
IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019 9963

Optimal Selective Transmission Policy for
Energy-Harvesting Wireless Sensors

via Monotone Neural Networks
Keyu Wu , Fudong Li , Chintha Tellambura , Fellow, IEEE, and Hai Jiang , Senior Member, IEEE

Abstract—We investigate the optimal transmission policy for
an energy-harvesting wireless sensor node. The node must decide
whether an arrived packet should be transmitted or dropped,
based on the packet’s priority, wireless channel gain, and the
energy status of the node. The problem is formulated under the
Markov decision process (MDP) framework. For such a problem,
the conventional method to get the optimal policy is by using a
state value function, which is three-dimensional in the considered
problem, leading to high complexity. Fortunately, to reduce com-
plexity, we derive an equivalent solution for the optimal policy
via a one-dimensional after-state value function. We show that
the after-state value function is differentiable and nondecreas-
ing. We also discover a threshold structure of the optimal policy
that is derived by the after-state value function. Furthermore, to
approximate the after-state value function, we propose a learning
algorithm to train a three-layer monotone neural network. The
trained network thus finds a near-optimal selective transmission
policy of the node. Finally, through simulation, we demonstrate
the learning efficiency of the algorithm and the performance of
the learned policy.

Index Terms—After-state, data priority, energy harvesting,
neural network, reinforcement learning (RL), wireless sensor
networks (WSNs).

I. INTRODUCTION

W IRELESS sensor networks (WSNs) have the ability
to monitor environments, monitor/control industrial

processes, and enable machine learning and data gathering,
and many more [2], [3]. Ubiquitous deployment of WSNs is
thus a key enabler of the Internet of Things [4]. The sensors
must be autonomous with limited energy and computational
resources. To achieve this, they may be powered by harvested
energy [5] from ambient sources (wind, solar, and, others [6]).
This enhances the energy self-sustainability of the nodes and
consequently, the lifetime of the network is constrained by
hardware limits, not by battery capacity [7]. Hence, energy
harvesting improves network lifetime and enables a more
sustainable evolution of WSNs.

Manuscript received December 30, 2018; revised May 31, 2019 and July
30, 2019; accepted August 3, 2019. Date of publication August 6, 2019;
date of current version December 11, 2019. This work was supported by the
Natural Sciences and Engineering Research Council of Canada. This paper
was presented in part at the 2017 IEEE ICC (Paris, France) and was published
in its Proceedings [1]. (Corresponding author: Keyu Wu.)

The authors are with the Department of Electrical and Computer
Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
(e-mail: keyu2@ualberta.ca; fudong1@ualberta.ca; ct4@ualberta.ca;
hai1@ualberta.ca).

Digital Object Identifier 10.1109/JIOT.2019.2933579

However, due to finite battery capacity and the randomness
of harvested energy, energy depletion may happen. To avoid
this, energy-saving approaches are needed, including trans-
mission strategy design, sleep mode scheduling, transmission
cooperation, energy-efficiency routing, and selective transmis-
sion (see Section II) [8]–[34]. In this article, we focus on
selective transmission, in which the sender decides whether to
send or to drop a packet. For example, selective transmission
of data packets depending on their priority may be imple-
mented. For instance, data packets of enemy attacks [35] or
fire alarms [36] may have higher priority. So low-priority pack-
ets may be dropped when available energy is limited, which
will allow the sensor to transmit more important packets in a
long term. Such selective transmission strategies were studied
in [8]–[13].

The works in [8] and [9] investigated selective transmis-
sion problems in conventional WSNs, i.e., sensors do not
have energy harvesting ability. In [8], with the objective of
maximizing the expected total priority of transmitted pack-
ets, a transmitting node, considering its available energy and
the priority of a packet, decides whether or not to send the
packet. The work in [9] extended the result of [8] by intro-
ducing a success index for each packet, which improves overall
performance.

The works in [10]–[13] considered energy-harvesting
enhanced WSNs. The work in [10] developed an optimal
selective transmission policy by considering that the harvested
energy amount is either zero or one, and the energy expense for
each packet transmission is always one. Using a similar energy
model, the work in [11] also developed an optimal trans-
mission policy. Further, it proposed a low-complexity policy,
which transmits packets whose priority are above a thresh-
old. Work [12] extended the result of [11] to the case where
there exists temporal correlation in the energy-harvesting pro-
cess. The work in [13] used a learning approach to derive the
optimal transmission policy, by modeling the harvested energy
amount as a general random variable (r.v.).

A. Motivation, Problem Statement, and Contributions

The selective transmission decisions in [8]–[13] are made
based on energy status and/or packet priority, but the effect of
fading has not been considered in the decision making.

Since wireless data transmission is affected by channel
fading, incorporating channel state information (CSI) into

2327-4662 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9584-5713
https://orcid.org/0000-0002-0986-0491
https://orcid.org/0000-0002-9419-7195
https://orcid.org/0000-0003-1042-4897

9964 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

decision making is necessary. Thus, a node can use CSI to
adjust its transmission power to achieve reliable communica-
tion; or it may skip transmission to save energy if CSI indicates
deep fading. Conversely, it may reduce transmit power if CSI
indicates a good channel. These facts suggest that CSI inclu-
sion in selective transmission could further improve energy
efficiency, compared to that of the policies in [8]–[13].

Recall that a node obtains CSI via the feedback from the
receiver. To realize this, the node first sends pilot signals
to the receiver with the aim of performing channel estima-
tion (see [37]–[39] and references therein for pilot designs).
Because the pilot length is much shorter than that of the data
packets [40], the energy required for channel estimation is
much smaller compared to that required for data transmission.
Moreover, for slow-fading quasi-static channels, the channel
coherence time is rather long and hence channel estimation
can be done less frequently.

With these motivations, we consider selective transmissions
of a wireless sensor node, to optimize its energy usage by
exploiting CSI. Transmission selection is based upon battery
status, data priority, and fading status, whereas only the first
two factors are considered in [8]–[13]. In addition, we assume
that the node is unaware of the statistical distributions of the
battery status, data priority, and fading status. This lack of
the distribution information will affect the optimal transmis-
sion policy. Considering all the aforementioned challenges, we
make the following contributions.

1) We model the selective transmission problem as a
continuous-state Markov decision process (MDP) [41].
The optimal policy is derived from an after-state value
function. This approach transforms the conventional
three-dimensional control problem (i.e., on battery sta-
tus, priority, and fading status) to a one-dimensional
control problem (i.e., on the “after-state” battery status).
As a result, control of transmission is greatly simplified.

2) The structural properties of the after-state value func-
tion and the optimal policy are analyzed. We prove that
the after-state value function is differentiable and nonde-
creasing, and that the optimal policy is threshold-based
with respect to data priority and channel status.

3) To compute the continuous after-state value function,
we find a parameterized representation. The parameters
are learned from a batch of data samples. To build this
representation of after-state value function, we propose
to train a monotone neural network (MNN) [42], and
we prove that MNN preserves the necessary properties
of the after-state value function, which is differentiable
and nondecreasing.

4) We develop a learning algorithm to train the proposed
MNN. The learning process exploits data samples (but
not the distributional information, which is unknown
to the node). The trained MNN can construct a
near-optimal transmission policy. With simulations, we
demonstrate the learning efficiency of the proposed algo-
rithm, and also the performance achieved by the learned
policy.

This article is the extended, comprehensive journal version
of our previous conference paper [1]. The conference paper

omits the proofs of all theorems, which are provided here.
Further, this journal paper adds explanations, insights, and
numerical results. Other differences of the conference and
journal papers are as follows.

1) A more practical model is adopted herein. In [1], we
assumed that the node expends energy for data transmis-
sions only. In contrast, this journal paper includes more
practical concerns of energy expenses from idling, data
reception, and channel probing operations of the node.
This makes the development and analysis of optimal
policy considerably more challenging than those in [1].

2) A more efficient learning method is used in this journal
paper. For both [1] and this article, we need to learn
a differentiable nondecreasing function, which yields
the optimal policy. In [1], this function was represented
by a polynomial approximation. However, the polyno-
mial approximation does not possess the nondecreasing
property, and hence the developed learning algorithm
is inefficient. In this journal paper, we propose the
use of an MNN, and prove that it is a well-designed
approximation for differentiable nondecreasing func-
tions. Moreover, we also develop a learning algorithm
for training the MNN, which is not available in [1].

The rest of this article is organized as follows. Section II dis-
cusses existing energy-saving approaches in WSNs. Section III
presents the considered system model and formulates the
selective transmission control problem. Section IV derives
and analyzes the optimal transmission policy based on an
after-state value function. Section V proposes an MNN to
approximate the after-state value function, and develops a
learning algorithm to train the proposed MNN. Section VI pro-
vides simulation results of the proposed algorithm and learned
policy. Section VII concludes this article.

