (LISTA) [9], learned approximate message passing
(LAMP) [10].

Inspired by the results of model-driven in deep learning,
in this paper, we will unroll the TR algorithm to form a
deep neural network (DNN) in which target clipping ratio
as network parameters can be learned to minimize the loss
function on training examples. In particular, we optimize
PAPR and peak-canceling signal simultaneously. Once trained,
the network outputs the transmit time domain signal with low
PAPR and there is a negligible increase of transmit power.
With simulations, we demonstrate that the proposed DL-TR
provides better PAPR reduction and improved BER than the
traditional TR method given the same number of iterations.
The proposed DL-TR also can get a good balance between
PAPR and BER with few training parameters and few training
samples compared with PRNet.

Notation: [·]T denotes the transpose of a vector or matrix;
Boldface lowercase letters denote column vectors. ‖·‖ denotes
the mean square norm of a vector; Pr and E[·] denote
probability and expectation.

II. SYSTEM MODEL

A. OFDM System and PAPR

Each OFDM symbol block consisting of N indepen-
dent, modulated symbols can be represented as X =
[X0, X1, · · · , XN−1]

T , where Xk is the modulated symbol of
the k-th sub-carrier in the frequency domain. After the N -point
inverse fast Fourier transpose (IFFT) of X , the discrete-time
OFDM signal x = [x0, x1, · · · , xN−1]T can be written as

xn =
1√
N

N−1∑
k=0

Xke
j2πnk
N , n = 0, 1, · · · , N − 1 (1)

which can also be expressed in matrix form x = QX ,
where Q is the IFFT matrix with the (n, k)th element qn,k =
1√
N
e
j2πnk
N .
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The PAPR of x is defined as the ratio of the maximal
instantaneous power to the average power [11]:

PAPR(x) =
max

0≤n≤N−1
|xn|2

E[‖x‖2]
. (2)

The complementary cumulative distribution function
(CCDF) is widely used to measure performance of PAPR
reduction, which gives the probability that the PAPR is higher
than given value PAPR0 and is defined as

CCDF = Pr(PAPR > PAPR0). (3)

B. Tone Reservation Technique

The TR method reserves several peak reduction tones
(PRT) to generate a time domain peak-canceling vector c =
[c0, c1, · · · , cN−1]T . Define C = [C0, C1, · · · , CN−1]T as its
counterpart. To avoid signal distortion, data symbol vector
X and the peak reduction vector C are disjoint frequency
domain, i.e.,

Xk + Ck =

{
Xk, k ∈ Rc

Ck, k ∈ R,
(4)

where R = {r0, r1, · · · , rNt−1} represents the index set of
the reserved sub-carriers, Rc is the complementary set of R
in {0, 1, · · · , N − 1} and Nt < N is the size of PRT set.

The IFFT of C yields the time domain peak-canceling
vector c, and it is added to original transmit signal x in order
to reduce the PAPR. Thus, the transmit time signal becomes

a = x+ c = Q(X +C). (5)

To facilitate the TR method, the PAPR of the symbol vector
a = [a0, a1, · · · , aN−1]T is redefined as [12]

PAPR(a) =
max

0≤n≤N−1
|xn + cn|2

E[‖x‖2]
. (6)

As shown in (6), c needs to been chosen to minimize
PAPR(a). So the optimal peak cancelling signal is given by

cop = argmin
c

max
0≤n≤N−1

|xn + cn|2. (7)

To solve (7), Tellado and Cioffi [3], [4] proposed a simple
gradient algorithm to iteratively update the vector c as follows:

c(i+1) = c(i) − αip[((n− ni))N ], (8)

where αi = a
(i)
ni − Aejθ

(i)
ni , threshold A =

√
γE[‖x‖2] is

relevant to the clipping ratio γ, θ(i)ni is the phase of a(i)ni =

xni + c
(i)
ni , p = [p0, p1, · · · , pN−1]T is called the time domain

kernel and is a constant vector, p[((n − ni))N ] is a circular
shift of p to the right by a value ni, and ni is the position
of the peak amplitude of a in the ith iteration, which can be
calculated by

ni = argmax
n

|xn + c(i)n |. (9)

The kernel vector p is computed by

p =

√
N

Nt
QP , (10)

where
√
N
Nt

makes sure p0 = 1, and P = [P0, P1, · · · , PN−1]T
is the frequency domain kernel defined by

Pk =

{
0, k ∈ Rc

1, k ∈ R.
(11)

After I iterations, the peak-reduced OFDM time signal is

a(I+1) = x+ c(I+1) = x−
I∑
i=1

αip[((n− ni))N ]. (12)

We can see the PAPR performance depends on the choice of
clipping ratio γ. In general, the choice of optimal γ is difficult.
We also see that there is not subject to a power constraint
‖c‖2 in (7), so the power increased by c can be unbounded.
However, in practice, such increase is highly problematic.

