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Sensing, Probing, and Transmitting Policy for Energy
Harvesting Cognitive Radio With Two-Stage
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Abstract—This paper considers joint optimization of spectrum
sensing, channel probing, and transmission power control for a
single-channel secondary transmitter that operates with harvested
energy from ambient sources. At each time slot, to maximize the
expected secondary throughput, the transmitter needs to decide
whether or not to perform the operations of spectrum sensing,
channel probing, and transmission, according to energy status and
channel fading status. First, we model this stochastic optimization
problem as a two-stage continuous-state Markov decision process,
with a sensing-and-probing stage and a transmit-power-control
stage. We simplify this problem by a more useful after-state value
function formulation. We then propose a reinforcement learning
algorithm to learn the after-state value function from data samples
when the statistical distributions of harvested energy and chan-
nel fading are unknown. Numerical results demonstrate learning
characteristics and performance of the proposed algorithm.

Index Terms—Cognitive radio, energy harvesting, power
control, reinforcement learning, spectrum sensing.

I. INTRODUCTION

ENERGY harvesting and cognitive radio aim to improve
energy and spectral efficiency, respectively, of wireless

networks. Wireless energy harvesting may prolong the battery
lifetime of a wireless node, paving the way to greener commu-
nications [2]. Cognitive radio relieves the problems of scarcity
and underutilization of spectrum [3]. Specifically, although the
spectrum has been more or less fully allocated, temporarily un-
used spectrum slots of licensed or primary users (PUs) at specific
locations result in spectrum holes. Therefore, unlicensed users
(also called cognitive or secondary users [SUs]) sense the en-
vironment, detect spectrum holes, and opportunistically access
the spectrum holes for their data transmission. Thus, one can
get the best of both worlds by combining energy harvesting
and cognitive radio [4]. However, the randomness of the en-
ergy harvesting process and the uncertainty of spectrum holes
introduce unique challenges in optimal design of such systems.
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Specifically, rapid and reliable identification of spectrum
holes is essential for cognitive radio. Furthermore, when ac-
cessing spectrum holes, an SU must adapt its transmit power
depending on channel fading status, which is indicated by chan-
nel state information (CSI) [5], [6]. The CSI estimation process
is referred to as channel probing: i.e., the SU transmits a pilot
sequence (see [7]–[9] and references therein for pilot designs),
which enables its receiver to evaluate the channel and provide
CSI feedback. Note that this channel probing should take place
on an identified spectrum hole. But due to spectrum sensing
errors, the SU may mistakenly estimate a channel (which is
actually busy) to be available. This generates interference on
PUs during both the channel probing and secondary data trans-
mission stages. Thus, SU must minimize interference on PUs
during all of its operations including spectrum sensing, channel
probing and data transmission.

An energy harvesting SU may not perform all operations de-
scribed above. For instance, if the PU channel is very likely
to be occupied, the SU may skip sensing to save energy. In a
deep fading channel, the SU may skip data transmission. Fur-
thermore, since these three operations consume the harvested
energy, they are coupled. Thus, in energy harvesting cognitive
radio, it is important to jointly control the processes of sens-
ing, probing and transmitting, by considering fading status, PU
channel occupancy, and energy status.

A. Related Works

Sensing and/or transmission policies for energy harvesting
cognitive radios have been extensively investigated [10]–[22],
which are categorized and summarized below.

1) Optimal Sensing Design: Optimal sensing is investigated
in [10]–[14] (without optimizing data transmission). Sensing
policy (i.e., to sense or not) and energy detection threshold
are derived for single-channel systems under an energy causal-
ity constraint in [10], [11]. Specifically, in [10], for a static
(non-fading) channel, optimal sensing policy and energy detec-
tion threshold are derived by using the tool of Markov deci-
sion process (MDP), taking a collision constraint into account.
In [11], sensing duration and energy detection threshold over
a static channel are jointly optimized by using an MDP for
a greedy sensing policy. Reference [12] considers multi-user
multi-channel systems where the SUs harvest energy from PU
signals. Balancing the goals of harvesting more energy (from
busy channels) and gaining more access opportunities (from idle
channels), the optimal SU scheduling problem (which schedules
SUs to sense different channels) is investigated over fading chan-
nels, by using decentralized learning. In cooperative spectrum
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sensing, the joint design of sensing policy, selection of cooper-
ating SUs, and optimization of the sensing threshold is studied
in [13] by using MDP. A similar problem is solved in [14] by
using convex optimization, where the SUs harvest energy from
both radio frequency and conventional (solar, wind and others)
sources and different SUs have different sensing accuracy levels.

2) Optimal Transmission Control: This topic is considered
in [15], [16]. Specifically, the work in [15] considers data rate
adaptation and channel allocation for an energy-harvesting cog-
nitive sensor node where channel availability status is provided
by a third party (which does not deplete energy from the sensor
node). Lyapunov optimization is used. Reference [16] uses con-
vex optimization to jointly optimize time slot assignment and
transmission power control in a time division multiple access
system, assuming that the CSI between SUs and PUs is known.
Here, the SUs use the underlay mode (i.e., they can transmit even
if the PU spectrum is occupied, with a condition that the SUs’
interference on PUs is not more than a certain threshold [23]).

3) Joint Optimization With Static (Non-Fading) Channels:
Joint sensing and transmission design for static wireless chan-
nels is considered in [17]–[20]. Specifically, sensing policy,
sensing duration and transmit power are jointly optimized by
using an MDP in [17]. Similarly, sensing energy, sensing inter-
val and transmit power are jointly designed by using an MDP
in [18]. Reference [19] assumes an energy half-duplex con-
straint (i.e., sensing or transmitting is not allowed during energy
harvesting). To balance energy harvesting, sensing accuracy and
data throughput, a convex optimization method is used to jointly
optimize the durations of harvesting, sensing, and transmission.
Reference [20] considers that SUs harvest energy from PU sig-
nals. Durations of harvesting, sensing, and transmission are op-
timized by using convex optimization.

4) Joint Optimization With Fading Channels: The joint op-
timization of sensing and transmission with fading channels is
studied in [21], [22]. Reference [21] investigates a heteroge-
neous secondary network that consists of energy-harvesting-
powered spectrum sensors and battery-powered data sensors,
which are jointly optimized (by using convex optimization) for
maximizing overall energy efficiency and performance. Specif-
ically, spectrum sensors are assigned over channels for maxi-
mizing the detected transmission opportunities. Given CSI of
detected free channels, the data sensors determine the channels
(to be used) and their transmission durations and transmission
power levels over the channels, to minimize the overall energy
consumption. Note that, in this work, the availability of CSI
is assumed a priori. In [22], CSI acquisition is considered in
a single-SU system. To this end, the SU probes CSI whenever
energy is sufficient. Given probed CSI, the SU uses an MDP
to decide which channel(s) to sense and whether to transmit or
not if channel(s) are sensed free. Since the SU probes channels
before spectrum sensing, the risk of probing busy channels ex-
ists. When this happens, the channel estimation pilots will be
corrupted by PU signals, and the pilots may cause interference
to primary receivers.

B. Motivations, Problem Statement and Contributions

Joint optimization of energy harvesting, channel sensing,
probing, and transmission, especially over fading channels has
not been reported widely. For instance, to adapt the transmit
power according to fading status, channel probing is necessary,
which can be conducted only if the PU channel is idle. Thus, the
SU does not know its fading status when it decides whether or

not to perform spectrum sensing. However, this sensing-before-
probing constraint has not been captured before.

To fill this gap, we investigate a single-channel energy har-
vesting cognitive radio system. If the single channel is occupied
by PUs, then the SU has no access. At each time slot, the SU de-
cides whether to sense or not, and if the channel is sensed to be
free, the SU may probe the channel. After a successful probing,
the SU obtains CSI. With that, the SU needs to decide the trans-
mit power level. To maximize long-term data throughput, we
consider the joint optimization of sensing-probing-transmitting
actions over a sequence of time slots.

In order to carry out optimal actions, the SU must track and
exploit energy status, channel availability and fading status.
These variables change randomly and are also affected by the
previous sensing, probing and transmitting actions. We cast this
stochastic dynamic problem under the framework of MDP [24]
and reinforcement learning (RL) [25]. MDP is a mathematical
tool for modeling stochastic optimal control. MDPs determine
an optimal policy that maps each system state to an optimal
action by considering the action’s immediate reward and future
effects. RL can solve the optimal policy of an MDP via exploit-
ing samples collected from random rewards and state transitions.
This is particularly useful when the exact model of the MDP is
unknown or only partially known.

Although MDP and RL are standard tools, they should be
carefully adapted for our problem. Specifically, due to the
sensing-before-probing constraint, the SU cannot decide on its
transmission power level (via adapting to CSI) when deciding
whether or not to sense, since at the moment of making sensing
decision, the SU has not obtained its CSI yet.

To incorporate the above feature in formulating and solv-
ing the optimal sensing-probing-transmitting policy, this paper
makes the following contributions:

1) We devise a time-slotted protocol, where spectrum sens-
ing, channel probing, and data transmission are conducted
sequentially. We formulate the optimal decision problem
as a two-stage MDP. The first stage deals with sensing
and probing, while the second deals with the control of
transmit power level. To the best of our knowledge, this is
the first paper that separates the sensing-probing stage and
the transmitting stage in MDP formulation for an energy
harvesting SU.

