
Deep Learning Based Modified Message Passing
Algorithm for Sparse Code Multiple Access

Lanping Li∗, Xiaohu Tang∗ and Chintha Tellambura†
∗ Laboratory of Information Coding and Transmission, Southwest Jiaotong University,

Chengdu 611756, China, E-mail: lanping@my.swjtu.edu.cn, xhutang@swjtu.edu.cn
† Department of Electrical and Computer Engineering,University of Alberta,

Edmonton T6G 2V4, Canada, E-mail:ct4@ualberta.ca

Abstract—Shuffled message passing algorithm (SMPA) is a
serial variant of message passing algorithm (MPA) for sparse
code multiple access (SCMA) signal detection, which accelerates
the convergence rate of MPA. However, SMPA still achieves the
near-optimal performance due to the effect of cycles in the factor
graph. In the paper, we propose to optimize the weights assigned
to the edges of the factor graph by unfolding SMPA as layers of
deep neural network (DNN). We consider the weights as network
parameters and then train the network offline to obtain weights
which can minimize the loss function. With simulations, we show
that DNN based SMPA (DNN-SMPA) outperforms SMPA in
terms of bit-error-rate (BER) for the same level of computational
complexity.

Index Terms—sparse code multiple access (SCMA), shuffled,
message passing algorithm (MPA), deep learning (DL).

I. INTRODUCTION

Sparse code multiple access (SCMA) [1], [2] is a potential
technology to reach ultra-high traffic rates, high spectral
efficiency, massive connectivity and low latency of fifth gen-
eration (5G) wireless networks. To achieve these advances,
low-complexity signal detection can be performed in SCMA
with the message passing algorithm (MPA) based on a factor
graph. Moreover, to reduce the computational complexity of
MPA, [3] proposed shuffled MPA (SMPA) which accelerates
the convergence rate of MPA by propagating the message
immediately in current iteration. However, due to the existence
of cycles in the factor graph, MPA and SMPA do not attain
the optimal maximum likelihood (ML) detection performance.

Recently, to improve SCMA, deep learning techniques have
been used. [4] constructs codebooks and decodes the SCMA
codewords by autoencoder. But the decoder in autoencoder is
of a full connectivity layer to approximate the ML function,
which causes the increase of training and decoding times
since the structure of traditional detection algorithm is not
taken into account. To overcome this, similar to unfolding
belief-propagation of channel decoding for Bose-Chaudhuri-
Hocquenghem (BCH) code [5] and polar code [6], recently,
[7] proposed to unfold MPA to a deep neural network (DNN)
and optimize the weights added to the edges of the factor
graph to reduce the effect of cycle. However, this DNN based
MPA (DNN-MPA) may exhibit slow convergence inherited
from unrolling MPA.

In this paper, we therefore propose DNN-SMPA which
exploits SMPA to improve the convergence rate while uses
DNN to reduce the effects of factor-graph cycles. Particularly
we assign weights to the edges of the factor graph and unfold
the SMPA to form the desired DNN. The weights as DNN
parameters can be learned by minimizing the error between
the estimated symbols and transmitted symbols, i.e., the loss
function. Once the training is completed, the learned weights
can be adopted in SMPA to reduce the effects of cycles in
the factor graph. The simulation results show that the DNN-
SMPA improves bit-error-rate (BER) over traditional SMPA
for the same number of iterations, especially at the high
Eb/N0 regime.

II. SYSTEM MODEL

A. SCMA Model

The SCMA system has J users (layers) spreading over K
shared orthogonal resource blocks (e.g., orthogonal frequency
division multiplexing (OFDM) sub-carriers or multiple input
multiple output (MIMO) spatial streams). For j = 1, . . . , J ,
bj is the bit streams of user j, which is mapped into
K-dimensional complex codeword xj from the predefined
codebook of size Mj . SCMA selects sparse K-dimensional
complex codewords (i.e., only Nj ≤ K non-zero elements
exist). We assume that all users have the same constellation
size and the same number of non-zero elements, i.e., Mj =
M,Nj = dv, j = 1, 2, · · · , J .

The uplink received signal can be written as

y =

J∑
j=1

diag(hj)xj + z, (1)

where hj = (hj,1, hj,2, · · · , hj,K)T is the channel gain vector
of user j, xj = (xj,1, xj,2, · · · , xj,K)T is the K-dimensional
codeword of user j, and z is a complex additive white
Gaussian noise with zero mean and σ2IK variance.