II. RELATED WORKS

As wireless sensors are generally energy constrained,
energy management is crucial for WSNs. A broad range of
energy-saving approaches has been considered in the litera-
ture to ensure WSNs’ proper and efficient operations. These
approaches can be classified into five categories: 1) transmis-
sion strategy design; 2) sleep mode scheduling; 3) transmission
cooperation; 4) energy-efficient routing; and 5) selective trans-
mission. In what follows, we briefly discuss problem setups
and representative results of the first four categories, and then
we discuss in details the category of selective transmission,
which is also the topic of this article.

A. Transmission Strategy Design

The transmission strategy, which decides on transmission
power, transmission rate, and/or modulation scheme, strongly
affects communication reliability and efficiency. Therefore,
designing a transmission strategy from an energy-efficient per-
spective is crucial for WSNs, which is studied extensively
in the literature. For example, the work in [14] investigated
a WSN-WiFi hybrid network, and showed that longer pack-
ets lead to larger transmission delay, while shorter packets
cause more overhead and energy consumption. Therefore, in

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: OPTIMAL SELECTIVE TRANSMISSION POLICY FOR ENERGY-HARVESTING WIRELESS SENSORS VIA MNNs 9965

order to minimize consumed energy while satisfying certain
delay constraint, transmission packet size is optimized in [14].
Moreover, the work in [15] extended the result of [14] and
studied a data rate adaption problem. Specifically, it is shown
in [16] that transmitting with lower rate is generally more
energy efficient (given the same amount of data), but requires
longer transmission time. Hence, the work in [15] proposed a
transmission strategy with adaptive rate, by which the tradeoff
between energy efficiency and transmission delay is balanced.
In [17], a similar energy management problem is studied for
an energy-harvesting wireless link, where data rate of a sin-
gle node is maximized under the energy causality constraint,
i.e., at each instant, the consumed energy cannot exceed total
harvested energy. The works in [18]–[20] studied an uplink
transmission control problem in an energy-harvesting wire-
less network, where, based on channel condition and energy
status, the network needs to decide the transmission power
of each node in order to maximize overall throughput. To
solve this problem, the work in [18] proposed a centralized
scheme, which learns the optimal control strategy via a deep
learning technique. The works in [19] and [20] considered
a distributed scheme, where each node learns its transmis-
sion strategy with multi-agent reinforcement learning (RL)
algorithms. The distributed scheme has similar performance
to that of the centralized scheme. The work in [21] consid-
ered an uplink optimization scenario based on user selection.
Taking energy status and fading profile into account, total
data transmission rate is maximized by selecting a subset of
the users. The works in [22]–[24] studied joint control of
data queue and energy battery with specific constraints, where
model predictive control methods are used, which have the
ability to predict and exploit future harvested energy in control
processes.

B. Sleep Mode Scheduling

In many scenarios of WSNs, packets arrive infrequently.
Sleep mode scheduling exploits this observation, and switches
some sensors into sleep mode (i.e., turns off the sensors’
transceivers and other energy-consuming modules) for energy
saving. However, when sensors are not scheduled carefully,
transmission delay or packet loss probability may increase sig-
nificantly. For example, the work in [25] found that different
scheduling algorithms vary significantly in terms of worst-case
transmission delay. Furthermore, a “multi-parent” scheduling
scheme is proposed in [25] to reduce the transmission delay of
the algorithm. The key idea is that rather than using a single-
path topology for packet routing, where a sensor can only
deliver packets to a fixed next-hop node, the proposed scheme
ensures that an active node has multiple next-hop neighbors.
And whenever the active node needs to deliver a packet, it
delivers the packet to the next-hop neighbor with the earliest
awaken time.

Sleep mode scheduling may also result in frequent state
transitions between active and sleep modes. Due to hardware
limitations, these transitions can cause non-negligible energy
consumption [26]. A scheduling algorithm was proposed
in [26], which assigns a sensor consecutive time slots, and

ensures that neighboring sensors’ time slots are overlapped
properly, thus minimizing the number of state transitions and
improving energy efficiency.

In [25] and [26], time is divided to cycles, each consisting
of a number of time slots. Each node has its own scheduling
pattern in each cycle, i.e., what time slots in the cycle are
in active mode and what time slots are in sleep mode? The
node repeats its scheduling pattern over different cycles. The
works in [25] and [26] require time slot synchronization and
cycle synchronization, referred to as synchronized setting. On
the other hand, a nonsynchronized and cycling-free setting is
investigated in [27], which eliminates time synchronization.
Each sensor autonomously decides its working mode at each
time slot with the goal of balancing between saving energy
and transmitting packets. To achieve this, the sensor uses an
RL algorithm to learn its decision policy distributively, from
its own state dynamics and its interactions with other sensors.

C. Transmission Cooperation

In WSNs, spatially separated sensors generally experience
independent wireless channels, i.e., spatial diversity, which can
be exploited to improve transmission reliability and energy
efficiency. For example, the work in [28] considered a coop-
erative transmission setup, where a sensor can either directly
send data to its destination, or through a intermediate relay
node that is selected from a set of candidates. Due to spatial
diversity, it is possible to select a relay such that the two-hop
cooperative link (from the source to the relay and finally to
the destination) has better quality than that of the direct link.
The work in [29] studied a relay communication scheme in
energy-harvesting WSNs, where the power allocation of the
first hop (from the source to the relay) and second hop (from
the relay to the destination) are optimized under the energy
availability constraint.

The work in [30] considered a different cooperation setup,
where a set of sensors sense a certain event and send mea-
surements to a fusion center. Based on sensors’ observations,
the fusion center decides whether or not the targeted event
has occurred. Rather than transmitting all measurements to
the fusion center, an ordered transmission scheme is proposed
in [30], where sensors sequentially send data (the sending
order is based on the quality of the sensors’ sensed data). The
transmission process is stopped once the data fusion center
has received enough data for decision making. This scheme
can reduce the number of needed transmissions and improve
the network’s energy efficiency.

D. Energy-Efficient Routing

Routing selects a path for delivering a packet from the
source to the destination. Conventionally, this is done by
selecting a path with minimum topology distance or transmis-
sion delay. However, since WSNs need to prolong the network
lifetime, energy efficiency in routing design is critical.

For example, the work in [31] proposed a routing algorithm
for energy-harvesting WSNs. Specifically, the routing metric
combines the residual energy of a node, energy-harvesting rate,
and energy cost for transmission. Therefore, this algorithm

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

9966 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

tends to select a path that has the least energy “reduc-
tion” of the network, thus improving energy efficiency. More
comprehensive construction of routing metrics has also been
considered [32], [33]. Specifically, the work in [32] selects
a routing path considering energy-harvesting wastage due to
the overcharge of finite-capacity batteries, while the work
in [33] considers the required time to recover from an energy
deficient status. The work in [34] jointly considers packet
routing and transmission power control in a multihop energy-
harvesting WSN. The total network utility is maximized by
deciding on the traffic amount for each source-destination pair,
routing and transmission power allocation strategies in the
network, under the data queue stability and energy availability
constraints.

E. Selective Transmission

Selective transmission, which is the topic of this article,
considers the case where a sensor’s arriving packets are associ-
ated with different priorities. When a packet arrives, the sensor
must decide either to send or drop the packet.

The works in [8] and [9] investigated selective transmis-
sion problems in conventional WSNs, i.e., sensors do not
have energy harvesting ability. In [8], with the objective of
maximizing the expected total priority of transmitted pack-
ets, a transmitting node, considering its available energy and
the priority of a packet, decides whether or not to send the
packet when the packet arrives. The work in [9] extended the
result of [8] via further considering a success index, which is
a measure of the likelihood that a transmitted packet reaches
its destination, e.g., a sink node. Therefore, when making its
transmission decision, each sensor takes decisions of other sen-
sors into consideration through the use of the success indices,
which may improve overall performance. Nevertheless, the use
of success indices introduces communication overhead and
additional energy consumption, as the success index for each
packet has to be passed from the sink node to all sensors along
the packet’s routing path.

Different from [8] and [9], the works in [10]–[13] con-
sidered energy-harvesting enhanced WSNs, which poses
additional challenges of modeling and dealing with random
replenishment of energy. In [10], the harvested energy of
a sensor is modeled as a Bernoulli r.v. taking values of 0
or 1, and the energy expense for each packet transmission
is always defined as one. Accordingly, the sensor’s battery
dynamic is analyzed by the Markov chain theory, which is
then used to develop an optimal transmission policy. Using a
similar energy model to that in [10], the work in [11] also
develops an optimal transmission policy. In addition, a low-
complexity balanced policy (BP) is proposed: if the priority of
a packet exceeds a predefined threshold, it is transmitted. BP
is designed to ensure that the expected energy consumption
equals the expected energy-harvesting gain, leading to energy
neutrality. This ensures energy use efficiency while reducing
energy outage risks. The work in [12] extended the result
of [11] to the case where there exists temporal correlation
in the energy-harvesting process.