2) Via exploiting the structure of the two-stage MDP, the
optimal policy is developed based on an after-state (also
called post-decision state) value function. The use of
the after-state function confers three advantages. First,
the solution of the original two-stage MDP presents
practical and theoretical difficulties (Remarks 1 and 2 in
Section III). The after-state value function can ad-
dress these difficulties and derive the optimal policy
(Remarks 3–5 and Corollary 1 in Section IV). Second,
memory requirements to represent the optimal policy are
minimized. Third, it enables the development of learning
algorithms.

3) The SU often lacks the statistical distributions of har-
vested energy and channel fading. Thus, it must learn the
optimal policy without this information. To achieve this,
we propose an RL algorithm, which exploits samples of
energy harvesting and channel fading in order to learn
the after-state value function. The theoretical basis and
performance bounds of the algorithm are also provided.

Notation convention: Meanings of important symbols are
as follows. a: action; b: battery energy level; C: channel
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Fig. 1. Structure of a time slot.

availability status; d/x: endogenous/exogenous component of a
state; fY (·): probability density function (pdf) of random vari-
able (r.v.) Y ; EH /eH : harvested energy (r.v./realization); H/h:
channel gain (r.v./realization); J∗(·): after-state value function;
p: belief; r: reward; s: state; Θ: sensing result; γ: discount-
ing factor; β: after-state; ε: exploration rate. In subscripts and
superscripts, t, S, P, T mean time slot index, “sensing”, “prob-
ing”, and “transmitting”, respectively. A variable y′ denotes the
notation of y after one state transition in an MDP model.

II. SYSTEM MODEL

We consider a single PU channel and one SU. The PU chan-
nel is shared by multiple PUs. All the PUs and the SU follow
a time-slotted synchronous communication. Over the PU chan-
nel, the collective occupancy of the PUs across time slots is
modeled as an on-off Markov process. States C = 1 and C = 0
denote that the PU channel is available and busy, respectively.
The probability of state transition from state i ∈ {0, 1} at a slot
to state j ∈ {0, 1} at the next slot is denoted as pij . It is as-
sumed that the SU knows the state transition probability matrix,
which can be estimated with long-term sensing measurements
(see [26]). Note that the true state C is unknown by the SU.
So the SU makes decisions based on all observed information
(e.g., sensing results and others). All such information can be
summarized as a scaled metric, known as the belief variable
p ∈ [0, 1], which represents the SU’s belief in the channel’s
availability [27].

The SU always has data to send. A block fading model is
applied. The channel gain between the SU and its receiver is
H , which is an independent and identically distributed (i.i.d.)
r.v. across time slots, with pdf fH (·). This pdf is unknown to
the SU.

The SU harvests energy from sources such as wind, solar,
thermoelectric and others [28]. An energy package arrives at the
beginning of each time slot (which was harvested throughout
the previous time slot and stored in a temporal energy storage
device [29], [30]). The energy amount EH in the package is
an i.i.d. r.v. across time slots, with pdf fE (·). The SU does not
know this pdf. The SU is equipped with a finite battery, with
capacity Bmax . Let b denote the amount of energy stored in the
SU’s battery.

For the SU, each time slot is partitioned to three phases with
τS , τP and τT for sensing, probing, and transmitting, respec-
tively, shown in Fig. 1. In Fig. 1, eH is the energy amount in
the energy package that arrives at the beginning of the time slot,
and eS , eP , eT denote energy consumption in the three phases,
respectively. Next we elaborate on the three phases of time slot
t. A finite step machine (FSM) (see Fig. 2) is used to show the
operations of the SU.

Sensing Step: At the beginning of the sensing phase of slot t,
the SU, initially with battery level bSt , belief pSt , and harvested
energy eH t (eH t means the amount of energy in the energy
package that arrives at the beginning of slot t), needs to de-

Fig. 2. FSM for sensing, probing, and transmitting of the SU.

cide whether to sense or not. If the SU chooses not to sense
(i.e., action aS = 0 in transition (1.1) of Fig. 2), it remains idle
until the beginning of slot t+ 1 (i.e., the FSM transits to the
sensing step of slot t+ 1), at which time it has battery energy
bSt+1 = φ(bSt + eH t), where φ(b) is defined as:

φ(b) � max{min{b,Bmax}, 0},
and the belief on channel availability changes to pSt+1 = ψ(pSt ),
where ψ(p) is defined as:

ψ(p) � prob{Ct+1 = 1|pt = p} = p · p11 + (1− p) · p01,

which represents the SU’s belief of next time slot given its belief
of current time slot as p. Further, at the beginning of slot t+ 1,
an energy package arrives with energy amount eH t+1.

If the SU decides to sense at slot t (i.e., action aS = 1),
then during the sensing phase, it senses the PU channel, by us-
ing the energy detection method [31]. The sensing operation
consumes a fixed amount of energy eS . The sensing result is
denoted as Θ: Θ = 0 and Θ = 1 mean that the SU estimates the
PU channel to be busy and free, respectively. The performance
of energy detector is characterized by a false alarm probabil-
ity pF A � Pr{Θ = 0|C = 1} and a miss-detection probability
pM � Pr{Θ = 1|C = 0}. Here Pr{·} means probability. Fur-
thermore, pD � 1− pM and pO � 1− pF A represent the prob-
ability of correct detection of PU activities and the probability
of a spectrum access opportunity, respectively. The values of
pF A and pM are known to the SU.

We have the following observations for the sensing result.
1) The SU gets a negative sensing result (i.e., Θ = 0) with

probability 1−G1(pSt ) (see transition (1.2) of Fig. 2),
where G1(p) represents the probability of getting sensing
result Θ = 1 given initial belief p, i.e.,

G1(p) � Pr{Θ = 1|p} = p · pO + (1− p) · pM .
Then the SU will remain idle until the beginning of slot
t+ 1, and we have bSt+1 = φ(φ(bSt + eH t)− eS ), and
pSt+1 = ψ(G2(pSt )), where G2(p) means the probability
that the channel is indeed idle given initial belief p and
negative sensing result, i.e.,

G2(p) � Pr{C = 1|p,Θ = 0} =
p · pF A

p · pF A + (1− p) · pD .

2) The SU gets a positive sensing result (Θ = 1) with prob-
ability G1(pSt ) (see transition (1.3) of Fig. 2). Then the
SU proceeds to the probing phase. At the beginning of the
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Fig. 3. Two-stage MDP.

probing phase, the battery level is bPt = φ(φ(bSt + eH t)−
eS ), and the belief transits to pPt = G3(pSt ), where G3(p)
is the probability that the channel is indeed idle, given
initial belief p and positive sensing result, i.e.,

G3(p) = Pr{C = 1|p,Θ = 1} =
p · pO

p · pO + (1− p) · pM .

Probing Step: At the beginning of the probing phase, with
information (pPt , b

P
t ), the SU decides whether or not to probe

the channel.1 If it decides not to probe (i.e., action aP = 0,
see transition (2.1) of Fig. 2), the SU keeps inactive until the
beginning of slot t+ 1 (i.e., FSM transits to sensing step of slot
t+ 1), and the battery level remains the same bSt+1 = bPt , and
the belief becomes pSt+1 = ψ(pPt ). If the SU decides to probe
(i.e., action aP = 1), it transmits channel estimation pilots (with
energy consumption eP ) to the receiver.

1) There is probability (1− pPt ) that the channel at slot t
is busy (see transition (2.2) of Fig. 2). If this happens,
the pilots will collide with primary activities, and will not
be correctly received by the receiver. Thus, there will be
no feedback (FB) from the receiver, denoted as FB = 0.
Then the SU remains idle until the beginning of slot t+ 1
with battery bSt+1 = φ(bPt − eP ) and belief pSt+1 = p01.

2) There is probability pPt that the channel at slot t is idle, and
the SU can get FB (denoted as FB = 1) and obtain the
channel gain information, ht ≥ 0 (see transition (2.3) of
Fig. 2). The SU then proceeds to the transmitting step. At
this moment, the SU knows that the PU channel is free, i.e.,
pTt = 1, and the remaining energy is bTt = φ(bPt − eP ).

Transmitting Step: In transmitting step, action aT is the
amount of energy eT to use for transmission during the transmit-
ting phase. eT is selected from a finite set ET of energy levels.
Note that if eT = 0, there will be no transmission. After data
transmission, it goes to the beginning of slot t+ 1 with battery
level bSt+1 = φ(bTt − eT ) and belief pSt+1 = p11 (see transition
(3) of Fig. 2).

III. TWO-STAGE MDP FORMULATION

A. Two-Stage MDP

Based on the FSM, we will use an MDP, shown in Fig. 3, to
model the control problem. With s denoting a “state”, a denot-
ing an “action”, an MDP is fully characterized by specifying
the 4-tuple (S, {A(s)}s , f(·|s, a), r(s, a)), namely state space,
allowed actions at different states, state transition kernel, and

1When the available energy is low, the SU may select to sense in the sensing
phase but not to probe in the probing phase. By sensing, the SU can update its
belief about channel availability, which can benefit its future decisions. As the
available energy is low (e.g., the energy is insufficient to support a transmission),
the SU may select not to probe, to save energy.

reward associated with each state-action pair, which are de-
scribed as follows.

To reduce the state space, we merge the sensing and probing
steps into one stage (superscript SP ) via jointly deciding these
actions at the beginning of the sensing phase. We also observe
that, at the transmitting step, the belief is always equal to 1,
and thus, it is not necessary to represent it. Therefore, the state
space S is divided into two classes: 1) sensing-probing state
sSP = [bSP , pSP , eH ], with bSP ∈ [0, Bmax], pSP ∈ [0, 1] and
eH ∈ [0,∞); and 2) transmitting state sT = [bT , h], with bT ∈
[0, Bmax] and channel gain h ∈ [0,∞). Note that, physically,
bSP and pSP denote the battery level and belief value, respec-
tively, at the beginning of a sensing phase. That is, at slot t,
bSPt = bSt and pSPt = pSt .