In fact, this system can be depicted by a K × J indicator
matrix F , where K resources are occupied by J users.
Especially, the number of users interfering at each resource
node is dc (row weight of F), ξk is the set of users collided
over resource k, the spreading resource of each user is dv978-1-7281-1669-3/19/$31.00 c©2019 IEEE

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 06,2020 at 00:25:48 UTC from IEEE Xplore. Restrictions apply.

(column weight of F), ζj is the set of resources occupied by
user j. For example, indicator matrix

F =

1 0 1 0 1 0
0 1 1 0 0 1
1 0 0 1 0 1
0 1 0 1 1 0

 (2)

is for K = 4, J = 6, dc = 3, dv = 2. ξ1 = {1, 3, 5},
ζ1 = {1, 3}, and so on, whose factor graph is illustrated in
Fig. 1.

User Node

 Resource Node

𝑢1 𝑢2 𝑢3 𝑢4 𝑢5 𝑢6

𝑟1 𝑟2 𝑟3 𝑟4

Fig. 1: Factor graph of SCMA with K = 4, J = 6.

B. MPA and DNN-MPA for SCMA

MPA based on the SCMA factor graph was presented in [8].
Indeed, MPA exchanges the extrinsic information between user
nodes and resource nodes along the edges iteratively.

At the beginning, all symbols have equal probability
(no prior information). So the messages I0uj→rk(xj) (j =
1, · · · , J , k = 1, · · · ,K) are initialized to 0 in the log domain.

For the i-th (i = 1, . . . , I) iteration, the message sent from
k-th (k = 1, . . . ,K) resource node to j-th (j ∈ ξk) user node,
i.e., resource node message, is updated by using

Iirk→uj (xj)

= ln(
∑

x̃:x̃j=xj

exp(Mk(x̃) +
∑

j̃∈ξk\{j}

Ii−1uj̃→rk(x̃j̃)))

≈ max
x̃:x̃j=x

(Mk(x̃) +
∑

j̃∈ξk\{j}

Ii−1uj̃→rk(x̃j̃)), (3)

where Mk(x̃) =
−‖yk−

∑
p∈ξk

hp,kx̃p,k‖2

2σ2 , and the message sent
from j-th (j = 1, . . . , J) user node to k-th (k ∈ ζj) resource
node for i-th iteration, i.e., user node message, is updated by

Iiuj→rk(xj) =
∑

k̃∈ζj\{k}

Iirk̃→uj (xj). (4)

After I iterations, the symbol probability of user j (j =
1, . . . , J) is decided by

Iuj (xj) =
∑
k∈ζj

IIrk→uj (xj). (5)

Since MPA is based on the factor graph, it is not optimal
when there exists cycles in the graph. To eliminate the impact
of cycles, [7] proposed DNN-MPA by unfolding MPA where
multiplicative weights were assigned. Note that the computa-
tional complexity of the MPA algorithm is mainly determined
by the update of the resource node message. In fact, the
weights of Mk(x̃) and Ii−1uj̃→rk(x̃j̃) in (3) not only increase

the computational complexity, but also increase the number of
training variables.

Thus, in this paper, weights in DNN-MPA are assigned only
to the user node message and the decision message, i.e., (4)
and (5) are respectively replaced by

Iiuj→rk(xj) =
∑

k̃∈ζj\{k}

wi
k̃,j
Iirk̃→uj (xj), (6)

and
Iuj (xj) =

∑
k∈ζj

wout,k,jI
I
rk→uj (xj), (7)

where wi
k̃,j

and wout,k,j are the multiplicative weights.
Unfortunately, DNN-MPA also retains the disadvantage of

slow convergence because it is based on unfolding MPA.

C. SMPA for SCMA

Although the original MPA can approximate the ML effi-
ciently, it is not efficient in terms of computational complexity.
From (3), we can see that the original MPA only utilizes
the user node messages obtained at (i− 1)-th iteration to
update resource node at the i-th iteration. To accelerate the
convergence rate of MPA, [3] proposed SMPA, which enables
immediate propagation of updated message in the current
iteration, i.e., (3) can be replaced by

Iirk→uj (xj) = max
x̃:x̃j=xj

(Mk(x̃) +
∑

ĵ∈ξk\{j},ĵ<j

Iiuĵ→rk(x̃ĵ)

+
∑

j̃∈ξk\{j},j̃>j

Ii−1uj̃→rk(x̃j̃)). (8)

III. SMPA BASED ON DEEP LEARNING

In this section, to overcome the disadvantage of slow
convergence in DNN-MPA, we utilize the structure of SMPA
with deep learning. Specifically, we assign the multiplicative
weights to the edges of factor graph, which are trained offline
by unrolling the SMPA instead of MPA to a DNN. After
training, the weights are used in online deployment of SMPA.
This is the key idea of our proposed DNN-SMPA.