However, in order to find optimal and/or heuristic poli-
cies, the statistical distributions of data priority and/or
energy-harvesting process are needed in [8]–[12]. In addi-
tion, works [10]–[12] assumed one unit of energy for both
energy replenishment and energy consumption, which may
not be practical. These two limitations are resolved in [13].
Specifically, harvested energy is modeled as a general r.v.
in [13]. In addition, based on the Robbins–Monro algo-
rithms [43], the sender learns the optimal transmission policy
from the observed data, without their statistical distributions.

Different from [8]–[13], where the selective transmission
decision is made based on energy status and packet priority,
this article further considers the exploitation of CSI to improve
performance. In addition, a neural network and corresponding
training algorithm are designed to efficiently learn the optimal
transmission policy, given the data samples from the under-
lying stochastic environment (with no need for distribution
information).

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we will consider a selective transmission
problem for an energy harvesting (EH) wireless link, which
is briefly introduced in Section III-A. Then, the system model
is elaborated from the aspects of operation cycles, states and
actions, state dynamics, and rewards in Sections III-B–III-E,
respectively. Finally, given the system model, the problem
of finding the optimal transmission policy is formulated in
Section III-F.

A. System Overview

We consider a single link with one wireless sensor node
(transmitter) and its receiver. Throughout this article, this sen-
sor node is simply called “the node.” The node works in
a cyclical manner. At each cycle, it receives a data packet
and selects to transmit or discard it depending on the current
system state, including the priority of the packet, energy status
of the node, and CSI. Via intelligently dropping low-priority
packets, the node aims to use its energy efficiently and trans-
mit more high-priority packets in the long term. The details
of operation cycle, system state, and the selective transmission
scheme are given next.

B. Operation Cycles

Time is partitioned into cycles of random durations (Fig. 1).
A cycle (say cycle t) begins with a silent period, in which the
node waits until a data packet arrives. When that occurs, the
silent period ends and an active period starts. During this active
period, the node receives and decodes the data packet, esti-
mates the channel CSI, and then it decides whether to transmit
the received packet or discard it. After the packet is transmit-
ted or discarded, cycle t ends and the silent period of cycle
t + 1 starts. At the same time, the node obtains an energy
replenishment of et, which was harvested during cycle t. Note
that the duration of a cycle can be random, but is assumed to
be long enough to perform necessary tasks in an active period,
i.e., data reception, channel estimation (which includes send-
ing pilot signal to the receiver and receiving estimated CSI

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: OPTIMAL SELECTIVE TRANSMISSION POLICY FOR ENERGY-HARVESTING WIRELESS SENSORS VIA MNNs 9967

Fig. 1. Cycle structure.

from the receiver’s feedback), and possible transmission. This
assumption is reasonable due to the following reason. In our
system model, the duration of a cycle is actually determined
by the interval of two successive packet arrivals. As a WSN
usually has light traffic load, it is reasonable to assume that
the duration of a cycle is long enough to perform necessary
tasks in an active period.

C. States and Actions

In the active period of cycle t, the node makes a transmis-
sion decision based on state st = [bt, ht, dt], where bt is the
remaining energy at the moment of decision making, ht is the
energy needed for transmission, and dt is the packet priority.
These quantities are detailed below.

1) The node receives and decodes a data packet (“data
reception” in Fig. 1). It is assumed that the node is able
to evaluate the priority dt of the packet via, for exam-
ple, reading the packet contents. Here, a higher priority
value dt means more importance.

2) The node sends a pilot signal to the receiver, and obtains
information of the channel power gain zt (CSI) from
the receiver’s feedback (“channel estimation” in Fig. 1).
Based on zt, the node estimates the required transmit
energy ht according to the full channel inversion power
control scheme [44], which ensures a certain target sig-
nal power at the receiver. Without loss of generality, we
assume that the targeted receiving power is one unit,
and the transmission duration is also one unit. Thus,
the required energy for transmission can be given as
ht = 1/zt.

3) bt ∈ [0, 1] represents the remaining energy in the node’s
battery after the energy expenditure (denoted as ct) in
cycle t for standing by (in the silent period of cycle t),
data reception and channel estimation (in the active
period of cycle t). In other words, bt is the remaining
energy in the battery at the end of channel estimation in
cycle t. Note that the battery’s energy capacity is set to
be one unit.

At the end of channel estimation in cycle t, the node has
information of st = [bt, ht, dt], and at this moment, it needs to
decide whether to transmit or discard the packet. The decision
variable at = 1 represents “transmit” and at = 0 represents
“discard.” If at = 0, the packet is dropped with zero energy

consumption for transmission. On the other hand, if at = 1 is
chosen, we have the following.

1) If energy is sufficient (bt ≥ ht), the node consumes
energy ht to transmit the packet, and consequently the
packet will be delivered successfully.

2) If the energy is not sufficient, packet delivery fails,
and the remaining energy is exhausted, i.e., the energy
consumption for transmission is bt.

D. State Dynamics

Here we model the relationship between st+1 and (st, at).
We assume that {ht}t are independent and identically dis-
tributed (i.i.d.) continuous r.v.s with a probability density
function (PDF) fH(x). Similarly, {dt}t are i.i.d. continuous r.v.s
with PDF fD(x). Therefore, ht+1 and dt+1 are independent of
(st, at).

However, bt+1 is affected by (st, at), since different com-
binations of (bt, ht, at) cause different energy consumptions
(Section III-C). Moreover, bt+1 also depends on et. Further,
during cycle t + 1, the waiting in the silent period, and the
data reception and channel estimation in the active period
all consume energy, whose total amount is denoted as ct+1.
Therefore, bt+1 is affected by ct+1. In summary, we have

bt+1 =
(
(�(st, at)+ et)

− − ct+1
)+

(1)

where (x)− � min{x, 1}, (x)+ � max{x, 0}, and

�(st, at) = (bt − ht · at)
+. (2)

We assume that {et}t and {ct}t are, respectively, i.i.d. con-
tinuous r.v.s with PDF fE(x) and PDF fC(x). In Lemma 1 of
Section IV-C, we will show that, given the value of �(st, at),
bt+1 is a time-independent continuous r.v., i.e., its conditional
PDF can be written as fB(·|�(st, at)).

Therefore, given state s and action a at current cycle, the
state s′ = [b′, h′, d′] at next cycle can be characterized by the
following conditional PDF, named as state transition kernel:

f
(
s′|s, a

) = fH
(
h′

) · fD
(
d′

) · fB
(
b′|�(s, a)

)
. (3)

In the sequel, we use (·)′ to denote a variable in the next cycle.

E. Rewards

At cycle t, a packet is successfully transmitted, if and only
if at = 1 and bt ≥ ht. Also considering that the packet’s
priority is quantified by dt, the immediate reward of deciding
on action at in presence of state st is defined as

r(st, at) � 1(at = 1) · 1(bt ≥ ht) · dt (4)

where 1(·) is an indicator function.

F. Problem Formulation

A policy is designed to maximize the expected total rewards
within infinite duration. We consider only the set of all deter-
ministic stationary policies, denoted as �. A deterministic
stationary policy π ∈ � is a time-independent mapping
from states to actions, i.e., π : S �→ A, where S = {s =

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

9968 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

[b, h, d]|b ∈ [0, 1], h ∈ R+, d ∈ R+} denotes the state space,
and A = {0, 1} denotes the action space.

Since the node continuously harvests energy from the envi-
ronment, potentially over an infinite number of cycles, the
total rewards can be infinite. To avoid this, discounting is per-
haps the most analytically tractable and most widely studied
approach. A discounting factor γ ∈ [0, 1] ensures that the infi-
nite summation is bounded. If γ → 0, we pay more attention
to immediate reward. If γ ≈ 1, a long-term reward is taken
into consideration.

For each policy π , the objective value obtained following
policy π is defined as:

Vπ = E

[∞∑

t=0

γ tr(st, π(st))

]

(5)

where expectation E[·] is defined over the distribution of initial
state s0 and state trajectory {st}∞t=1 induced by the sequence
of actions {π(st)}∞t=0. Note that if γ ≈ 1, in our problem, Vπ

can be (approximately) interpreted as the expected sum of the
priority of sent packets by policy π .

Our target is to solve an optimal policy π∗ such that

π∗ = arg sup
π∈�

{
Vπ

}
. (6)

The optimal policy π∗ tells the node about optimal transmis-
sion decision at each cycle t. In addition, we assume that the
node does not know the PDFs of the battery status (fB(·)), data
priority (fD(·)), or fading status (fH(·)). Thus, the solution of
π∗ must involve samples of the corresponding r.v.s.

IV. OPTIMAL SELECTIVE TRANSMISSION POLICY

A. Standard Results From MDP Theory

The 4-tuple <S, A, r, f >, namely, the state space, action
space, reward function, and state transition kernel, defines an
MDP. From basic MDP theory [41, Ch. 6], policy π∗ (6) can
be constructed from state-value function V∗ : S �→ R as

π∗(s) = arg max
a

{
r(s, a)+ γ · E[

V∗
(
s′
)|s, a

]}
(7)

where the expectation is taken over the next state s′ given
current s and a. In addition, V∗ is a solution to the Bellman
equation

V(s) = max
a

{
r(s, a)+ γ · E[

V
(
s′
)|s, a

]}
. (8)

Finally, V∗ can be computed recursively1 by using (8).
Remark: Although V∗ can be solved via (8), it is hard to

compute π∗ via (7). Specifically, (7) requires a conditional
expectation over a random next state s′, which is a computa-
tionally expensive task. We thus address this difficulty through
a reformulation based on the after-state value function.