At a sensing-probing state sSP , the full set of available actions
are “not to sense” (action ‘00’), “to sense but not to probe” (ac-
tion ‘10’), and “to sense and to probe if possible” (action ‘11’).
Here for action ‘yz’, ‘y’ and ‘z’ mean the sensing decision and
probing decision, respectively. So, we have aSP ∈ A(sSP ) =
{00, 10, 11}. At a transmitting state sT , the available actions are
“transmission energy levels to use”, i.e., aT ∈ A(sT ) = ET . As
shown in Fig. 3, from a sensing-probing state, action ‘00’ and
‘10’ make a transition to a sensing-probing state (in next slot),
while action ‘11’ makes a transition to a transmitting state if
the channel is sensed free and FB = 1, or to a sensing-probing
state (in next slot) otherwise. From a transmitting state, it always
transits to a sensing-probing state in the next slot.
f(·|s, a) is the pdf of the next state s′ over S given

initial state s and the taken action a. Denote δ(·) as the
Dirac delta function, which is used to generalize f(·|s, a)
to include discrete transition components. We can derive
the state transition kernel following the description of the
FSM. Starting from sSPt = [pSPt , bSPt , eH t ], it may transit to
sSPt+1 = [pSPt+1, b

SP
t+1, eH t+1] or sTt = [bTt , ht ] depending on cho-

sen actions2, with f(·|sSPt , aSP ) shown in (3), (4), (5) and
(6) (on the bottom of next page). From transmitting state
sTt = [bTt , ht ], it can only transit to sSPt+1 = [pSPt+1, b

SP
t+1, eH t+1],

with f(·|sTt , aT ) shown in (7) (on the bottom of next page).
Note that we treat fH (·) and fE (·) as generalized pdf’s, which
cover discrete or mixed r.v. models for H and EH .

At a sensing-probing state, because no data transmission has
occurred yet, the reward is set to 0, i.e.,

r
(
sSPt , aSP

)
= 0. (1)

At a transmitting state, the reward is the amount of transmitted
data, which is modeled (via the Shannon formula) as

r(sTt , aT = eT ) = τT W log2

(
1 +

eT ht
τT N0W

)
1(bTt ≥ eT ),

(2)
where W is the PU channel bandwidth, N0 is the thermal noise
power spectrum density and 1(·) is an indicator function.

We next place a technical restriction on the r.v. H .

2During the transition from state sS Pt = [pS Pt , bS Pt , eH t ], if probing is not
carried out, the battery level and belief value are updated once; if probing is
carried out, the battery level and belief are updated two times. For example,
if action is ‘11’ and the channel is sensed to be free (Θ = 1) (which means
the SU will probe) and the channel is indeed free (C = 1), then 1) bS Pt first
becomesA = φ(φ(bS Pt + eH t ) − eS ) due to sensing operation, and becomes
φ(A − eP ) due to probing operation, leading to bTt = φ(φ(φ(bS Pt + eH t ) −
eS ) − eP ), and 2) pS Pt first becomes G3(pS Pt ) due to sensing operation, and
becomes 1 due to probing operation, leading to pTt = 1.
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Assumption 1: Given any battery level bT and any transmis-
sion energy eT , E[r(sT , eT )] and E[r2(sT , eT )] exist and are
bounded by some constants L1 and L2, respectively, with E[·]
being the expectation operation over r.v. H .

Comparing with one-stage MDP: Here, we clarify the differ-
ence between our proposed two-stage MDP and the one-stage
MDPs of [17], [18], [22]. In these one-stage MDPs, states are
defined as available information before performing spectrum
sensing, where the sensing and transmission decision are made
simultaneously. This is possible, as CSI h is assumed to be avail-
able before sensing the channel in [17], [18], [22]. Specifically,
the works in [17], [18] assume a static channel (i.e., h = 1);
while the work in [22] performs channel probing before spec-
trum sensing, which is, however, an unusual order.

In our problem, due to the sensing-before-probing constraint,
one-stage MDP does not apply, and we need to divide the state
space into two subspaces, one for sensing-probing decision mak-
ing, and the other for transmission decision making, i.e., a two-
stage MDP. This formulation naturally tracks and represents
information-decision flow both across time slots (from sSPt to
sSPt+1) and within a time slot (from sSPt to sTt ). It enables us
to apply generic MDP theory (Section III-B) to define the op-
timal policy. In addition, the solving of the optimal policy via
after-state technique (Section IV) and RL algorithm (Section V)
relies on analyzing the structure of the two-stage model.

B. Optimal Control via State Value Function V ∗

Let Π denote all stationary deterministic policies, which are
mappings from s ∈ S to A(s). We limit the control within Π.
For any π(·) ∈ Π, we define a function V π (·) : S→ R for π(·)
as follows,

V π (s) � E

[ ∞∑

τ=0

γτ r(sτ , π(sτ ))|s0 = s

]

, (8)

where sτ denotes the state of time τ , γ ∈ [0, 1) is a constant
known as discounting factor,3 and the expectation is defined4

by the state transition kernel (3)–(7), shown at the bottom of
the page. Therefore, by setting γ to a value that is close to 1,
V π (s) can be (approximately) interpreted as the expected data
throughput achieved by policy π(·) over infinite time horizon
with initial state s.

Among Π, there is an optimal policy π∗(·) ∈ Π such that
V π ∗(s) = supπ (·)∈Π{V π (s)}, ∀s, i.e., π∗(·) is able to maximize

3The discounting factor is used to ensure the infinite summation in (8) is
bounded, and therefore, V π (s) is well defined.

4The expectation is taken over the random states {sτ }∞τ = 1 with the distribu-
tion of sτ determined by f (·|sτ −1, π(sτ −1)).

expected throughput for any initial state. In addition, π∗(·) can
be identified by the Bellman equation [24, p. 154], which is
defined as follows,

V (s) = max
a∈A(s)

{r(s, a) + γE[V (s′)|s, a]}, (9)

where s′ means the random next state given current state s and
the taken action a. The state value function V ∗(s) is the solution
to (9). Given V ∗(s), the optimal policy π∗(s) can be defined as

π∗(s) = arg max
a∈A(s)

{r(s, a) + γE[V ∗(s′)|s, a]}. (10)

Furthermore, it is shown [24, p. 152] that

V ∗(s) = V π ∗(s), ∀s. (11)

Therefore, V ∗(s) and V π ∗(s) are used interchangeably.
Remark 1: Although the optimal policy π∗(s) can be ob-

tained from the state value function V ∗(s), there are two practi-
cal difficulties for using (9) and (10) to solve our problem. First,
the SU does not know the pdf’s fE (·) and fH (·). The max{·}
operation in (9), which is performed over the E[·] operation,
makes it difficult to estimate5 V ∗(s) by using samples. Second,
E[·] operation in (10) makes it difficult to get the optimal action,
even if V ∗(s) is known.

Remark 2: In addition, there is another theoretical difficulty.
In discounting MDP theory, the existence of V ∗(s) is usually es-
tablished from the contraction theory, which requires the reward
function r(s, a) to be bounded for all s and all a [24, p. 143].
However, this is not satisfied in our problem, since we allow
the channel gain h to take all positive values, and hence, r(s, a)
is unbounded over the state space. Therefore, in this case, the
existence of V ∗(s) is not easy to establish.

As we will show in Section IV, both the practical and the-
oretical difficulties can be solved by transforming the value
function into an after-state setting. Moreover, this transforma-
tion reduces space complexity via eliminating the explicit need
for representing EH and H processes.

IV. AFTER-STATE REFORMULATION

Here, Section IV-A first analyzes the structure of the two-
stage MDP. Then Section IV-B reformulates the optimal control

5This difficulty can be illustrated with a simpler task. Given V 1 and V 2

are two r.v.s, suppose that we wish to estimate max{E[V 1],E[V 2]}. And
we can only observe a batch of samples {max{v1

i , v
2
i }}Li= 1, where v1

i and
v2
i are realizations of V 1 and V 2, respectively. However, the simple sam-

ple average of the observed information is not able to provide an unbiased

estimation of max{E[V 1],E[V 2]}, since limL→∞ 1
L

∑L

i= 1 max{v1
i , v

2
i } ≥

max{E[V 1],E[V 2]}.

f
(
sSPt+1|sSPt , aSP = 00

)
= δ(pSPt+1 − ψ(pSPt ))δ(bSPt+1 − φ(bSPt + eH t))fE (eH t+1), (3)

f(sSPt+1|sSPt , aSP = 10) = [(1−G1(pSPt ))δ(pSPt+1 − ψ(G2(pSPt ))) +G1(pSPt )δ(pSPt+1 − ψ(G3(pSPt )))]

× δ(bSPt+1 − φ(φ(bSPt + eH t)− eS ))fE (eH t+1), (4)

f(sSPt+1|sSPt , aSP = 11) = G1(pSPt )(1−G3(pSPt ))δ(pSPt+1 − p01)δ(bSPt+1 − φ(φ(bSPt + eH t)− eS − eP ))

× fE (eH t+1) + (1−G1(pSPt ))δ(pSPt+1 − ψ(G2(pSPt )))δ(bSPt+1 − φ(φ(bSPt + eH t)− eS ))fE (eH t+1), (5)

f(sTt |sSPt , aSP = 11) = G1(pSPt )G3(pSPt )δ(bTt − φ(φ(bSPt + eH t)− eS − eP ))fH (ht). (6)

f(sSPt+1|sTt , aT = eT ) = δ(pSPt+1 − p11)δ(bSPt+1 − φ(bTt − eT ))fE (eH t+1). (7)
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TABLE I
STRUCTURED STATE TRANSITION MODEL

in terms of after-state value function J∗. Finally, the solution
of J∗, and its relationships with the state value function V ∗ are
given in Section IV-C.