A. Structure of DNN-SMPA

In DNN-SMPA network, there are T = 2JI + 3 layers
containing input layer, 2JI+1 hidden layers and output layer.
The input layer is fed into initialization of prior message
I0uj→rk(xj) = 0, received signal y and codebooks.

Among the hidden layers, 2JI layers can be constructed
by unfolding SMPA with I iterations and 2J layers for each
iteration, in which message of resource node and message
of user node are sequentially updated from user 1 to user J
according to (8) and (6) respectively.

Generally, consider t-th hidden layer (t = 1, 2, · · · , 2JI) as
shown in Fig. 2, for odd values t = 2J(i − 1) + 2j − 1, it
represents the update of resource node message of user j =
t+1−2J(i−1)

2 at the (i =
⌊
t−1
2J

⌋
+ 1)-th iteration, where b.c

denotes floor function. The outputs are Iirk→uj generated by
(8) with k ∈ ζj = {k1, k2}. The inputs are received signal

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 06,2020 at 00:25:48 UTC from IEEE Xplore. Restrictions apply.

𝐼𝑢𝑗 →𝑟𝑘1

𝑖−1

𝑡 = 2𝐽 𝑖 − 1 + 2𝑗 − 1

𝐼𝑢𝑗 →𝑟𝑘1

𝑖 𝐼𝑢𝑗 →𝑟𝑘2

𝑖−1 𝐼𝑢𝑗 →𝑟𝑘2

𝑖

Resource k1

𝐼𝑟𝑘1
→𝑢𝑗

𝑖 𝐼𝑟𝑘2→𝑢𝑗
𝑖

𝐼𝑢𝑗→𝑟𝑘1

𝑖 𝐼𝑢𝑗→𝑟𝑘2

𝑖 (User j, i-th iteration ,
user node)

𝑡 = 2𝐽 𝑖 − 1 + 2𝑗

(User j, i-th iteration,
resource node)

Resource k2

𝑗 ∈ 𝜀𝑘1 ∖ 𝑗,
𝑗 > 𝑗

𝑗 ∈ 𝜀𝑘1 ∖ 𝑗,
𝑗 < 𝑗

𝑗 ∈ 𝜀𝑘2 ∖ 𝑗,
𝑗 > 𝑗

𝑗 ∈ 𝜀𝑘2 ∖ 𝑗,
𝑗 < 𝑗

𝜍𝑗 = 𝑘1,𝑘2

Fig. 2: Every two hidden layers of DNN-SMPA network by
unfolding message of user j at i-th iteration.

y, codebooks, the i-th iteration user node message Iiuĵ→rk
and the (i− 1)-th iteration user node message Ii−1uj̃→rk with
ĵ ∈ ξk\j, ĵ<j and j̃ ∈ ξk\j, j̃>j for resource node k. Each
input and output variable are of size M .

For even values t = 2J(i−1)+2j, it represents the update of
user node message of user j = t−2J(i−1)

2 at the (i =
⌊
t
2J

⌋
+1)-

th iteration. The outputs are Iiuj→rk yielded by (6) with k ∈
ζj = {k1, k2}. The inputs are i-th iteration resource node
message Iirk→uj .

At the last (the t = 2JI + 1-th) hidden layer, it repre-
sents decision message produced by (7) with resource node
message of the (

⌊
t−1
2J

⌋
)-th iteration as input. The variables

θ =
{
wi
k̃,j
, wout,k,j

}
in (6) and (7) are weight parameters

assigned to factor graph, which should be trained to reduce
the effects of the loops. The structures of different schemes
are listed in Table I.

TABLE I: comparison of different schemes
XXXXXXX

Schemes MPA DNN-MPA SMPA DNN-SMPA

resource node message (3) (3) (8) (8)
user node message (4) (6) (4) (6)
decision message (5) (7) (5) (7)

The output layer of DNN-SMPA network is to transfer
the decision message (7) from the likelihood domain to the
probability domain. Thus, the softmax function is used in the
last hidden layer for each user zj = Iuj (x) as follows

σ(zj)m =
ezj,m∑M
m=1 e

zj,m
, m = 1, · · · ,M. (9)

Let ŝj = [σ(zj)1, · · · , σ(zj)M] be the estimated symbols of
user j. Then, the final output of network is ŝ = [ŝ1, · · · , ŝJ].