1This is known as the value iteration algorithm. Section IV-B provides
an example of using it to compute the after-state value function. V∗ can be
similarly computed.

B. Reformulation Based on After-State Value Function

An after-state (also known as post-decision state), which is
an intermediate variable between two successive states, can
be used to simplify the optimal control of certain MDPs [17],
[45]–[50]. The physical interpretation of after-state is problem
dependent.

We next define the after-state variable for our problem. We
also show that π∗ can be defined over an after-state value
function, which can be solved by a value iteration algorithm.

Physically, an after-state pt of cycle t is the remaining
energy after action at is performed but before harvested
energy et is stored in the battery. Therefore, given state st

and action at, the after-state is pt = �(st, at). Recall that
�(st, at) = (bt − ht · at)

+ [as defined in (2)]. Hence, deriv-
ing from (3), the conditional PDF of state s′ = [b′, h′, d′] of
next cycle given after-state p at current cycle is

q
(
s′|p)

� fH
(
h′

) · fD
(
d′

) · fB
(
b′|p)

. (9)

Hence, the term E[V∗(s′)|s, a] inside (7) and (8), where the
conditional expectation is defined with PDF (3), can be written
as E[V∗(s′)|�(s, a)] whose expectation is defined with PDF (9)
with p = �(s, a). Keeping this observation in mind, π∗ is
redefined as follows.

We define the after-state value function J∗ : [0, 1] �→ R as

J∗(p) = γ E
[
V∗

(
s′
)|p]

. (10)

Plugging (10) into (7), we have

π∗(s) = arg max
a

{
r(s, a)+ J∗(�(s, a))

}
. (11)

Therefore, (11) provides an alternative formulation of the
optimal policy. We next present a value iteration algorithm
to solve J∗.

Plugging (10) into (8), we have V∗(s) = max
a
{r(s, a) +

J∗(�(s, a))}. By replacing a with a′, replacing s with s′ and
taking (γ -weighted) conditional expectation γ ·E[· |p] on both
sides, we further have γ ·E[V∗(s′)|p] = γ ·E[maxa′ {r(s′, a′)+
J∗(�(s′, a′))}|p]. Noticing that γ ·E[V∗(s′)|p] on the left hand
side is exactly the definition of J∗(p), we have that J∗ satisfies
the following equation:

J∗(p) = γ · E
[

max
a′

{
r
(
s′, a′

)+ J∗
(
�
(
s′, a′

))}|p
]
. (12)

Finally, following a similar procedure to [50, Th. 1], J∗ can
be solved by a value iteration algorithm (with the technical
assumption that r.v. dt has finite mean). Specifically, initially
with a bounded function J0, the sequence of functions {Jk}Kk=1
computed via, ∀p ∈ [0, 1]

Jk+1(p)← γ · E
[

max
a′

{
r
(
s′, a′

)+ Jk
(
�
(
s′, a′

))}
∣∣∣∣p

]
(13)

converges to J∗ when K →∞.
Remark: Unlike (7), which requires conditional expectation

for optimal decisions, (11) shows that the optimal decisions
can be directly made with J∗ (without taking expectation).

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: OPTIMAL SELECTIVE TRANSMISSION POLICY FOR ENERGY-HARVESTING WIRELESS SENSORS VIA MNNs 9969

Fig. 2. After-state value function and optimal policy. (a) J∗ example. (b) π∗ boundaries for b = 0.4 and b = 0.6.

C. Properties of J∗ and π∗

This section shows the properties of J∗ and π∗. We begin
with Lemma 1, whose proof is provided in Appendix A.

Lemma 1: Given that pt = p, bt+1 is a continuous r.v.
whose distribution does not depend on t. In addition, denot-
ing its conditional cumulative distribution function as FB(b|p),
we have FB(b|p1) ≤ FB(b|p2), if p1 ≥ p2. Finally, FB(b|p) is
differentiable with respect to p.

The after-state value function J∗ can be theoretically
derived from the value iteration algorithm (13). The results
of Lemma 1 provide us a tool to analyze the conditional
expectation operation E[· |p] in (13). Via exploiting Lemma 1,
Theorem 1 analyzes the structure of J∗ with (13). The proof
is provided in Appendix B,

Theorem 1: The after-state value function J∗ is a differen-
tiable and nondecreasing function with respect to after-state p.

Note that π∗ can be defined via J∗ as shown in (11).
Therefore, Theorem 1 can be used to analyze the structures of
π∗, as shown in Theorem 2.

Theorem 2: The optimal policy π∗ has the following
structure:

π∗([b, h, d]) =
{

1 if b ≥ h and d ≥ J∗(b)− J∗(b− h)

0 otherwise.
(14)

Proof: From (11), we know that, π∗([b, h, d]) = 1 is
equivalent to

1(b ≥ h) · d + J∗
(
(b− h)+

) ≥ J∗(b). (15)

Furthermore, (15) requires b ≥ h, since otherwise we have
J∗(0) > J∗(b), which cannot hold as J∗ is nondecreas-
ing. Therefore, (15) is equivalent to b ≥ h and d ≥ J∗(b)

− J∗(b− h).
Corollary 1: The optimal policy π∗ is threshold-based non-

decreasing with respect to d and −h. To be specific: 1) given
any b and h, if π∗([b, h, d1]) = 1, then π∗([b, h, d2]) = 1, for
any d2 ≥ d1; and 2) given any b and d, if π∗([b, h1, d]) = 1,
then π∗([b, h2, d]) = 1, for any h2 ≤ h1.

Proof: From Theorem 2, π∗([b, h, d1]) = 1 implies h ≤ b
and d1 ≥ J∗(b)− J∗(b− h). Therefore, we have d2 > J∗(b)−
J∗(b− h) for any d2 ≥ d1, which implies π∗([b, h, d2]) = 1.

Similarly, π([b, h1, d]) = 1 implies h1 ≤ b and d > J∗(b)−
J∗(b−h1). And because J∗ is nondecreasing, we have h2 ≤ b
and d > J∗(b) − J∗(b − h2) for any h2 ≤ h1, which implies
π∗([b, h2, d]) = 1.

Remark: Corollary 1 states that, for a given battery level b,
the optimal policy is to send, if the data priority and channel
quality exceed certain thresholds.

D. Example of J∗ and π∗

We now present an example of J∗ and π∗ in Fig. 2.
J∗(p) is the function shown in Fig. 2(a), which is non-

decreasing and differentiable (Theorem 1). Based on J∗(p),
the optimal policy π∗([b, h, d]) is then determined based
on (11). From Theorem 2, we know that, in the (h, d) space
given battery level b, a decision boundary consisting of curve
“d = J∗(b)− J∗(b− h)” and line “h = b” partitions the (h, d)

space into two subspaces: in the subspace on the upper-left
side of the boundary, the decision is π∗([b, h, d]) = 1; in the
subspace on the bottom-right side of the boundary, the deci-
sion is π∗([b, h, d]) = 0. In Fig. 2(b), we show two examples
for decision boundaries with b = 0.4 and b = 0.6, respec-
tively. It is easily seen that π∗([0.4, h, d]) and π∗([0.6, h, d])
are threshold-based nondecreasing with respect to d and −h,
as proved in Corollary 1. However, the threshold structure does
not hold in dimension b. As one can see in Fig. 2(b), there is
an area of (h, d) that a = 1 is chosen with π∗([0.4, h, d]), but
a = 0 is chosen with π∗([0.6, h, d]).

V. NEURAL NETWORK FOR OPTIMAL CONTROL

Section IV-B shows that π∗ can be effectively constructed
by J∗, which, in turn, can be solved by the value iteration
algorithm (13). However, the implementation of (13) has two
difficulties. First, as the PDFs fH(·), fD(·) and fB(·|p) are not
available, we cannot compute E[· |p]. Second, because after-
state p is a continuous variable over [0, 1], each iteration
of (13) has to be computed over infinitely many p values.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

9970 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

RL provides a useful solution to address both difficul-
ties. Specifically, instead of exactly solving J∗, RL targets an
approximation of J∗ via learning a parameter vector (a set
of real values), while the learning process exploits data sam-
ples (rather than underlying distributions). In other words, the
design of an RL algorithm involves the following.

1) Parameterization: This decides how a parametric func-
tion Ĵ(p|θ) is determined from a given parameter
vector θ .

2) Parameter Learning: Parameter vector θ∗ is learned
from a batch of data samples, and Ĵ(p|θ∗) is used to
approximate J∗.