A. Structure of the MDP

The structural properties of the MDP given in the 4-tuple
(S, (A(s))s , f(·|s, a), r(s, a)) are as follows.

1) We divide each state into endogenous and exogenous com-
ponents. Specifically, for a sensing-probing state sSP ,
the endogenous and exogenous components are dSP =
[pSP , bSP ] and xSP = {eH }, respectively. All possible
dSP and xSP are defined as DSP and XSP , respectively.
Similarly, for a transmitting state sT , the endogenous and
exogenous components are dT = {bT } and xT = {h},
respectively. All possible dT and xT are DT and XT ,
respectively.
Finally, let d ∈ D = DSP ∪DT and x ∈ X = XSP ∪
XT .

2) The number of available actions A(s) at each state s is
finite.

3) Checking the state transition kernel (3), (4), (5), (6) and
(7), we can see that, given state s = [d, x], and action a ∈
A(s), the transition to next state s′ = [d′, x′] has following
properties.
� The stochastic model of d′ is fully known. Specifically,

after applying an action a taken at state s = [d, x], we
have N (a) possible cases depending on SU’s obser-
vations (e.g., sensing-probing outcomes after applying
certain aSP ). This leads toN (a) possible values of d′.
And at the ith case, which happens with probability
pi(d, a), the value of d′ takes the value 
i(s, a). Func-
tions N (·), 
i(·, ·) and pi(·, ·) are known, and listed in
Table I for different d, x, a and observations.

� The x′ is a r.v. whose distribution depends on

i(s, a), i.e., if 
i(s, a) ∈ DSP , x′ has pdf fE (·);
and if 
i(s, a) ∈ DT , x′ has pdf fH (·) (see
Table I). This relationship is described by conditional
pdf fX (x′|
i(s, a)).

With these notations, the state transition kernel f(s′|s, a)
can be rewritten as:

f(s′|s, a) = f((d′, x′)|(d, x), a)

=
N (a)∑

i=1

pi(d, a)δ(d′ − 
i(s, a))fX (x′|
i(s, a)). (12)

4) The reward r([d, x], a) is deterministic, defined via (1)
and (2).

B. Introducing After-State Based Control

Based on the above structural properties, we now show that
optimal control can be developed based on so-called “after-

Fig. 4. Augmented MDP model with after-state.

states”. Physically, an after-state is the endogenous component
of a state. However, for ease of presentation, we consider it as a
“virtual state” appended to the original MDP (Fig. 4).

Specifically, after an action a applied on a state s = [d, x],
the state randomly transits to an after-state β. The number of
such transitions is N (a). At the ith transition, the after-state
is β = 
i([d, x], a) with probability pi(d, a). From β, the next
state is s′ = [d′, x′] with d′ = β and x′ has pdf fX (·|β).

We next introduce after-state based control. The main ideas
are as follows. From β, the next state s′ = [d′, x′] only depends
on β (i.e., d′ = β, and the pdf of x′ is conditioned on β). There-
fore, starting from an after-state β, the maximum expected
discounted reward only depends on β, and is denoted as an
after-state value function J∗(β). The key is that if J∗(β) is
known for all β, the optimal action at a state s = [d, x] can be
determined as

π∗([d, x])

= arg max
a∈A([d,x])

⎧
⎨

⎩
r([d, x], a) +

N (a)∑

i=1

pi(d, a)J∗(
i([d, x], a))

⎫
⎬

⎭
. (13)

The expression in (13) is intuitive: the optimal action at a
state s = [d, x] is the one that maximizes the sum of the
immediate reward r([d, x], a) and the expected maximum future
value

∑N (a)
i=1 pi(d, a)J∗(
i([d, x], a)). The solving of J∗(·) and

the formal proof of (13) are provided in Section IV-C.
Remark 3: Unlike (10), if J∗(·) is known, generating actions

with (13) is easy, since N (a) and |A(s)| are finite, and pi(d, a)
and 
i([d, x], a) are known. Furthermore, the space complexity
of J∗(·) is lower than that of V ∗(·), since X does not need to be
represented in J∗(·).
C. Establishing After-State Based Control

The development of this subsection is as follows. First, we
define a so-called after-state Bellman equation as

J(β) = γ E
X ′ |β

⎡

⎣ max
a ′∈A([β ,X ′])

⎧
⎨

⎩
r(β,X ′, a′)

+
N (a ′)∑

i=1

pi(β, a′)J(
i([β,X ′], a′))

⎫
⎬

⎭

⎤

⎦ , (14)
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where EX ′ |β [·] means taking expectation over r.v. X ′, which
has pdf fX (·|β). Note that X ′ means the random exogenous
variable of the next state given that the current after-state is β
(see Fig. 4). Then, Theorem 1 shows that (14) has a unique
solution J∗(·), and also provides a value iteration algorithm for
solving it. Note that, at this moment, the meaning of J∗(·) is
unclear. Finally, Theorem 2 and Corollary 1 show that J∗(·) is
exactly the after-state value function defined in Section IV-B,
and the policy defined with (13) is equivalent with (10), and
therefore, is the optimal policy.

Theorem 1: Given Assumption 1, there is a unique J∗(·) that
satisfies (14). And J∗(·) can be calculated via a value iteration
algorithm: with J0(·) being an arbitrary bounded function, the
sequence of functions {Jl(·)}Ll=0 defined by the following iter-
ation equation: for all β ∈ D,

Jl+1(β)← γ E
X ′ |β

⎡

⎣ max
a ′∈A([β ,X ′])

⎧
⎨

⎩
r([β,X ′], a′)

+
N (a ′)∑

i=1

pi(β, a′)Jl(
i([β,X ′], a′))

⎫
⎬

⎭

⎤

⎦ ,

(15)

converges to J∗(·) when L→∞.
Proof: See Appendix A. �
Remark 4: Unlike the classical Bellman equation (9), in the

after-state Bellman equation (14), the expectation is outside of
the reward function. While the reward function is unbounded,
its expectation is bounded due to Assumption 1. Therefore, the
solution to (14) can be established by contraction theory.

Remark 5: Comparing with (9), equation (14) exchanges the
order of (conditional) expectation and maximization operators.
And inside the maximization operator, functions r(s, a),N (a),
pi(d, a), and 
i(s, a) are known. These are crucial in developing
a learning algorithm that uses samples to estimate the after-state
value function J∗(·).

Theorem 2: The existence of a solution V ∗(s) to (9) can be
established from J∗(β). In addition, their relationships are

V ∗([d, x])

= max
a∈A([d,x])

⎧
⎨

⎩
r([d, x], a) +

N (a)∑

i=1

pi(d, a)J∗(
i([d, x], a))

⎫
⎬

⎭

(16)

and

J∗(β) = γ E
X ′ |β

[V ∗([β,X ′])] . (17)

Proof: See Appendix B. �
Corollary 1: J∗(·) is the after-state value function, and the

policy defined with (13) is optimal.
Proof: From (17) and the physical meaning of V ∗(·) (see

(11)), J∗(β) represents the maximum expected discounted sum
of rewards, starting from after-state β. Therefore, J∗(·) is the
after-state value function.

The expression in (13) can be derived from the optimal
policy (10) as follows: first decompose the expectation with
(12), and then plug in (17). Therefore, (13) is the optimal
policy. �

Corollary 1 shows that optimal control can be achieved equiv-
alently through value function J∗(·). And Theorem 1 establishes

Fig. 5. An example of after-state space discretization.

the existence of J∗(·) and also provides a value iteration algo-
rithm for solving J∗(·). To obtain J∗(·) using the value iter-
ation algorithm, we have two observations. 1) The after-state
space D is continuous. Thus, after-state space discretization is
needed. 2) The computation of EX ′|β [·] requires the knowledge
of fE (·) and fH (·), which is unknown in our setting. Thus, RL
can be used to learn a (near) optimal policy via sample averag-
ing, instead of taking expectation. Details are given in the next
section.

V. REINFORCEMENT LEARNING ALGORITHM

In this section, we first discretize the after-state space into
finite clusters,6 which is discussed in Section V-A. In addition,
a learning algorithm is proposed in Section V-B, which learns
a (near) optimal policy given data samples of energy harvesting
and wireless channel. Furthermore, the algorithm’s convergence
guarantee and performance bounds are analyzed in Section V-C.
Finally, the algorithm is modified in Section V-D, for achieving
simultaneous data sampling, learning and control.

A. After-State Space Discretization

We divide the continuous after-state space D into a finite
number of portions or clusters K, which defines a mapping
ω(·) : D → K. In addition, all after-states assigned into the same
cluster are mapped into one representative after-state. Math-
ematically, let D(k) � {β ∈ D|ω(β) = k} denote the set of
after-state assigned to cluster k ∈ K. Thus, we use q(k) ∈ D(k)
to represent all after-states of D(k).