B. Training of DNN-SMPA

Parameters θ in DNN-SMPA network can be optimized
to reduce the effect of loop. We initialize θ with all ones
since traditional SMPA factor graph has unit weights in all
the branches.

To train DNN-SMPA network, we need generate labeled
training samples, i.e., a set of input-output vector pairs
(sd, ŝd), d = 1, · · · , D, where ŝd is the desired out-
put of the DNN-SMPA network for the transmitted sym-

Algorithm 1 Training of DNN-SMPA

1) Initialize: Set θ = 1, i.e., wi
k̃,j

= 1 and wout,k,j = 1 for

k ∈ ζj , k̃ ∈ ζj\{k}, j = 1, · · · , J , i = 1, · · · , I .
2) For Nb = 1, · · · , batches

a) Generating training samples: Set data set G = ∅.
For d = 1, · · · , D
i) Randomly generate bit stream bj for each user
j; Transfer bj to one-hot vector sdj ;

ii) Mapping bj into complex codewords xj ; After
channel, get received signal y by (1);

iii) Feed y, codebooks and I0uj→rk(xj) = 0 into
the DNN-SMPA network under current param-
eters θ, get the output ŝdj for each user j ;

iv) Store (sd, ŝd) in G, where sd = [sd1, · · · , sdJ]
and ŝd = [ŝd1, · · · , ŝdJ].

End for
b) Updating parameters:

Compute loss function by (10) ;
Update θ =

{
wi
k̃,j
, wout,k,j

}
by RMSProp (11).

End for
3) Return θ =

{
wi
k̃,j
, wout,k,j

}

bols sd = [sd1, · · · , sdJ]. Note that sdj is the one-hot vec-
tor of bit stream bj of user j’s d-th sample. One-hot
vector is an M -dimensional vector, the m-th element of
which is equal to one and zero otherwise. For instance,
[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] are respectively the
one-hot vectors of bj = [0, 0], [0, 1], [1, 0], [1, 1]. To generate
d-th training sample, J log2(M) bits are randomly chosen
and every log2(M) bits corresponding bj transfer to one-hot
vector sdj as label data. Bit stream bj is mapped into complex
codeword xj . After xj passing through the channel, we get
the received signal. Upon reception of y, with codebooks
and initialization prior message I0uj→rk(xj) = 0, the receiver
applies the DNN-SMPA network to obtain the estimation ŝd

of the transmitted message sd.
The goal of the training process is to minimize the loss

function which is the difference between the output of the
network and the transmitted data. In our experiment settings,
the loss function is

L(θ) =
1

D

D∑
d=1

‖sd − ŝd‖2, (10)

where θ =
{
wi
k̃,j
, wout,k,j

}
are parameters to be learned.

One popular algorithm to find θ is root mean square prop
(RMSProp) which starts with initial values θ = 1 in the paper
and then updates θ iteratively as{

θ ← θ − α 1√
n+ε
�∇L(θ)

n← νn+ (1− ν)∇L(θ)�∇L(θ) ,
(11)

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 06,2020 at 00:25:48 UTC from IEEE Xplore. Restrictions apply.

4 6 8 10 12

Eb/N0(dB)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

DNN-MPA,I=1

DNN-MPA,I=2

DNN-MPA,I=3

DNN-MPA,I=4

DNN-SMPA,I=1

DNN-SMPA,I=2

DNN-SMPA,I=3

DNN-SMPA,I=4

Fig. 3: BER of DNN-SMPA for one to four iterations.

where � is element-wise product, ∇ is gradient operation, the
learning rate α is a hypeparameter, and the parameters ν = 0.9
and ε = 10−10 are set by default.

After several batches of generating training samples and
updating parameters, we get θ. The process of training DNN-
SMPA is shown in Algorithm 1.

IV. SIMULATION RESULTS

In this section, we evaluate the BERs of DNN-SMPA,
DNN, MPA, DNN-MPA, SMPA and ML in AWGN and
Rayleigh-fading channels. The factor graph of SCMA system
is determined by the matrix in (2), i.e., K = 4, J = 6. The
codebooks in [9] is used for M = 4.