Learned θ∗ enables the construction of the transmission
policy as

π̂
(
s|θ∗) = arg max

a

{
r(s, a)+ Ĵ

(
�(s, a)|θ∗)

}
. (16)

Comparing (16) with (11), we see that, if Ĵ(p|θ∗) approximates
J∗(p) well, the performance of π̂(s|θ∗) is close to that of π∗(s)
([51, Ch. 6] provides rigorous statements).

In this section, we propose an RL algorithm, which exploits
MNN [42] for parameterization (Section V-A) and learns
the associated parameter vector via iteratively executing least
square regression (Section V-B). The learned parameter vec-
tor is applied for transmission control in Section V-C. The
time complexity of the proposed algorithm is analyzed in
Section V-D.

A. Monotone Neural Network Approximation

The function parameterization should provide sufficient
representation ability [parameter vector θ is found such
that Ĵ(p|θ) is close to J∗(p)]. Artificial neural network
(ANN) [52, Ch. 4] seems to be a good option, as the uni-
versal approximation theorem [53] states that a three-layer
ANN is able to approximate a continuous function to arbitrary
accuracy.

However, we know that J∗ is nondecreasing from
Theorem 1, whereas (classical) ANNs include all types of con-
tinuous functions (not necessarily nondecreasing). This would
make the learning of parameters inefficient, as a learning algo-
rithm needs to search over a not-necessarily large function
space.

With this motivation, we propose the use of an MNN [42]
for parameterization. Mathematically, the parameterized func-
tion Ĵ(p|θ) with the MNN is expressed as

Ĵ(p|θ) =
(

N∑

i=1

u2
i σH

(
w2

i p+ αi

)
)

+ β (17)

with parameter vector

θ = [w1, . . . , wN, α1, . . . , αN, u1, . . . , uN, β]

and function σH(x) = 1/(1+ e−x).
Function Ĵ(p|θ) (17) is depicted in Fig. 3. It is actually

a three-layered single-input–single-output ANN (with small
modifications). Specifically, there is an input-layer with one
single node, whose output represents the value of after-state p.
In addition, there is a hidden layer with N nodes. The input of

Fig. 3. MNN.

the ith node is the sum of weighted after-state value w2
i ·p and

hidden-layer bias αi. And the input–output relationship of each
hidden-layer node is defined by σH(·) (known as the sigmoid
activation function [52, Ch. 4]). Finally, there is an output layer
with one node, whose output represents the ultimate approx-
imated function value Ĵ(p|θ). Its input is the summation of
weighted outputs from the hidden-layer and the output-layer
bias β. And the output of the output-layer node is equal to its
input.

Note that the key difference between MNN and classical
ANN is the sign of weights. The former has non-negative
weights, which is not necessary for classical ANN. But MNN
guarantees a nondecreasing function, which is what Ĵ(p|θ) is
as shown in Theorem 3.

Theorem 3: For any parameter θ , Ĵ(p|θ) is a differentiable
nondecreasing function.

Proof: We have (d/dp)Ĵ(p|θ) = ∑N
i=1 u2

i · w2
i ×

σH(w2
i p + αi)× (1 − σH(w2

i p + αi)). It is easily verified that
(d/dp)Ĵ(p|θ) ≥ 0, which completes the proof.

Moreover, Theorem 4 states that the proposed MNN has suf-
ficient ability to represent any continuous and nondecreasing
function.

Theorem 4: For any continuous nondecreasing function
J : [0, 1] �→ R, there exists an MNN with N hidden nodes
and parameter vector θ , such that J(p)− Ĵ(p

∣∣θ) ≤ ε, for any
p ∈ [0, 1] and ε > 0.

Proof: It can be proven by [42, Th. 3.1], which considers
a general case of representing a multiple-input–single-output
nondecreasing function.

Remark: Theorem 4 states that Ĵ(p|θ) is able to approxi-
mate J∗(p) to arbitrary accuracy via optimizing the parameter
vector θ .

B. Fitted Value Iteration to Train MNN

Fitted value iteration [54] is a state-of-the-art learning
methodology that is especially useful for training neural
networks for optimal control. When working with complex
neural networks (with multiple hidden layers), it is entitled
with the name of deep RL [55], [56]. Here, we develop an
algorithm, called fitted value iteration with MNN (FMNN),
via tailoring the fitted value iteration method into our problem.
FMNN trains an MNN to approximate J∗(p) via exploiting a

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: OPTIMAL SELECTIVE TRANSMISSION POLICY FOR ENERGY-HARVESTING WIRELESS SENSORS VIA MNNs 9971

batch of data samples. In the following, we first specify the
required data. Then, the training process is presented.

1) Collecting Training Data: The required training data
for FMNN is a batch of samples F = {(pm, sm =
[bm, hm, dm])}M−1

m=0 , where bm ∼ fB(·|pm), hm ∼ fH(·) and
dm ∼ fD(·). In the following, we provide two possible methods
for collecting F .

When PDFs fC(·), fE(·), fH(·), and fD(·) are known in
advance, then we can use a simulator that is able to generate
data samples of r.v.s ct, et, ht, and dt following PDFs fC(·),
fE(·), fH(·), and fD(·), respectively. In this case, we can first
obtain {pm}m by uniformly sampling over [0, 1]. Then, for a
given pm, we sample those r.v.s and get realizations (c, e, h, d).
With these realizations, a valid data sample (pm, sm) can be
obtained by setting sm = [((pm + e)− − c)+, h, d]. Finally, F
is constructed by repeating the procedure for all pm.

When PDFs fC(·), fE(·), fH(·), and fD(·) are unknown
in advance, we can construct F via physically interacting
with environments. We can run a certain sampling pol-
icy πS(s) (such as the greedy policy, i.e., always choose
to send if energy is sufficient). And during the execu-
tion of πS(s), we can observe a sample path of r.v.s
(. . . , st−1 = [bt−1, ht−1, dt−1], pt−1 = �(st−1, πS(st−1)), st =
[bt, ht, dt], pt = �(st, πS(st)), . . .). Then, by setting pm = pt−1
and sm = [bt, ht, dt], we are able to collect a valid sample
(pm, sm). Finally, F is constructed by sweeping from t = 0 to
M.2

2) Fitting MNN Iteratively: Here, we present FMNN,
which trains an MNN to approximate J∗(p) with F via
imitating the iterative computing scheme of (13).

Specifically, similar to (13), FMNN works iteratively. At the
kth iteration, suppose that the current MNN parameter vector is
θk, which defines a function Ĵ(p|θk) with (17). As suggested
by (13), given current value function Jk(p) = Ĵ(p|θk), the
updated value function should be

Jk+1(p) = γ · E
[

max
a

{
r
(
s′, a

)+ Ĵ
(
�
(
s′, a

)|θk
)}

∣∣∣∣p
]
. (18)

Therefore, we wish to update the MNN’s parameters to obtain
a new function J(p|θk+1) that is close to Jk+1(p).

To do so, from F and θk, we construct a batch of data

Tk = {(pm, om)}M−1
m=0 (19)

where

om = γ ·max
a

{
r(sm, a)+ Ĵ(�(sm, a)|θk)

}
. (20)

Note that by comparing (20) with (18), om can be seen as a
noisy realization of Jk+1(pm). In other words, given pm as an
input value, om defines the corresponding output of Jk+1 (plus
certain noise). Therefore, we may get a function that is close
to Jk+1(p) by training the MNN to fit the (noisy) input–output
patterns contained in Tk.

2After the initial data samples are collected, the node can apply the learned
policy for transmission control, and during the transmission control, the node
can collect new fresh data samples. The fresh data samples can be used to
update the learned policy [57].

Algorithm 1 FMNN: Approximate J∗(p)

Input: Data samples F = {(pm, sm)}M−1
m=0

Output: Learned MNN Ĵ(p|θK)

1: procedure
2: Randomly initialize parameter θ0
3: for k from 0 to K − 1 do
4: for m from 0 to M − 1 do
5: Get (pm, sm) as the mth element of F
6: Compute om from θk and sm via (20)
7: Collect Tk(m) = (pm, om)

8: end for
9: Regression: θk+1 = Fit(Tk, θk) (see Algorithm 2)

10: end for
11: Learned MNN is determined from (17) with θ = θK

12: end procedure

Specifically, given Tk, the MNN parameter is updated as

θk+1 = arg min
θ
{L(θ |Tk)} (21)

where

L(θ |Tk) = 1

2M

M−1∑

m=0

(
Ĵ(pm|θ)− om

)2
(22)

[the solving of (21) is discussed in Section V-B3]. That
is, the output of updated function Ĵ(p|θk+1) minimizes the
square error with respect to data set Tk, i.e., least square
regression. Given sufficiently large M, this regression pro-
cess can efficiently average out data’s randomness. Hence, the
approximation error between Jk+1(p) and Ĵ(p|θk+1) should be
small.

With θk+1, we can generate Tk+1 from θk+1 and F [similar
to (19)], and then solve θk+2 by fitting the MNN to Tk+1 (sim-
ilar to (21)). Iterations continue by repeating the procedure.
The ultimate learned function Ĵ(p|θK) after K iterations should
be close to J∗(p) with sufficiently large K. For illustration,
Fig. 4 shows the 1st, 2nd, and 20th iterations during FMNN’s
execution. Summarizing above concepts, FMNN algorithm is
presented in Algorithm 1.