As an example, in Fig. 5, two-dimensional DSP is uni-
formly discretized into 9 clusters KSP = {1, . . . , 9}. The
one-dimensional after-state space DT is uniformly discretized
into 3 clusters KT = {10, 11, 12}. The association from an
after-state β to the cluster k is denoted by k = ω(β). And the
after-states assigned to the same cluster are represented by its
central point, q(k).

B. Learn Optimal Policy With Data Samples

With this discretization, we design an RL algorithm that learns
near optimal policy from the samples of EH and H .

The idea is to learn a function g(k), for k ∈ K, such that
g(ω(β)) is close to J∗(β) for all β ∈ D. Then a near-optimal

6In addition to discretization, other methods can also be used, such as tile
coding or radial basis functions [25, Chapter 8.3], which may accelerate the
learning.
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policy can be constructed as

π̂([d, x]|g)

= arg max
a∈A([d,x])

⎧
⎨

⎩
r([d, x], a) +

N (a)∑

i=1

pi(d, a)g(ω(
i([d, x], a))

⎫
⎬

⎭
.

(18)

Comparing (18) with (13), we observe that if g(ω(β)) approxi-
mates J∗(β) accurately, π̂(·|g) is close to π∗(·).

The function g(k) is learned by iteratively updating with
data samples. Each update uses only one data sample. This
facilitates the tailoring of the algorithm for online applications
(Section V-D). Next, we present the algorithm and some intuitive
reasons.

1) Algorithm: Initially we have arbitrary bounded function
g0(k). We calculate gl+1(k) from gl(k) and xl , the lth data
sample. Since xl can be either an energy or fading sample, there
are two cases:

� if xl is a sample of EH , randomly choose N non-repeated
clusters from KSP ;

� if xl is a sample of H , randomly choose N non-repeated
clusters from KT .

Here N is a parameter to balance learning speed and compu-
tation load. For either case, we denote the set of chosen clusters
as K̄l . Given xl and K̄l , we have the updating rule as

gl+1(k) =
{

(1− αl(k)) · gl(k) + αl(k) · δl(k), if k ∈ K̄l ;
gl(k), otherwise,

(19)
where αl(k) ∈ (0, 1) is the step size of cluster k for the lth
iteration, and δl(k) is constructed with xl as

δl(k) � γ max
a∈A([q(k),xl ])

⎧
⎨

⎩
r([q(k), xl ], a)

+
N (a)∑

i=1

pi(q(k), a)gl(ω(
i([q(k), xl ], a)))

⎫
⎬

⎭
.

(20)

Section V-C will show that with proper setting of the step size
αl(k), the sequence of functions {gl(k)}∞l=1 converges such that
g∞(ω(β)) is close to J∗(β), and the policy π̂(·|g∞) defined in
(18) is close to π∗(·).

The above algorithmic pieces are summarized in Algorithm 1.
For a sufficiently large number (L) of iterations, the learning
process can be considered complete. The learned policy π̂(s|gL )
can then be used for sensing, probing and transmission control,
just as in Algorithm 2 in Section V-D.

2) Intuition: Algorithm 1 is a stochastic approximation algo-
rithm [32], which is intuitive generalization of the value iteration
algorithm (15). Specifically, it is known from (15) that, given
the value function Jl(·) of the l-th iteration, a noisy estimation
of Jl+1(β) can be constructed as

max
a ′∈A([β ,x ′])

⎧
⎨

⎩
r([β, x′], a′) +

N (a ′)∑

i=1

pi(β, a′)Jl(
i([β, x′], a′))

⎫
⎬

⎭
,

(21)
with x′ sampled from fX (·|β), i.e., x′ is a realization of EH if
β ∈ DSP , and x′ is a realization of H if β ∈ DT .

Algorithm 1: Learning of Control Policy.

Require: Data samples {xl}l
Ensure: Learned control policy π̂(s|gL )

Initialize g0(k) = 0, ∀k
for l from 0 to L− 1 do

if xl is a data sample of EH then
Choose N clusters from KSP and get Kl

else if xl is a data sample of H then
Choose N clusters from KT and get Kl

end if
Generate gl+1(·) by executing (19) with (xl , Kl)

end for
With gL (·), construct control policy π̂(·|gL ) through (18)

Therefore, by comparing (21) with (20), we see δl(k) as
an estimate of gl+1(k) for k ∈ K̄l (with ω(·) introduced for
discretization, β approximated with q(k), and Jl(·) replaced
with gl(·)). Hence, with δl(k), equation (19) updates gl+1(·)
for chosen clusters within K̄l by sample averaging. Note that,
theoretically, we can set K̄l to KSP or KT (xl is energy or fading
sample), which could accelerate learning speed. However, large
|KSP | or |KT | leads to increased computations. Hence, the
parameterN is introduced to control the computational burden.
Section VI-B1 gives an example to show impact of N .

C. Theoretical Soundness and Performance Bounds

In this part, we formally state the convergence requirements
and performance guarantees for Algorithm 1.

First, for ∀ k ∈ K, we define M(k) = {l ∈ {0, 1, . . . , L−
1}|k ∈ Kl}, which presents the set of iteration indices where k
is chosen during learning. In addition, we define

ξ � max
k

{
sup

β∈D(k)
|J∗(β)− J∗(q(k))|

}
, (22)

which describes the “error” introduced by the after-state space
discretization. Finally, in order to evaluate the performance of a
policy π(·) from after-states’ point of view, we define

Jπ (β) = γ E
X ′ |β

[V π ([β,X ′])] , (23)

where V π (·) is defined in (8).
Given the definitions ofM(k), ξ and Jπ (β), we have follow-

ing theorem.
Theorem 3: Given that Assumption 1 is true, and also as-

suming that, in Algorithm 1, as L→∞,
∑

l∈M (k)

αl(k) =∞, ∀k (24)

∑

l∈M (k)

α2
l (k) <∞, ∀k (25)

then we have:
i) the sequence of functions {gl(·)}Ll=0 generated in (19)

converge to a function g∞(·) with probability 1 as
L→∞;

ii) ||J∗ − J∞|| ≤ ξ
1−γ , with

J∞(β) � g∞(ω(β)), (26)

and || · || denoting the maximum norm;



1624 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 2, FEBRUARY 2019

iii) ||J∗ − Jπ∞|| ≤ 2γ ξ
(1−γ )2 , with π∞(·) � π̂(·|g∞).

Proof: See Appendix C. �
Remark 6: Statement (i) of Theorem 3 demonstrates the con-

vergence guarantee of Algorithm 1. Statement (ii) shows that
the learned function g∞(·) is close to J∗(·), and their differ-
ence is controlled by the error ξ caused by after-state space
discretization. Statement (iii) claims that asymptomatically, the
performance of policies {π̂(·|gl)}l approaches that of the opti-
mal policy π∗(·), and that the performance gap is proportional
to the error ξ.

Remark 7: Condition (24) requires |M(k)| =∞, where
|M(k)| denotes the size of M(k). In other words, energy har-
vesting and wireless fading processes need to be sampled in-
finitely often in {xl}L−1

l=0 , as L→∞.
In order to satisfy

∑
l∈M (k) α

2
l (k) <∞, the sequence of step

size {αl(k)}l∈M (k) should start to decay after certain l with
sufficient decay rate. However, the decay rate should not be too
large, in order to satisfy

∑
l∈M (k) αl(k) =∞.

D. Simultaneous Sampling, Learning and Control

Algorithm 1 operates offline — the policy is learned with
given data samples, and a learned policy cannot be used until
learning is complete. However, for some applications, an online
learning scheme may be more desirable. In online case, sequen-
tial data is used to update the best learned policy at each step.

One intuitive idea to tailor Algorithm 1 for online learning
is as follows. Supposing that current learned function is gl(·),
we can use π̂(·|gl) to generate actions and interact with the
environment in real-time. Thus, we can collect a data sample
from energy harvesting or channel fading, which can be further
used to generate gl+1(·). As the loop continues, gl(·) approaches
g∞(·), and the policy π̂(·|gl) approaches π∞(·), which implies
that generated actions during the process will be more and more
likely to be optimal. In this way, simultaneous sampling, learn-
ing and control can be achieved.

However, the problem is that the above method cannot guar-
antee to sample the wireless fading process infinitely-often (i.e.,
cannot satisfy assumptions (24) and (25) of Theorem 3). Note
that the wireless fading process can be sampled only if π̂(·|gl)
chooses aSP = 11. But the above method may enter a deadlock
such that aSP = 11 will never be chosen. The deadlock can be
caused by: (1) insufficient battery energy that results from the
learned policy’s consistent aggressive use of energy; and/or (2)
persistently locking in aSP = 00 or aSP = 10. In order to break
this possible deadlock during the learning process, with some
small probability ε (named as the exploration rate), we force the
algorithm to deviate from π̂(·|gl) to exploring the environment
by either accumulating energy (aSP = 00) or probing channel
gain information (aSP = 11).

Based on the above points, Algorithm 2 is provided for sam-
pling, learning and control. Here, we argue that gl(·) gener-
ated by Algorithm 2 converges to g∞(·) when t→∞. First,
at each time slot, there is probability ε/2 that the algorithm
will choose aSP = 00 to accumulate energy. Therefore, given
the battery level bSPt of slot t, we can7 find a finite T such
that prob{bSPt+T ≥ eS + eP } > 0. In other words, at any slot
t ≥ T , we have prob{bSPt ≥ eS + eP } > 0. Thus, having suf-
ficient energy for sensing and probing, the algorithm will choose

7If this condition cannot be satisfied, the underlying energy harvesting process
is not sufficient to power the SU.