III. TR BASED ON DEEP LEARNING

In this section, we represent the original TR algorithm
as a DNN, which is called DL-TR. Particularly, we aim to
optimize the parameter γ by minimizing the loss function
containing both the PAPR and power of peak-canceling signal
c over a training set. This can be done offline and then we
use the resulting γ to TR method in online deployment. We
also analyze the complexity of DL-TR in term of number of
trainable parameters.

A. Structure of DL-TR
In the DL-TR network, there are I + 2 layers containing

input layer, I hidden layers and output layer. The input layer
are fed into time domain signal x and the initial value c(1) =
0.

About the hidden layers, I layers can be constructed by
unfolding TR method from (12) with I iterations and each
layer has the same structure. The structure of hidden layers of
the DL-TR network is illustrated in Fig. 1.

For the i-th hidden layer of the DL-TR, the input are the
c(i) from the (i− 1)-th hidden layer and time domain signal
x, both of which are an N dimensional complex vector. The
output is c(i+1) = c(i) − αip[((n− ni))N ], where

αi = η(a(i);A(i))ejθ
(i)
ni

η(a(i);A(i)) = max( max
0≤n≤N−1

|a(i)n | −A(i), 0)

a(i) = x+ c(i)

A(i) =
√
γiE[‖x‖2] ,

(13)

p and ni are defined in (10) and (9) respectively. αi is the
residual signal after peak cancellation which is controlled by
peak ratio γi, p[((n− ni))N ] reduces the peak at location ni
but maybe increase the value of other locations. To overcome
this, θ = {γi} are learnable variables that are optimized in
the training process.

The output layer of DL-TR network is to obtain the final
peak-reduced transmit signal a = a(I+1) = x + c(I+1) and
final c time domain peak-canceling vector c = c(I+1).

The difference between the TR algorithm and DL-TR is
the learnable variables θ = {γi}, which play important roles
in the network. When γi = γ, i = 1, · · · , I , the DL-TR is
simplified to TR.
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Fig. 1: The structure of the DL-TR network

B. Training of DL-TR

Parameters {γi} in DL-TR network can be optimized to
reduce PAPR quickly while avoiding the excessive power of
peak-canceling vector c. We initialize γi = γ since γ is
clipping ratio in TR.

To train DL-TR network, we need generate training samples
xs, s = 1, · · · , Ns, where xs is the transmitted time domain
signal. To generate s-th training sample xs, we randomly gen-
erate (N −Nt) log2(M) bits and obtain M-QAM modulated
symbols. After allocating modulated symbols to (N − Nt)
subcarriers, we get OFDM symbol Xs in the frequency
domain. Xs is then converted to OFDM time domain signal
via IFFT, i.e., xs = QXs.

For each sample, upon getting xs, with initialization value
c(1) = 0, we apply the DL-TR network under current
parameters θ = {γi} to obtain as and cs, which are peak-
reduced transmit signal and peak-canceling signal of xs.

The goal of the training process is to minimize the loss
function which reduces PAPR of the transmit OFDM signal
while avoids the excessive power of peak-canceling vector. We
set loss function of s-th sample:

l(as, cs;θ) = PAPR(as) + λ‖cs‖2, (14)

where θ = {γi} are parameters to be learned and λ is the
weighting factor.

The loss function often decomposes as a sum over training
examples of per-example loss function, so large training sets
lead expensive computation. We will compute loss function
over a mini-batch of examples (a1, c1, · · · ,aD, cD) which are
the desired output of the DL-TR network for the transmitted
time domain signal (x1, · · · ,xD) from the training samples.
In our experiment settings, the loss function is

L(a1, c1, · · · ,aD, cD;θ) = max
1≤d≤D

PAPR(ad)+λ
1

D

D∑
d=1

‖cd‖2,

(15)

where D is mini-batch size. The first term in loss function is
the PAPR to be reduced and the second term constraints the
average power of peak-canceling vectors.