To train the DNN-SMPA, we build the network on the deep
learning framework Tensorflow [10]. Training is conducted by
RMSProp with the learning rate of 0.0001. 40000 batches of
training dataset are used and the number of training samples in
each batch is set to D = 400. The parameters such as learning
rate, D in deep learning are brute-force searched.

As a point of comparison, DNN-MPA and DNN are consid-
ered as well. In the paper, DNN-MPA is built by (3), (6), (7),
(9) and DNN is constructed by fully connected layer and recti-
fier linear unit (ReLU). We set up the DNN network consisting
of eight layers, six of which are hidden layers. The numbers of
neurons in each layer are 2K,100,100,100,100,100,100,MJ ,
respectively. For a fair comparison, the same training param-
eters are adopted in DNN-MPA, DNN and DNN-SMPA.

A. Convergence

Fig. 3 shows the effect of the number of iterations to BER
of DNN-SMPA and DNN-MPA. Thus, DNN-SMPA exhibits
faster convergence than DNN-MPA.

B. BER

Fig. 4 presents the raw BERs of DNN-SMPA, DNN, MPA,
DNN-MPA, SMPA and ML for AWGN channels in I = 3 and
I = 4 iterations. During training stage, the training samples
in DNN-SMPA, DNN-MPA and DNN are all generated under
multiple Eb/N0: 6, 8, 10, 12 dB. We can see that at low

4 6 8 10 12

Eb/N0(dB)

10
-5

10
-4

10
-3

10
-2

10
-1

B
E

R

DNN

MPA,I=3

MPA,I=4

DNN-MPA,I=3

DNN-MPA,I=4

SMPA,I=3

SMPA,I=4

DNN-SMPA,I=3

DNN-SMPA,I=4

ML

Fig. 4: BER of different algorithms in AWGN.

10 12 14 16 18 20

Eb/N0(dB)

10
-4

10
-3

10
-2

10
-1

B
E

R

DNN

MPA

DNN-MPA

SMPA

DNN-SMPA

ML

Fig. 5: BER of all the algorithms in Rayleigh channels.

Eb/N0, DNN-SMPA has almost the same BER as SMPA.
At higher Eb/N0, the DNN-SMPA outperforms SMPA about
0.3 dB in 4 iterations. We also can see that the DNN-SMPA
and SMPA in 3 iterations outperform the DNN-MPA and MPA
in 4 iterations. ML performs the best but has the highest
computational complexity. Whereas, DNN performs the worst
because it learns slowly due to not exploiting relationships of
xj and y in (1). It can be improved by increasing the number
of layers or neurons or training samples.

Fig. 5 compares BERs of DNN-SMPA, DNN, MPA, DNN-
MPA, SMPA and ML in I = 3 iterations, where the
channel experiences Rayleigh fading. It is seen that DNN-
SMPA achieves nearly the same BER as ML and has about
0.4 dB, 0.8 dB, 1.0 dB gain over SMPA, DNN-MPA and MPA,
respectively. While, DNN still has the worst performance.

Fig. 6 depicts the BER of SCMA for I = 2 iterations with
two polar codes under AWGN channels. They are of code
rate 1/2 and denoted by C1 = (16, 8) and C2 = (64, 32) of
codeword length N = 16 and N = 64, respectively. Polar code
of block size N = 2n is obtained by c = uGN [11], where
u contains k information bits and N − k frozen positions.
Generator matrix is defined by GN = BNF

⊗n
2 , where BN

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 06,2020 at 00:25:48 UTC from IEEE Xplore. Restrictions apply.

6 6.5 7 7.5 8 8.5 9 9.5 10 10.5

Eb/N0(dB)

10
-5

10
-4

10
-3

10
-2

10
-1

B
E

R
SMPA,(16,8)

DNN-SMPA,(16,8)

SMPA,(64,32)

DNN-SMPA,(64,32)

Fig. 6: BER with polar codes in AWGN

is a permutation matrix and F⊗n2 is n-th Kronecker power

of F2 =

[
1 0
1 1

]
. Belief Propagation (BP) decoding with 10

iterations is used for polar decoding. We observe that the larger
the code length, the greater the performance gain of DNN-
SMPA over SMPA, i.e., the gain is 0.08 dB and 0.25 dB for
C1 and C2, respectively.

C. Complexity

In this subsection, we analyze computational complexity
and storage complexity of different methods.