Algorithm 2: Simultaneous Sampling, Learning and
Control.

Note: βSPt ∈ DSP presents an after-state in slot t. βTt is
defined similarly.

1: Initialize: battery b0, channel belief p0, and after-state
βSP0 = [b0, p0]

2: Initialize: g0(k) = 0, ∀k, and set l = 0
3: for t from 1 to∞ do
4: Observe arriving harvested energy amount eH t

5: Set xl = eH t and choose Kl with N clusters from
KSP

6: Generate gl+1(·) by executing (19) with (xl , Kl)
7: l← l + 1
8: Construct state sSPt = [βSPt−1, eH t ]
9: Generate sensing-probing decision aSPt = π̂(sSPt |gl)

via (18)
10: if random() ≤ ε then � Exploration
11: if random() ≤ 1/2 then
12: aSPt = 00
13: else if bSPt ≥ eS + eP

then � Energy sufficiency
14: aSPt = 11
15: end if
16: end if
17: Apply sensing and probing actions based on aSPt
18: if aSPt = 11 & Θ = 1 & FB = 1 then
19: Observe the channel gain ht from FB
20: Set xl = ht , and construct Kl by choosing N

clusters from KT

21: Generate gl+1(·) by executing (19) with (xl , Kl)
22: l← l + 1
23: Derive after-state βTt with sSPt via Table I
24: Construct state sTt = [βTt , ht ]
25: Generate transmit decision aTt = π̂(sTt |gl)

via (18)
26: Set transmission power based on aTt , and

transmit data
27: Derive after-state βSPt from (sTt , a

T
t ) via Table I

28: else
29: Derive after-state βSPt with sSPt and aSPt , Θ

and FB via Table I
30: end if
31: end for

aSP = 11 with probability ε/2. In addition, at any time slot, the
PU channel will be free with a non-zero probability. Therefore,
the algorithm can reach the transmitting stage with a non-zero
probability. Thus, the wireless fading process can be sampled
infinitely often for t→∞. In summary, the assumptions (24)
and (25) of Theorem 3 are satisfied (under properly decayed
step size), and {gl(·)}l converges to g∞(·) asymptotically.

1) Complexity Analysis of Algorithm 2: For each t, major
computations are the two embedded function updates for gl(·)
(line 6 and line 21). Each update needs to compute (20)N times.
And each computation requires |N (a)| multiplications, |N (a)|
summations, and one maximization over a set.

2) Choices of Exploration Rate: Although the convergence
is guaranteed for any ε ∈ (0, 1), the choice of ε affects the perfor-
mance of the algorithm. Large ε helps to accelerate the learning
process. But too large ε may cause big loss of the achievable
performance. See Section VI-B2 for examples.
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VI. SIMULATION RESULTS

A. Simulation Setup

We use simulation to evaluate the performance of the pro-
posed algorithms. The simulation is set up as follows.

The PU channel occupancy Markov model is described by
p00 = 0.9 and p11 = 0.9. For spectrum sensing, we have pF A =
0.2 and PD = 0.9. The time slot duration τS + τP + τT (Fig. 1)
of the SU is 12 ms (which is synchronized to the PU channel).
We set τS = τP = 1 ms.8 Hence, within each time slot, we have
τT = 10 ms for data transmission.

Energy is harvested from wind power. Thus,EH is well char-
acterized by the Weibull distribution [33], with shape and mean
parameters kE = 1.2 and μE = 1 (in Sections VI-C and VI-D,
other values of μE are considered).

The SU signal channel gain h consists of path loss hs and
Rayleigh fading hf . hs is distance-dependent and is assumed to
be fixed. hf has pdf f(x) = e−x , x ≥ 0.

Then, with above channel model, the amount of trans-
mitted data can be rewritten as τT W log2(1 + eT hs hf

τT N0W
) =

τT W log2(1 + eT hf
η ) where η � τT N0W/hs with W =

1 MHz. We normalize η as η = 1 (for energy normaliza-
tion). Normalizing with respect to η, we set battery capacity
Bmax = 10, sensing energy eS = 1, probing energy eP = 2,
and the set of transiting energy levels ET = {0, 3, 4, 5, 6}.

Finally, simple uniform grid is used for discretization with 10
levels for both belief and battery dimensions. Thus, |KSP | =
100 and |KT | = 10. We set the discounting factor γ as 0.9, and
the learning step size rule as αl(k) = 104

l+104 , where l is the index
of updating iteration in Algorithm 1 and Algorithm 2.

B. Characteristics of Learning Algorithm

1) Offline Learning Under Various N : Here, we study the
learning speed of our offline algorithm (Algorithm 1) under dif-
ferent N . We set the updating iteration budget L = 106, and xl
has equal probability to be sampled fromEH andH . 5 values of
N ∈ {1, 2, 3, 5, 10} are considered. Fig. 6 with logarithmic time
index shows the achieved average data rate when the sensing-
probing-transmitting control is learned by Algorithm 1.

In Fig. 6, it can be observed that for different N values,
Algorithm 1 converges to the same limit. As expected, larger
N requires fewer learning steps to converge, which suggests a
trade-off between computational load and learning speed. We
also notice that there are turning points in all learning curves,
explained as follows. An optimal algorithm expects to maximize
the sum of immediate reward at the current slot and the expected
reward in the future. Recall that, in Algorithm 1, we initially set
g0(k) = 0,∀k. This means that at the beginning learning steps of
Algorithm 1, the expected future reward is deemed zero. Thus,
Algorithm 1 advises to maximize the immediate reward, i.e., act
greedily for transmitting as many packets as possible. After a
number of learning steps, expected future reward starts to take
effect in Algorithm 1, and thus, the algorithm stops greedily

8There exists a tradeoff in setting τS and τP . With larger τS and τP , more
accurate spectrum sensing and more accurate channel gain estimation can be
achieved, at the cost of less time for transmission. As this paper focuses on
design and analysis of a learning algorithm for the decision making process of
the SU, we set τS = τP = 1 ms. Nevertheless, optimal selection of τS and
τP is an interesting research topic, which can be investigated in future research
work.

Fig. 6. Learning curves of Algorithm 1 under various N values.

Fig. 7. Learning curves of Algorithm 2 under various exploration rates.

sending packets and starts to jointly learn the sensing-probing-
transmission policy. This causes temporal performance loss (as
the algorithm may explore the system rather than transmitting as
many packets as possible), but leads to the optimal performance
asymptotically.

2) Online Learning Under Various Exploration Rate ε: With
N = 1, we investigate the learning characteristics of Algo-
rithm 2 for exploration rate ε ∈ {10−4, 10−3, 10−2, 10−1, 0.5}
and for ε adapted to t as ε =

√
1/t. The average data rate is

shown in Fig. 7.
From Fig. 7, we see that larger ε tends to speed up learning. It

is because larger ε implies more updates of CSI. However, too
large ε can cause performance loss due to aggressive exploration.
On the other hand, ε =

√
1/t, which starts with large value

and decreases over time, provides fast start-up and also almost-
lossless asymptotic performance.

C. Structure of Learned Policy

After a learning algorithm converges, we can obtain a sensing-
probing-transmitting policy from the learned function gL (·).
Specifically, given gL , a policy is fully specified via a pair
of sensing-probing ‘sub-policy’ π̂([b, p, eH ]|gL ) and transmit-
ting ‘sub-policy’ π̂([b, h]|gL ) (recalling that (π̂(·|gL ) is defined
in (18)).

For μE = 5, the learned sub-policies are shown in Fig. 8(a)
and Fig. 8(b). Noting that the sensing-probing sub-policy is also
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Fig. 8. Learned sensing-probing and transmitting sub-policies.

a function of eH , Fig. 8 shows the sensing-probing sub-policy
with eH = 0, for presentation simplicity. When b > 7, or when
b is between 6 and 7 and belief p is more than a threshold,
the optimal sensing-probing sub-policy is ‘11’ (i.e., to sense
and to probe whenever possible). The sensing-probing action
‘10’ (sense but not probe) is selected when belief p is close to
0.4 and the battery level is less than 6, explained below. When
belief p is close to 0.4, the SU is unsure about the channel
availability, and thus, it is optimal to sense the channel to gain
the channel availability knowledge and guide future decisions.
On the other hand, the SU will not decide to probe, because when
the battery level is less than 6, if the SU decides to probe, the
total energy left for transmitting is less than 6− eS − eP = 6−
1− 2 = 3 (in other words, the SU will not be able to transmit,
since the minimal transmit power level is 3 in our setting). For
the transmitting sub-policy, higher battery level and/or higher
channel gain h result in higher transmit power level, which is
intuitive.

D. Performance Comparison

We next investigate the performance of learned policy. As
the one-stage MDPs of [17], [18] are the most relevant works
(see Section I), we compare our learned policy with a policy
that is derived from a one-stage MDP. Since the works in [17],
[18] assume static CSI, we implement the one-stage MDP of
[17], [18] over a static channel with fixed channel gain being
the average channel gain in our system.

We consider two baseline policies, namely “G-SPT” and “G-
SP”. G-SPT is a purely greedy policy. Whenever the energy is
sufficient, it senses and probes channel, and transmits at maxi-
mum power level. G-SP takes greedy action at sensing-probing
stage, but adapts the transmit power based on probed CSI (i.e.,
G-SP is actually our proposed method in which there exists only
one action ‘11’ for sensing-probing.)