3) Train MNN With Gradient Descent: Here, we apply
gradient descent to address (21) for solving MNN parame-
ter θk+1 such that the represented function Ĵ(p|θk+1) fits an
input–output pattern Tk in least square error sense.

Gradient descent works by iteratively searching over the
parameter space. Denote θ (0) as the initial search point, which
can be intuitively set as current MNN parameter θk. By
gradient descent, the parameter searching is conducted as
follows:

θ (l+1) = θ (l) − ξ (l) · ∇L
(
θ (l)

)
(23)

where ξ (l) is the updating step size and ∇L(θ (l)) is the gra-
dient of L (22) at θ (l). Given properly decreasing ξ (l) and
sufficient number of iterations L, we set θk+1 = θ (L), which
is considered as an approximated solution of (21).

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

9972 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Fig. 4. Illustration of FMNN with |F | = 500. (a) 1st iteration. (b) 2nd iteration. (c) 20th iteration.

Lastly, we derive ∇L(θ). With Tk = {(pm, om)}M−1
m=0 , the

partial derivatives of L can be obtained as follows:

∂L
∂β
= 1

M

M−1∑

m=0

εm (24)

∂L
∂ui
= 1

M

M−1∑

m=0

(
εm · 2 · ui · σH

(
w2

i · pm + αi

))
(25)

∂L
∂αi
= 1

M

M−1∑

m=0

(
εm · u2

i · σH

(
w2

i · pm + αi

)

×
(

1− σH

(
w2

i · pm + αi

)))
(26)

∂L
∂wi
= 1

M

M−1∑

m=0

(
εm · u2

i · σH

(
w2

i · pm + αi

)

×
(

1− σH

(
w2

i · pm + αi

))
· 2 · wi · pm

)

(27)

where

εm = Ĵ(pm|θ)− om. (28)

Therefore, the gradient of L is

∇L(θ)

=
[

∂L
∂w1

, . . . ,
∂L
∂wN

,
∂L
∂α1

, . . . ,
∂L
∂αN

,
∂L
∂u1

, . . . ,
∂L
∂uN

,
∂L
∂β

]
.

(29)

Summarizing above results, we provide Algorithm 2, which
works as an inner loop of FMNN for training an MNN to fit
data set Tk.

C. Apply Learned MNN for Transmission Control

After collecting training data F and executing Algorithm 1,
MNN parameter θK is learned, and from it, a policy π̂(·|θK)

can be further constructed via (16) by setting θ∗ = θK . As
shown in [58] that, for large N, M and K, π̂(s|θK) (16) should
be close to π∗(s). Given the learned MNN/policy, we can
then apply it for online selective transmission control, which
is presented in Algorithm 3.

Algorithm 2 Inner Loop of FMNN: Fit Input–Output Pattern
Input: Input-output pattern Tk, initial search point θk

Output: Trained parameter θk+1
1: procedure
2: θ (0) = θk

3: for l from 0 to L− 1 do
4: Compute ∇L(θ (l)) with Tk via (24)-(27)
5: Obtain θ (l+1) with θ (l) and ∇L(θ (l)) via (23)
6: end for
7: θk+1 = θ (L)

8: end procedure

D. Computational Complexity

As we have shown, applying the proposed FMNN for trans-
mission control involves a training phase (Algorithm 1) and a
control phase (Algorithm 3). In the following, we analyze the
time complexity of executing FMNN for training and control,
respectively.

The main computational burden of the training phase is to
execute the inner loop (Algorithm 2) K times. Furthermore,
Algorithm 2 requires computing the partial derivative ∇L(θ (l))

for L times. Moreover, from (29) and (24)–(27), it can be see
that the complexity of computing the partial derivative is of
O(M × N). In summary, the time complexity of FMNN in
training phase is of O(K × L×M × N), i.e., linearly propor-
tional to the number of value iterations (K), gradient descent
steps (L), the size of MNN’s hidden-layer (N), and the size of
training data (M).

During the control phase, the major computational burden
for determining whether or not to transmit a packet comes
from evaluating the values Ĵ(p0|θK) and Ĵ(p1|θK) (see line 9
of Algorithm 3) at after-states p0 and p1. Therefore, from (17),
it can be seen that the time complexity of each transmission
decision making is of O(N), which is only relevant to the
size of MNN’s hidden layer. It can be seen that, once MNN is
trained, the complexity for applying it for transmission control
is negligible.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: OPTIMAL SELECTIVE TRANSMISSION POLICY FOR ENERGY-HARVESTING WIRELESS SENSORS VIA MNNs 9973

Algorithm 3 Online Transmission Control With Learned
MNN
Input: Learned MNN Ĵ(·|θK)

1: procedure
2: for t from 0 to ∞ do
3: A packet arrives, and the node ends the silent

period of cycle t
4: Decode the packet and evaluate its priority dt

5: Probe CSI and estimate required transmit energy ht

6: Determine current remaining energy in battery bt

7: Construct state st = [bt, ht, dt]
8: Compute after-states p0 = �(st, 0) and p1 =

�(st, 1)

9: Evaluate after-state values with trained MNN as
J0 = Ĵ(p0|θK) and J1 = Ĵ(p1|θK)

10: if J0 > J1 + 1(bt ≥ ht) · dt then � see (16)
11: Discard the packet
12: else
13: Send the packet with energy ht

14: end if
15: Battery is replenished with harvested energy et

16: Enter silent period of cycle t + 1
17: end for
18: end procedure

VI. NUMERICAL SIMULATION

We will next numerically study the learning characteristics
of the proposed FMNN and the performance of the learned
policy. In Section VI-B, we investigate the learning effi-
ciency of FMNN. Section VI-C demonstrates the structure and
performance of the learned policy. In Section VI-D, we fur-
ther compare the performance of the proposed algorithm with
existing algorithms under real measured data.

A. Simulation Setup

We model the wireless channels as Rayleigh fading, the
most common model in wireless research. It is especially
accurate for signal propagation in heavily built-up urban
environments. The PDF of channel power gain zt is then
f (x) = (1/μZ)e−x/μZ , x ≥ 0, where μZ = 1 is the mean
of zt (other values of μZ are investigated in Section VI-C).

We assume that energy is harvested from wind power,
which is well characterized by the Weibull distribu-
tion [59]. Hence, we model et with Weibull PDF fE(x) =
(kE/λE)(x/λE)kE−1e−(x/λE)kE−1

, x ≥ 0, with shape parameter
kE = 1.2 and scale parameter λE = 0.15/�(1+ 1/kE), where
�(·) is the gamma function. The shape and scale parameters
imply that the mean of et equals 0.15.

Moreover, the total energy consumption ct during the silent
period, data reception, and channel estimation is modeled as a
Gamma PDF fC(x) = (�(kC)θ

kC
C)−1xkC−1e−(x/θC), x > 0, with

shape parameter kC = 10, and scale parameter θC = 0.02/kC.
The shape and scale parameters imply that the mean of ct

equals 0.02.

Furthermore, the model of data priority dt depends on the
specific practical application. We assume that dt is exponen-
tially distributed, i.e., fD(d) = e−d, d ≥ 0. This assumption
is also used in [8] and [13]. In Section VI-D, we further
study the priority model for data packets obtained from a real
experiment.

Finally, the number of hidden nodes N of the MNN is set
to 3. The FMNN is executed with the data sample size of
|F | = M = 500, and the number of iterations is K = 20.

B. Sample Efficiency for Learning π∗

To evaluate learning efficiency, we use the sample efficiency,
which is the number of data samples needed to be pro-
cessed before an algorithm can learn a (near) optimal policy.
Sample efficiency is a good proxy of an algorithm’s training
and adaptive abilities. We next assess the sample efficiency
of FMNN, FNN (fitted value iteration with a classical neu-
ral network), and Online-DIS (online learning with after-state
space discretization), which are constructed as follows.

1) FNN and Online-DIS: FNN is the same as FMNN
except replacing the MNN with a three-layer classical ANN
(without non-negative weights constraint) and modifying the
gradient descent method for ANN in Algorithm 2. Thus, FNN
does not exploit the monotonicity of J∗, and the learning
efficiency is expected to be inferior to that of FMNN.

Online-DIS algorithm is developed via applying the well-
known Q-learning algorithm [45, Ch. 6.5] into our problem
(Q-learning is also chosen for comparison in [13]). Online-DIS
applies discretization for parameterization and an online learn-
ing scheme for learning associated parameters. Specifically,
Online-DIS discretizes the after-state space into N̄ bins,
which are, respectively, associated with N̄ parameters. The
nth parameter presents the “aggregated” function values of
J∗(p) for all after-states p that fall into the nth bin. These
parameters are learned via continuously updating parameters
with each available sample. In order to properly average out
data samples’ randomness, the updating step size needs to be
sufficiently small (see [45, p. 39]). Therefore, the learning gen-
erally progresses fairly slowly, and requires a large amount of
data samples.