For ML, the receiver exhaustively searches all MJ possible
combinations of codewords from users. It requires 2K(dc −
1)+2K+K− 1 = 2Kdc+K− 1 real domain additions and
6K real domain multiplications in every combination, so the
total computational complexity of ML is MJ(2Kdc+7K−1)
real floating-point arithmetic operations (flops). Given the
same number of iterations I , the computational complexity
of SMPA is the same as that of the original MPA, which is
I(KdcM

dc(3dc+6)+KdcM)+IJdvM(dv−2)+JM(dv−1)
flops [8]. Due to the multiplication of the weighting factor in
(6) and (7), DNN-SMPA requires more (I + 1)JdvM flops
than SMPA, which is negligible. Thus, DNN-SMPA, SMPA,
DNN-MPA and MPA have roughly the same complexity. In
DNN network, the computational complexity is 2NiNo in
each layer where it contains Ni input neurons and No output
neurons. Thus, the computational complexity of DNN-SMPA
with I = 4 is lower than that of DNN network, which is
106400 = 2(2K × 100 + 5 ∗ 100 × 100 + 100 ×MJ). The
comparison results of computational complexity of different
schemes are illustrated in Fig. 7 .

We know that the less training variables in deep learning, the
less storage space. Consider the number of trainable variable,
there are only IJdv + Jdv trainable parameters in the DNN-
SMPA and DNN-MPA network, since each iteration contains
Jdv adjustable variables following (6) and decision message
also has Jdv variables following (7). While there are NiNo+
No trainable variables in each layer of the DNN network. So
the training variables of DNN-SMPA is less than that of DNN.

ML
0

0.5

1

1.5

2

2.5

N
u

m
b

e
r

o
f

F
lo

p
s

10
5

ML

MPA

DNN-MPA

SMPA

DNN-SMPA

DNN

I= 3 I= 4 DNN

Fig. 7: Computational complexity of different schemes.

V. CONCLUSIONS

In this paper, we developed a new DNN-SMPA detector.
It outperforms SMPA, DNN-MPA and MPA given the same
number of iterations. By optimizing the weights assigned to
the edges of the factor graph, it is shown that DNN-SMPA
can reduce the effect of cycles.

REFERENCES

[1] H. Nikopour and H. Baligh, “Sparse code multiple access,” in Proc.
IEEE 24th Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC),
Sep. 2013, pp. 332–336.

[2] L. Li, J. Wen, X. Tang, and C. Tellambura, “Modified sphere decoding
for sparse code multiple access,” IEEE Commun. Lett., vol. 22, no. 8,
pp. 1544–1547, Aug. 2018.

[3] Y. Du, B. Dong, Z. Chen, J. Fang, and L. Yang, “Shuffled multiuser
detection schemes for uplink sparse code multiple access systems,” IEEE
Commun. Lett., vol. 20, no. 6, pp. 1231–1234, Jun. 2016.

[4] M. Kim, N.-I. Kim, W. Lee, and D.-H. Cho, “Deep learning aided
SCMA,” IEEE Commun. Lett., vol. 22, no. 4, pp. 720–723, Apr. 2018.

[5] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in Proc.
Int. Symp. Inform. Theory (ISIT), Jun. 2017, pp. 1361–1365.

[6] W. Xu, Z. Wu, Y.-L. Ueng, X. You, and C. Zhang, “Improved polar
decoder based on deep learning,” in Proc. Int. Signal Process. Systems
Workshop (SiPS), Oct. 2017, pp. 1–6.

[7] C. Lu, W. Xu, H. Shen, H. Zhang, and X. You, “An enhanced SCMA
detector enabled by deep neural network,” in Proc. Int. Conf. Commun.
China (ICCC), Aug. 2018, pp. 835–839.

[8] F. Wei and W. Chen, “Low complexity iterative receiver design for sparse
code multiple access,” IEEE Trans. Commun., vol. 65, no. 2, pp. 621–
634, Feb. 2017.

[9] S. Zhang, K. Xiao, B. Xiao, Z. Chen, B. Xia, D. Chen, and S. Ma, “A
capacity-based codebook design method for sparse code multiple access
systems,” in Proc. Int. Conf. Wireless Commun. Signal Process. (WCSP),
Oct. 2016, pp. 1–5.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, Nov. 2016, pp. 265–283.

[11] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inform. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 06,2020 at 00:25:48 UTC from IEEE Xplore. Restrictions apply.