We compare how these policies perform under different
values of μE . First, we consider the ability of a policy to
exploit channel access opportunities. This is measured by
channel access probability, which is the probability that the
channel is free while a sensing action is chosen. As a bench-
mark, this probability is upper bounded by the channel’s idle
probability p01/(p01 + p10) = 0.1/0.2 = 0.5. Fig. 9 shows the
measured channel access probabilities of different policies, in
which “1-stage” means one-stage MDP used in [17], [18].
Fig. 10 shows the data rate achieved by different policies,
which is upper-bounded by τT /(τS + τP + τT ) · p01/(p01 +
p10) · pO · E[W log2(1 + eMT hf )] ≈ 0.78 Mbps, where eMT =
max{ET} = 6.

It can be seen that, when μE increases, all the policies have
more channel access opportunities and higher data rates. And

Fig. 9. Channel access probability under different μE .

Fig. 10. Data rates for different μE .

with a high enough energy supply, channel access probabilities
of all the policies achieve the upper bound.

Note that G-SPT and G-SP are efficient at exploiting channel
access opportunities because they are aggressive in sensing and
probing. However, their greedy actions may result in a lack of
energy for data transmission, especially when harvested energy
is limited. Therefore, when μE is small, their achieved data rates
are small. Nevertheless, G-SP’s data rate is higher than that of
G-SPT. The main reason is that G-SP adapts transmit power
based on channel fading status, and therefore, uses energy more
efficiently for data transmitting than a purely greedy policy.

As for one-stage MDP, it achieves higher data rate than G-SP,
when μE < 5; but is slightly inferior to G-SP when μE > 5.
That is because, when energy is limited, making proper sensing
and probing decision to save energy for transmission is more
important. However, given a large μE , energy expenses due
to greedy sensing and probing action are marginal relative to
the available energy, while properly selecting transmission en-
ergy is of more importance. Therefore, with a large μE , G-SP,
which makes transmission decision based on instantaneous CSI,
demonstrates better performance than one-stage MDP.

With full adaptation and a two-stage decision scheme, our
proposed method achieves favorable energy tradeoff between
sensing-probing and transmission stages, and thus, achieves the
best data rate.
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VII. CONCLUSIONS

This paper studied the optimal sensing, probing and power
control problem for an energy harvesting SU operating in a
fading channel. The problem was modeled as a two-stage con-
tinuous state MDP and then simplified via the after-state value
function. The SU learns this function without knowledge of
statistical distributions of the wireless channel and the energy
harvesting process. For this learning process, we developed a
reinforcement learning algorithm and investigated its learning
characteristics and performance via simulation.

Our work can be extended to the following scenarios.
Multiple-channel scenario: With multiple channels, the SU

can maintain a belief value for availability of each channel.
When the SU decides to sense, it needs to decide which channel
to sense. Similar to our work, a two-stage MDP can be devel-
oped, and after-state formulation can be used to find the optimal
policy.

Multiple-SU scenario: With multiple SUs, if an SU decides
to probe the channel, it applies a contention procedure such as
carrier sense multiple access. If it wins the contention, it probes
the channel; otherwise, it keeps idle until the next time slot.
Accordingly, by adding a probability of successful contention
into our two-stage MDP, our algorithms can be applied to get
optimal policy for each SU.

Bursty-traffic scenario: Now the data buffer fluctuates ran-
domly. Therefore, not only the amount of transmitted data, but
also the reduction of packet losses due to data buffer overflow
is of interest. Thus, we can include the occupancy of data buffer
into our definition of “state”, and redefine the reward function as
a weighted combination of sent data with a positive weight and
data buffer occupancy with a negative weight (such a reward
definition is also considered in [34]). We can then formulate a
two-stage MDP, and use after-state value function to find the
optimal policy.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1 is proved with the use of contraction theory.
Specifically, we show the solution to (14) uniquely exists, and
it is the fixed point of a contraction mapping. Furthermore, the
value iteration algorithm (15) converges to the fixed point.

First, define the set of bounded functions J : D → R as F .
Then, let T ∗ be an operator on F , and for any J ∈ F , T ∗J is
another function with domain D, whose value at β is defined as

(T ∗J)(β) = γ E
X ′ |β

⎡

⎣ max
a ′∈A([β ,X ′])

⎧
⎨

⎩
r([β,X ′], a′)

+
N (a ′)∑

i=1

pi(β, a′)J (
i([β,X ′], a′))

⎫
⎬

⎭

⎤

⎦ .

By Assumption 1, it is easy to check that, given J is bounded,
T ∗J is bounded (i.e., T ∗J ∈ F ). Therefore, T ∗ is a mapping
from F to F . It is shown in [35, p. 211] that F is complete under
the maximum norm. Furthermore, as shown in the following,
T ∗ is a contraction mapping under the maximum norm with
modulus γ. Therefore, the contraction theory applies to T ∗.

Due to the contraction theory [35, p. 209], there exists a
unique fixed point for T ∗, denoted as J∗, such that T ∗J∗ = J∗,

i.e., function J∗ does not change under operator T ∗. Note that
equation T ∗J∗ = J∗ is exactly the after-state Bellman equation
(14). Therefore, we have shown that there is a unique solution
to (14).

In addition, the contraction theory [35, p. 209] states that,
for arbitrary function J0 ∈ F , liml→∞ T ∗lJ0 = J∗. Note that
T ∗lJ0 means the function that is generated by, starting from
J0, iteratively applying operator T ∗ on previously generated
function for l times, which exactly describes the value iteration
algorithm (15). This has proved the value iteration algorithm
(15) converges to J∗.

Hence, there only remains to show that T ∗ is a contraction
mapping. Given any two functionsJ1,J2 ∈ F , forβ that satisfies
(T ∗J1)(β) ≥ (T ∗J2)(β), we have

0 ≤ (T ∗J1)(β)− (T ∗J2)(β)

= γ E
X ′ |β

[

max
a1∈A([β ,X ′])

{

r([β,X ′], a1)

+
N (a1)∑

i=1

pi(β, a1)J1(ρi([β,X ′], a1))

⎫
⎬

⎭

− max
a2∈A([β ,X ′])

{

r([β,X ′], a2)

+
N (a2)∑

i=1

pi(β, a2)J2(ρi([β,X ′], a2))

⎫
⎬

⎭

⎤

⎦

≤ γ E
X ′ |β

⎡

⎣r([β,X ′], a∗1) +
N (a∗1)∑

i=1

pi(β, a∗1)J1(ρi([β,X ′], a∗1))

− r([d,X ′], a∗1)−
N (a∗1)∑

i=1

pi(β, a∗1)J2(ρi([β,X ′], a∗1))

⎤

⎦

= γ E
X ′ |β

⎡

⎣
N (a∗1)∑

i=1

pi(β, a∗1)

× (J1(ρi([β,X ′], a∗1))− J2(ρi([d,X ′], a∗1))
)
⎤

⎦

≤ γ E
X ′ |β

⎡

⎣
N (a∗1)∑

i=1

pi(a∗1)||J1 − J2||
⎤

⎦ = γ||J1 − J2||, (27)

where

a∗1 = arg max
a1∈A([β ,X ′])

⎧
⎨

⎩
r([β,X ′], a1)

+
N (a1)∑

i=1

pi(β, a1)J1(ρi([β,X ′], a1))

⎫
⎬

⎭
,

and || · || is the maximum norm.
For β that satisfies (T ∗J1)(β) < (T ∗J2)(β), we can get

0 < (T ∗J2)(β)− (T ∗J1)(β) ≤ γ||J1 − J2||, (28)
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following similar procedure by replacing J1 to J2, and
vice versa. Therefore, combining (27) with (28) gives
|(T ∗J1)(β)− (T ∗J2)(β)| ≤ γ||J1 − J2|| for all β ∈ D, i.e.,
||T ∗J1 − T ∗J2|| ≤ γ||J1 − J2||. It has proved that T ∗ is a con-
traction mapping on F with modulus γ. And the proof of
Theorem 1 is completed.

APPENDIX B
PROOF OF THEOREM 2

With s = [d, x], define a function

G(s) � max
a∈A(s)

⎧
⎨

⎩
r(s, a) +

N (a)∑

i=1

pi(d, a)J∗(
i(s, a))

⎫
⎬

⎭
. (29)

Expanding J∗(
(s, a)) from equation (14) gives

G(s) = max
a∈A([d,x])

⎧
⎨

⎩
r(s, a) +

N (a)∑

i=1

pi(d, a)

× γ E
X ′ |
i (s,a)

⎡

⎣ max
a ′∈A([
i (s,a),X ′])

⎧
⎨

⎩
r(
i(s, a),X ′, a′)

+
N (a ′)∑

j=1

pj (d′, a′)J(
j (
i(s, a),X ′, a′))

⎫
⎬

⎭

⎤

⎦

⎫
⎬

⎭

= max
a∈A([d,x])

⎧
⎨

⎩
r(s, a)

+ γ

N (a)∑

i=1

pi(d, a) E
X ′ |
i (s,a)

[G(
i(s, a),X ′)]

⎫
⎬

⎭

= max
a∈A([d,x])

{
r(s, a) + γE [G(S ′)|s, a]}, (30)

where the definition of G implies the second equality, and (12)
implies the last equality. Note that (30) is exactly the state Bell-
man equation (9). Therefore, function G = V ∗ solves (9), and
the relationship (16) is established. Finally, with (29) and the
definition of the after-state Bellman equation (14), the relation-
ship (17) is established, which completes the proof.