2) Sample Efficiency Comparison: The setting of FNN is
the same as that of FMNN. For Online-DIS, the number of bins
N̄ is set as 20. To investigate the learning efficiency, we eval-
uate the performance of learned policies when each iteration
of FMNN and FNN consumes 500 data samples. Fig. 5 shows
the results on a logarithmic scale and the learning progress.

First, we observe that FMNN and FNN are about 100
times more efficient than Online-DIS. This significant disparity
occurs because FMNN and FNN directly train an MNN/ANN
to fit data samples with regression, whereas Online-DIS must
gradually average out randomness with a small step size.

Second, FMNN learns considerably faster than FNN. This
is because FMNN exploits the nondecreasing property of J∗
to learn a reasonably good policy with fewer iterations.

Finally, after processing enough data samples, the three
learning curves converge. Both FMNN and FNN converge to

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

9974 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

Fig. 5. Learning curve.

the same value, because both can represent a continuous non-
decreasing function. Therefore, their learned policies achieve
the same performance. In contrast, Online-DIS converges to a
slightly inferior level.

Fig. 6 shows the learn value functions by the three algo-
rithms. In addition, we also present the after-state value
function J∗(p), which is computed via (13) by exploiting the
knowledge of PDFs fH(·), fD(·), and fB(·|p) and taking suf-
ficiently many p values. From Fig. 6(a), it can be seen that,
after processing 1500 samples (3 iterations), FMNN learns a
good value function, which is fairly close to J∗. The function
learned by FNN after processing 1500 samples does not cap-
ture the nondecreasing structure of J∗. This fact suggests that
FNN has inferior sample efficiency compared with FMNN.
Nevertheless, both functions learned via FNN and FMNN
eventually converge to J∗. Finally, as one can notice, even
with 1.5× 105 data samples, the function learned by Online-
DIS fluctuates because the randomness of data samples has
not been averaged out. Given 106 data samples and gradually
decreasing step size, Online-DIS properly averages out noise
and learns a nondecreasing function to fit J∗. However, due
to after-state space discretization, the learned value function
is piece-wise constant function, whose discontinuities cause a
slight performance loss of the resulted policy (i.e., as shown
in Fig. 5, Online-DIS converges to a slightly inferior level).

C. Structure and Performance of Learned Policy

Given FMNN’s learned parameter θK , a policy π̂(s|θK) can
be constructed via (16) with θ∗ = θK . The constructed pol-
icy is shown in Fig. 7, in which decision “to send” is made
if the current state is above the curved surface, and deci-
sion “to drop” is made otherwise. This is consistent with the
optimal policy’s structured results proved in Theorem 2 and
Corollary 1.

With the constructed policy, Algorithm 3 can then be applied
for selective transmission control.

The major difference between π̂(s|θK) and those of [8]–[13]
is that: polices of [8]–[13] rely on available energy bt and
packet priority dt only, whereas π̂(s|θK) further exploits

TABLE I
SENT PACKETS’ TOTAL PRIORITY VALUE

CSI ht. To investigate the performance gain of exploiting
CSI, we compare π̂(s|θK), named as DecBDH (i.e., deci-
sion based on bt, dt, and ht), with the policy of work [13],
named as DecBD (i.e., decision based on bt and dt). Note
that works [8]–[12] do not fit energy-harvesting and/or wire-
less fading settings. DecBD works as follows. It first uses the
scheme in [13] to send or to discard a packet based on avail-
able energy bt and packet priority dt. If the decision is to send,
the node transmits only if there is enough energy (bt ≥ ht);
otherwise the node does not transmit and there is no energy
consumption for transmission.

We also compare with an adaptive transmission (AdaTx)
scheme, which always tries to send if a successful transmission
can be achieved, i.e., the node transmits with energy ht if
bt ≥ ht, or drops the packet without energy consumption for
transmission otherwise.

Fig. 8 shows the performance of DecBDH, DecBD, and
AdaTx under different channel conditions. Note that DecBD
outperforms AdaTx. The reason is that DecBD considers both
data priority and energy status, and ensures the transmission
of high priority packets and avoids transmissions when the
available energy level is low. In contrast, DecBDH exploits
instantaneous CSI, which translates more transmission oppor-
tunities at good channel conditions, and therefore, outperforms
DecBD.

D. Compared Under Real Measured Data

Next, we further compare the performance of the algo-
rithms with some real measured data. Specifically, the work
in [60] reported indoor temperature data that were measured
via a temperature sensor every 10 min for about 4.5 months,
which yield 2×104 data packets. We define the priority of a
data packet as the absolute difference between the tempera-
ture indicated by the current packet and that of the previous
packet. Therefore, a high-priority packet indicates steep indoor
temperature change, which may be critical for some appli-
cations, e.g., room occupancy detection. Fig. 9 shows the
priority values of those measured packets in chronological
order. In Table I, we present the total priority of packets
sent by DecBDH, DecBD, and AdaTx. It can be seen that,
DecBDH (learned via our proposed algorithm) performs the
best; while DecBD follows. These two algorithm, respectively,
achieve 30% and 13% performance gain compared to the least
favorable policy AdaTx.

Lastly, we investigate packets’ priority distribution
before/after processing via a transmission policy. In Fig. 10,
curve “Measured” represents the priority PDF of all arrived
packets. The curves “AdaTx,” “DecBD,” and “DecBDH” are
the priority PDF of packets transmitted by AdaTx, DecBD,
and DecBDH, respectively. It can be seen that curve AdaTx

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: OPTIMAL SELECTIVE TRANSMISSION POLICY FOR ENERGY-HARVESTING WIRELESS SENSORS VIA MNNs 9975

Fig. 6. Learned value functions. (a) FMNN and FNN after 1500 samples, and Online-DIS after 1.5× 105 samples. (b) FMNN and FNN after 104 samples,
and Online-DIS after 106 samples.

Fig. 7. Constructed policy π̂(s = [b, h, d]|θK) via learned MNN.

Fig. 8. Achieved performance under different channel conditions.

is close to curve Measured, since AdaTx’s transmission
decision is not based on dt. In contrast, policies DecBDH
and DecBD selectively transmit high-priority packets, and
therefore, curves DecBDH and DecBD shift toward high
priority region (compared to curve AdaTx). Note that,

Fig. 9. Measured data from a temperature sensor.

Fig. 10. PDF of packets’ priority values.

compared to DecBDH, curve DecBD shifts more, due to the
following reason. DecBD selects to transmit only when the
arrived packet’s priority is sufficiently high. On the other
hand, when an arrived packet’s priority is not sufficiently

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

9976 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

high, DecBDH may still select to transmit if the channel gain
is good. In other words, DecBDH transmits more packets,
some of which are not with sufficiently high priority.

VII. CONCLUSION

We have considered the selective transmission problem for
an energy-harvesting wireless sensor node, which is modeled
under the framework of an MDP. The optimal policy is con-
structed by the after-state value function J∗, which greatly
simplifies the problem. We showed that J∗ is a differentiable
and nondecreasing function. As an efficient solution of J∗, we
proposed an FMNN learning algorithm, which approximates
J∗ with an MNN, and learns the associated parameters by
iterative least-square regression. Our simulations demonstrated
the learning efficiency of FMNN and also the performance
gain achieved by the learned policy.

APPENDIX A
PROOF OF LEMMA 1

Since bt+1 = ((pt + et)
− − ct+1)

+, we have, for x ∈ [0, 1]

Prob(bt+1 > x|pt = p)

= Prob
((

(p+ et)
− − ct+1

)+
> x

)

= Prob
(
(p+ et)

− > x+ ct+1
)

= Prob(1 > x+ ct+1 and p+ et > x+ ct+1)

=
∫ 1−x

0

∫ 1

x−p
fE(e) · fC(c) de dc (30)

where Prob(·) means probability, and the last equality holds
as et has PDF fE and ct+1 has PDF fC.

It is easy to check that Prob(bt+1 > x|pt = p) does not
depend on t, and

FB(b|p) = 1− Prob(bt+1 > b|pt = p). (31)

In addition, since fE and fC are both non-negative, Prob(bt+1 >

b|pt = p) (30) is nondecreasing with respect to p, which
implies FB(t|p) is nonincreasing with respect to p from (31).
Finally, it is obvious that (d/dp)FB(t|p) and (d/dt)FB(t|p)

exist (and can be computed via the Leibniz integral rule),
which completes the proof.

APPENDIX B
PROOF OF THEOREM 1

With value iteration algorithm (13), we prove Theorem 1
by induction. Specifically, we set J0(p) = 0 for all p ∈ [0, 1],
which is differential and nondecreasing. With this choice
of J0, we can prove Theorem 1 by showing that, if Jk is
nondecreasing and differentiable, Jk+1 is nondecreasing and
differentiable.