One popular algorithm to update θ = {γi} is Adam [13]
based on stochastic gradient descent (SGD). It needs one mini-
batch samples to update θ = {γi} one time. The t + 1-th
updating parameter can be compute by

θ ← θ − α m̂√
n̂+ε

(element-wise operations)

m̂← m
1−µt

n̂← n
1−νt

m← µm+ (1− µ)g
n← νn+ (1− ν)g

⊙
g (

⊙
multiply by element-wise)

g ← ∇L(a1, c1, · · · ,aD, cD;θ) ,
(16)

where ∇ is gradient operation, α is the learning rate that can
be chosen by hyperparameter optimization, and appropriate
default setting are µ = 0.9, ν = 0.999, ε = 10−8. Adam
works better than SGD because it considers first and second
moments of the gradients to get adaptive learning rates.

When we compute loss function and update θ = {γi} using
only a single example at a time, the optimization algorithm is
called online training.

Algorithm 1 Training of DL-TR

1) Collecting training samples:
Initialize: Set data set G = ∅.
For s = 1, · · · , Ns

a) Generate randomly (N −Nt) log2(M) bits;
b) After M-QAM modulation, modulated symbols

maps to an OFDM symbol Xs in the frequency
domain;

c) Compute OFDM time signal xs = QXs via IFFT;
d) Store xs in G.

End for
2) Updating parameters θ = {γi}:

Initialize: Set γi = γ for i = 1, · · · , I , where γ is
clipping ratio in TR.
For Ne = 1, · · · , epochs

For Nb = 1, · · · , NsD
i) Get D samples (x1, · · · ,xD) from Nb-th mini-

batch of G; Feed each sample xd into DL-TR
network in Fig. 1 under current parameters θ =
{γi} with c(1) = 0 and get output cd = c(I+1),
ad = xd + c

(I+1);
ii) Compute loss function (15);

iii) Update θ by (16) with t = (Ne − 1)NsD +Nb.
End for

End for
Return θ = {γi}

After several times of updating parameters, we get θ. In
general, there are epochs ∗ Ns

D times to update parameters.
One epoch is when the entire training dataset is passed both
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forward Fig. 1, (15) and backward (16) through the network
only once. Ns

D is the number of mini-batch. The process of
training DL-TR is shown in Algorithm 1.

It should be noted that we retrain the network only when
one of N , R and modulation type is changed.

The purpose of training is to determine the optimized
parameters {γi} to use in the test stage. After the training,
we collect testing data like training samples and adopt the
new {γi} in test stage.

C. Complexity

PRNet is composed of a simple encoder and decoder,
each of which contains fully connected layers of L hid-
den layers. There are NiNo + No trainable variables in
each layer where it contains Ni input neurons and No
output neurons. The numbers of neurons in input layer
and output layer of encoder are NM , 2N , respectively.
Suppose there are K neurons in each hidden layer, the
total number of trainable parameters of encoder is equal
to

[
NMK +K + (L− 2)K2 + (L− 2)K + 2NK + 2N

]
.

The decoder has the same number of parameters as encoder.
Thus, the total number of trainable parameters of PRNet
is 2

[
NMK +K + (L− 2)K2 + (L− 2)K + 2NK + 2N

]
.

Too many training parameters require more training data and
training time.

Compared to PRNet, there are only I trainable parameters
in the DL-TR network, since each layer contains a adjustable
variable {γi}. Furthermore, the number of trainable variables
of the DL-TR network is independent of the number of
subcarriers N and modulation type, and only determined by
the number of layers I . This is an advantageous feature when
N is large. With only few trainable variables, the stability and
speed of convergence can be improved in the training process.

IV. SIMULATION RESULTS

In this section, we show the performance of the proposed
DL-TR algorithm in terms of CCDF of PAPR and BER over
AWGN channels. We also evaluate DL-TR with different
setting parameters in the training stage.

We build the DL-TR training network on the deep learning
framework Tensorflow [14]. Training is conducted using Adam
with the learning rate of α = 0.01. The total training samples
are 200000 and the mini-batch size is set to 100, i.e., Ns =
2 × 105, D = 100. We train the model for 1 epoch. λ =
0.1 is default setting in (15) of DL-TR. It is noted that the
parameters such as learning rate, mini-batch in deep learning
are not arbitrarily chosen but brute-force searched.