APPENDIX C
PROOF OF THEOREM 3

For Algorithm 1, we define two operators H and Ĥ . Let H
be an operator on functions K 
→ R. Applying H on a function
g, i.e., Hg, gives another function with domain K, and its value
at k is defined as

(Hg)(k) = γ E
X ′ |q(k)

⎡

⎣ max
a ′∈A([q(k),X ′])

⎧
⎨

⎩
r([q(k),X ′], a′)

+
N (a ′)∑

i=1

pi(q(k), a′)g(ω(
i([q(k),X ′], a′)))

⎫
⎬

⎭

⎤

⎦ .

Similarly, define another operator on functions K 
→ R as

(Ĥg)(k) = γ max
a ′∈A([q(k),X ′])

⎧
⎨

⎩
r([q(k),X ′], a′)

+
N (a ′)∑

i=1

pi(q(k), a′)g(ω(
i([q(k),X ′], a′)))

⎫
⎬

⎭
,

where X ′ is a r.v. with pdf fX (·|q(k)). Note that the outcome
of Ĥg is random, and depends on the realization of X ′.

Note that, in Algorithm 1, at any iteration l, gl(k) does not
change for k /∈ K̄l . Therefore, the step size value αl(k), ∀k /∈
K̄l , does not affect the algorithm. By defining αl(k) = 0, ∀k /∈
K̄l , and with the operators H and Ĥ , the updating (19) can be
rewritten as, ∀k ∈ K:

gl+1(k) = (1− αl(k))gl(k) + αl(k)((Hgl)(k) + wl(k)) (31)

where wl(k) = (Ĥgl)(k)− (Hgl)(k).

A. Proof of Statement (i)

From [36, Proposition 4.4], we have following lemma.
Lemma 1: Given following conditions,
a) H is a contraction mapping under maximum norm;
b) for all k,

∑∞
l=0 αl(k) =∞, and

∑∞
l=0 α

2
l (k) <∞;

c) for all k and l, E[wl(k)|gl ] = 0;
d) there exist constant C1 and C2 such that E[w2

l (k)|gl ] ≤
C1 + C2||gl ||2;

the sequence of functions {gl}l generated from iteration (31)
converges to a function g∞ with probability 1, and the limiting
function g∞ satisfying Hg∞ = g∞.

We prove the statement (i) of Theorem 3 by checking the
four conditions of Lemma 1 as follows. First, the contraction
mapping condition (a) of H can be established in a similar
procedure as the proof of Theorem 1, and is omitted here. Then,
due to assumptions (24) and (25) of Theorem 3, the condition
(b) about αl is satisfied. In addition, we have E[wl(k)|gl ] = 0
via the definition of H and Ĥ . Therefore, the condition (c)
is satisfied. Finally, we have to prove the condition (d): the
bounded variance property of wl . For given k and l, we define a
function as

I(x) = γ max
a ′∈A([q(k),x])

⎧
⎨

⎩
r([q(k), x], a′)

+
N (a ′)∑

i=1

pi(q(k), a′)gl(ω(
i([q(k), x], a′)))

⎫
⎬

⎭
.

With the notation I(x), we have

E[w2
l (k)|gl ] = E

X ′ |q(k)

[(
I(X ′)− E

Y ′|q(k)
[I(Y ′)]

)2∣∣
∣
∣gl

]

= E
X ′ |q(k)

[(
E

Y ′ |q(k)
[I(X ′)− I(Y ′)]

)2∣∣
∣
∣gl

]

≤ E
X ′ |q(k)

[(
E

Y ′ |q(k)
[2 max{∣∣I(X ′)∣∣, ∣∣I(Y ′)∣∣}]

)2∣∣
∣
∣gl

]
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≤ E
X ′ |q(k)

[(
E

Y ′|q(k)
[2|I(X ′)∣∣]

)2∣∣
∣
∣gl

]

+ E
X ′ |q(k)

[(
E

Y ′ |q(k)
[2
∣
∣I(Y ′)

∣
∣]
)2∣∣
∣
∣gl

]

©1
≤ E

X ′ |q(k)

[(
2
∣
∣I(X ′)

∣
∣)2∣∣gl

]
+ E

X ′ |q(k)

[(
2L1 + 2||gl ||

)2∣∣gl
]

©2
≤ 8L2 + 8||gl ||2 + 8L2

1 + 8||gl ||2 = 8(L2 + L2
1) + 16||gl ||2,

where the inequalities ©1 and ©2 hold from Assumption 1 and
the fact that (x+ y)2 ≤ 2x2 + 2y2 for any real value x and y.
Therefore, it is proven that E[w2

l (k)|gl ] is bounded by 8(L2 +
L2

1) + 16||gl ||2, which completes the proof of the statement (i)
of Theorem 3.

B. Proof of Statement (ii)

First, define a partial order for functions K 
→ R as follows.
If g1(k) ≤ g2(k), ∀k, we say g1 ≤ g2. It is easy to check that,
given any two functions g1 and g2 satisfying g1 ≤ g2, we have
Hg1 ≤ Hg2.

Then, define a function ḡ(k) � inf
β∈D(k)

J∗(β) + ξ
1−γ . Apply-

ing H on ḡ gives

(Hḡ)(k) = γ E
X ′ |q(k)

[
max

a ′∈A([q(k),X ′])

{
r([q(k),X ′], a′)

+
N (a ′)∑

i=1

pi(q(k), a′)ḡ(ω(
i([q(k),X ′], a′)))
}
]

©3
≤ γ E

X ′ |q(k)

[
max

a ′∈A([q(k),X ′])

{
r([q(k),X ′], a′)

+
N (a ′)∑

i=1

pi(q(k), a′)
(
J∗(
i([q(k),X ′], a′)) +

ξ

1− γ
)}]

©4
= J∗(q(k)) +

γξ

1− γ
©5
≤ inf

β∈D(k)
J∗(β) + ξ +

γξ

1− γ = ḡ(k),

where inequality©3 is due to the definition of ḡ(k), equality©4
comes from the after-state Bellman equation (14), and inequality
©5 is due to the definition of ξ in (22). Therefore, we have
(Hḡ)(k) ≤ ḡ(k) for all k, i.e., Hḡ ≤ ḡ.

Combining the fact that Hg1 ≤ Hg2, if g1 ≤ g2, with the
fact that Hḡ ≤ ḡ, we have Hk ḡ ≤ ḡ, where Hk means ap-
plying H operator k times. Then, due to Lemma 1 in the
proof of statement (i), we have limk→∞Hk ḡ = g∞ ≤ ḡ, which
means g∞(k) ≤ infβ∈D(k) J

∗(β) + ξ
1−γ , ∀ k. Therefore, we get

J∗(β) ≥ g∞(ω(β))− ξ
1−γ , ∀β. From the definition of J∞ in

(26), J∗(β)− J∞(β) ≥ − ξ
1−γ , ∀β, follows.

On the other hand, defining g(k) = supβ∈D(k) J
∗(β)− ξ

1−γ
and following the similar procedure, we can prove Hg ≥ g,

and therefore, get J∗(β) ≤ g∞(ω(β)) + ξ
1−γ . In turn, it implies

J∗(β)− J∞(β) ≤ ξ
1−γ , which completes the proof of statement

(ii) in Theorem 3.

C. Proof of Statement (iii)

For any policy π, define an operator Tπ on F (F is defined in
Appendix A) as

(TπJ)(β) = γ E
X ′ |β

⎡

⎣r([β,X ′], π)

+
N (π )∑

i=1

pi(β, π)J (
i([β,X ′], π))

⎤

⎦ ,

(32)

with π inside r, N , pi and 
i denoting π([β,X ′]). And from
the state transition kernel (12), Jπ∞ as defined by (23) can be
recursively rewritten as Jπ∞(β) = γ EX ′ |β [r([β,X ′], π∞) +
∑N (π∞)

i=1 pi(β, π∞)Jπ∞(
i([β,X ′], π∞))]. By comparing this
expression with Tπ in (32), we have

Tπ∞Jπ∞ = Jπ∞ . (33)

In addition, similar to the proof of Theorem 1,Tπ is a contraction
mapping with modulus γ, which means

||Tπ∞J1 − Tπ∞J2|| ≤ γ||J1 − J2|| (34)

for any J1 and J2. Besides, from the definitions of π̂(·|g∞)
(i.e., π∞) in (18) and J∞ in (26), we have (T ∗ defined in
Appendix A)

Tπ∞J∞ = T ∗J∞. (35)

Furthermore, from statement (ii) of Theorem 3, we have

||J∗ − J∞|| ≤ ξ

1− γ . (36)

Finally, it is shown in the proof of Theorem 1 that

T ∗J∗ = J∗, (37)

||T ∗J1 − T ∗J2|| ≤ γ||J1 − J2||, for any J1 and J2. (38)

By combining the above results, we have

||Jπ∞ − J∗|| ©6= ||Tπ∞Jπ∞ − J∗||
©7
≤ ||Tπ∞Jπ∞ − Tπ∞J∞||+ ||Tπ∞J∞ − J∗||
©8
≤ γ||Jπ∞ − J∞||+ ||T ∗J∞ − T ∗J∗||
©9
≤ γ||Jπ∞ − J∗||+ γ||J∗ − J∞||+ γ||J∞ − J∗||
©A
≤ γ||Jπ∞ − J∗||+ 2γξ

1− γ , (39)

where©6 is from (33);©7 is the triangle inequality;©8 is from
(34), (35) and (37);©9 is from the triangle inequality and (38),
and©A is from (36). Finally, from (39), we have ||Jπ∞ − J∗|| ≤

2γ ξ
(1−γ )2 , which proves statement (iii) of Theorem 3.
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