In Fig. 2 and Fig. 3, we generate 105 OFDM symbol blocks
randomly to test the CCDF and BER of different algorithms,
respectively. An OFDM system with N = 64 sub-carriers and
4-QAM is adopted. The number of reserved PRTs is Nt = 4
with random index set. The clipping ratio of TR is γ = 4
dB. The maximum iteration number is I = 8 in both DL-TR
and TR in all simulations. For comparison, we set L = 5 and
K = 2048 in PRNet. The parameters to train PRNet are the
same as DL-TR except for α = 0.0001 and different samples
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Fig. 2: PAPR of DL-TR (λ = 0.1) ,TR and PRNet with N =
64
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Fig. 3: BER of DL-TR (λ = 0.1) ,TR and PRNet with N = 64

Ns. In Fig. 2, the PRNet with 2× 107(2e7) and 2× 106(2e6)
training samples, which is respectively 100 times and 10 times
of the DL-TR network, have the best and second good CCDF.
The PAPR of the DL-TR is lower than that of TR and original
schemes.

TR and DL-TR require more signal power than original
OFDM because of the additional PRTs. We thus normalize
the transmit signals of TR and DL-TR back to the original
power level, which degrades BER. The transmit signals of
PRNet is also normalized to the original power. Because there
are too many trainable parameters in the PRNet, it needs
enough training samples to learn constellation mapping and
demapping of symbols on each subcarrier in OFDM system for
good BER. Fig. 3 indicates the PRNets have worst and second
bad performance of BER because PRNet needs more training
samples to help find more proper constellation mapping and
demapping. The BER of DL-TR is closer to that of original
than TR method because DL-TR has less increased power than
TR.

Fig. 4 explains CCDF of different algorithms under different
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Fig. 4: PAPR of DL-TR (λ = 0.1) with different N
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Fig. 5: PAPR of DL-TR (λ = 0.1) and TR with N = 512.

sub-carrier numbers N = 64, 128, 256, 512 with 4-QAM. The
number of reserved PRTs is Nt = 1

16N with random index set.
To better estimate the PAPR, the oversampling factor U = 4 is
employed [11]. We set Ns = 20000, D = 100, epochs = 10 in
DL-TR network. We don’t consider PRNet with large number
sub-carriers due to the problem of number of required training
samples. We can see that the larger the number of sub-carrier
in the same algorithm, the greater the CCDF. Under the same
number of subcarrier numbers, the DL-TR algorithm has the
best performance, and the original algorithm has the worst
performance.

For the following simulation results, we consider an OFDM
system with N = 512 sub-carriers, U = 4 oversampling factor
and 16-QAM. The number of reserved PRTs is Nt = 32 with
index set in [12]. We set Ns = 20000, D = 100, epochs = 10
in DL-TR network.

In Fig. 5 and Fig. 6, we discuss the impact of clipping ratio
γ on the PAPR reduction and BER in TR and DL-TR methods.
In TR, clipping ratio is set to γ = 0 dB, γ = 2 dB, γ = 4 dB
respectively which is also the initial clipping ratio in DL-TR
training stage. θ is optimized in DL-TR with λ = 0.1. Fig. 5
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Fig. 6: BER of DL-TR (λ = 0.1) and TR with N = 512.
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Fig. 7: PAPR reduction in DL-TR with different training λ.

illustrates when CCDF = 10−3, compared to the original
OFDM PAPR, the PAPR could be reduced about by 3.5 dB
for the DL-TR method with different initial γ, while the TR
scheme can only achieve about 3 dB, 2.5 dB, 2.3 dB PAPR
reduction with γ = 0 dB, γ = 2 dB, γ = 4 dB, respectively.
It shows that DL-TR outperforms traditional TR, which is
sensitive to the clipping ratio γ. DL-TR can almost achieve
the same CCDF because all the layers use the optimized θ
after training. BER of DL-TR in Fig. 6 with different initial γ
is more or less that of original OFDM, and DL-TR has about
0.4 dB, 0.7 dB, 1 dB gain over TR with γ = 0 dB, γ = 2 dB,
γ = 4 dB, respectively.

Fig. 7 and Fig. 8 respectively present PAPR and BER of
the DL-TR method with different weighting factor λ. We can
observe that the smaller λ leads to better CCDF. We can also
see that best PAPR reduction occurs when λ = 0, which
simultaneously has the worst BER due to the lack of power
constraint of c. DL-TR constrained power using λ = 0.1,
λ = 0.2 and λ = 0.3 have nearly the same BER.
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Fig. 8: BER with different λ in DL-TR training stage.

V. CONCLUSIONS

In this paper, we proposed a new deep-learning based tone
reservation method to reduce the PAPR of OFDM. The DL-
TR algorithm is constructed by unfolding the classical iterative
TR gradient method; and thus, has the same computational
complexity as conventional TR given the same number of
iterations. It outperforms conventional TR in terms of both
PAPR reduction and BER. We also discussed the effect of
different setting parameters in the loss function.
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