First, from (13), we have

Jk+1(p) = γ E
[
r
(
s′, A′

)+ Jk
(
�
(
s′, A′

))∣∣p
]

(32)

where the expectation is taken over both s′ and A′, and A′ is
a function of r.v. s′

A′ =
{

1 if r
(
s′, 1

)+ Jk
(
�
(
s′, 1

)) ≥ Jk
(
�
(
s′, 0

))

0 otherwise.

In addition, due to the induction assumption and the fact
�(s′, 1) ≤ �(s′, 0), we have Jk(�(s′, 1)) ≤ Jk(�(s′, 0)).

Therefore, if A′ = 1, we must have b′ ≥ h′, since
b′ < h′ implies r(s′, 1) = 0, and further implies r(s′, 1) +
Jk(�(s′, 1)) < Jk(�(s′, 0)), and therefore, A′ = 0 (a contradic-
tion of A′ = 1).

Denoting Si(b) as the region of (h, d) with action A′ = i ∈
{0, 1} given b, we have S1(b) = {(h, d)|b ≥ h, d+Jk(b−h) >

Jk(b)}, and S0(b) = {(h, d)|b ≥ h, d + Jk(b − h) ≤ Jk(b)} ∪
{(h, d)|b < h}. Given S0(b) and S1(b), Jk+1(p) (32) can be
rewritten as

Jk+1(p) = γ

∫ 1

0
fB(η|p) ·M(η) dη (33)

where

M(η) �
∫∫

(x,y)∈S1(η)

[
y+ Jk(η − x)

] · fD(y) · fH(x) dy dx

+
∫∫

(x,y)∈S0(η)

Jk(η) · fD(y) · fH(x) dy dx

=
∫ η

0

∫ +∞

Jk(η−x)
(y+ Jk(η − x)) · fH(x) · fD(y) dy dx

+
∫ η

0

∫ Jk(η−x)

0
Jk(η) · fH(x) · fD(y) dy dx

+
∫ +∞

t

∫ +∞

0
Jk(η) · fH(x) · fD(y) dy dx. (34)

In the following, we present Lemma 2, whose proof is given
in Appendix C. With Lemma 2 and (33), we thereby can com-
plete the proof by showing that M(η) is differentiable and
nondecreasing.

Lemma 2: Given that function �(η) is nondecreasing and
differentiable for η ∈ [0, 1], function J(p) generated with
J(p) = ∫ 1

η=0 fB(η|p)�(η) dη is nondecreasing and differen-
tiable for p ∈ [0, 1].

With the assumption that Jk(p) is differentiable, the function
M(η) can be shown to be differentiable by repeatedly using
the Leibniz’s rule. Therefore, we are remaining to show that
M(η) is nondecreasing.

Given any η1, η2 ∈ [0, 1] and η1 ≥ η2, we define Sij �
Si(η1)∩ Sj(η2) with i, j ∈ {0, 1}. Then, from (34), it is easy to
verify that

M(η1)−M(η2)

= E[1((h, d) ∈ S11) · (Jk(η1 − h)− Jk(η2 − h))]︸ ︷︷ ︸
��11

+ E[1((h, d) ∈ S10) · (d + Jk(η1 − h)− Jk(η2))]︸ ︷︷ ︸
��10

+ E[1((h, d) ∈ S01) · (Jk(η1)− d − Jk(η2 − h))]︸ ︷︷ ︸
��01

+ E[1((h, d) ∈ S00) · (Jk(η1)− Jk(η2))]︸ ︷︷ ︸
��00

where the expectations are taken over h and d. With the
assumption that Jk(p) is nondecreasing, the following results
hold. Since η1 ≥ η2, we have Jk(η1 − H) ≥ Jk(η2 − H) and

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: OPTIMAL SELECTIVE TRANSMISSION POLICY FOR ENERGY-HARVESTING WIRELESS SENSORS VIA MNNs 9977

Jk(η1) ≥ Jk(η2), and therefore, �11 ≥ 0 and �00 ≥ 0. And
according to the definition of S10, we have dt + Jk(η1−H) ≥
Jk(η1) ≥ Jk(η2), which means �10 ≥ 0. Finally, for S01, we
have Jk(η1) ≥ dt + Jk(η1 − H) ≥ dt + Jk(η2 − H), which
means �01 ≥ 0. In summary, we have M(η1) − M(η2) ≥ 0
given η1 ≥ η2. Therefore, M(η) is nondecreasing.

APPENDIX C
PROOF OF LEMMA 2

Suppose the derivative of �(η) in η ∈ [0, 1] is ω(η).
Since �(η) is nondecreasing, we have ω(η) ≥ 0. Then, using
integration by parts, we have

J(p) = �(1)−�(0)FB(0|p)−
∫ 1

0
ω(η) · FB(η|p) dη (35)

where the fact FB(1|p) = 1 is exploited. From Lemma 1,
FB(η|p) is nonincreasing respected to p for any η. This means
that −�(0)FB(0|p) is nondecreasing. Furthermore, because
ω(η) ≥ 0, we have − ∫ 1

0 ω(η) · FB(η|p) dη is nondecreasing
(respected to p). In summary, J(p) is nondecreasing.

In addition, since FB(η|p) is differentiable over p, it is easy
to see from (35) that J(p) is differentiable over p.

REFERENCES

[1] K. Wu, C. Tellambura, and H. Jiang, “Optimal transmission policy
in energy harvesting wireless communications: A learning approach,”
in Proc. IEEE Int. Conf. Commun. (ICC), Paris, France, May 2017,
pp. 1–6.

[2] K. T. Phan, H. Jiang, C. Tellambura, S. A. Vorobyov, and R. Fan,
“Joint medium access control, routing and energy distribution in multi-
hop wireless networks,” IEEE Trans. Wireless Commun., vol. 7, no. 12,
pp. 5244–5249, Dec. 2008.

[3] Z. Shen, H. Jiang, and Z. Yan, “Fast data collection in linear duty-
cycled wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 63,
no. 4, pp. 1951–1957, May 2014.

[4] F. K. Shaikh, S. Zeadally, and E. Exposito, “Enabling technologies for
green Internet of Things,” IEEE Syst. J., vol. 11, no. 2, pp. 983–994,
Jun. 2017.

[5] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes:
Survey and implications,” IEEE Commun. Surveys Tuts., vol. 13, no. 3,
pp. 443–461, 3rd Quart., 2011.

[6] S. Ulukus et al., “Energy harvesting wireless communications: A review
of recent advances,” IEEE J. Sel. Areas Commun., vol. 33, no. 3,
pp. 360–381, Mar. 2015.

[7] K. W. Choi, P. A. Rosyady, L. Ginting, A. A. Aziz, D. Setiawan,
and D. I. Kim, “Theory and experiment for wireless-powered sensor
networks: How to keep sensors alive,” IEEE Trans. Wireless Commun.,
vol. 17, no. 1, pp. 430–444, Jan. 2018.

[8] R. Arroyo-Valles, A. G. Marques, and J. Cid-Sueiro, “Optimal selec-
tive transmission under energy constraints in sensor networks,” IEEE
Trans. Mobile Comput., vol. 8, no. 11, pp. 1524–1538, Nov. 2009.

[9] R. Arroyo-Valles, A. G. Marques, and J. Cid-Sueiro, “Optimal selec-
tive forwarding for energy saving in wireless sensor networks,” IEEE
Trans. Wireless Commun., vol. 10, no. 1, pp. 164–175, Jan. 2011.

[10] J. Lei, R. Yates, and L. Greenstein, “A generic model for optimiz-
ing single-hop transmission policy of replenishable sensors,” IEEE
Trans. Wireless Commun., vol. 8, no. 2, pp. 547–551, Feb. 2009.

[11] N. Michelusi, K. Stamatiou, and M. Zorzi, “On optimal transmission
policies for energy harvesting devices,” in Proc. Inf. Theory Appl. (AIT)
Workshop, San Diego, CA, USA, Feb. 2012, pp. 249–254.

[12] N. Michelusi, K. Stamatiou, and M. Zorzi, “Transmission policies for
energy harvesting sensors with time-correlated energy supply,” IEEE
Trans. Commun., vol. 61, no. 7, pp. 2988–3001, Jul. 2013.

[13] J. Fernandez-Bes, J. Cid-Sueiro, and A. G. Marques, “An MDP model
for censoring in harvesting sensors: Optimal and approximated solu-
tions,” IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1717–1729,
Aug. 2015.

[14] Y. Li et al., “Communication energy modeling and optimization
through joint packet size analysis of BSN and WiFi networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 24, no. 9, pp. 1741–1751, Sep. 2013.

[15] Y. Li, G. Zhou, and G. Peng, “Energy modeling and optimization for
BSN and WiFi networks using joint data rate adaptation,” Ad Hoc Sensor
Wireless Netw., vol. 32, nos. 1–2, pp. 149–173, 2016.

[16] M. A. Zafer and E. Modiano, “A calculus approach to energy-efficient
data transmission with quality-of-service constraints,” IEEE/ACM
Trans. Netw., vol. 17, no. 3, pp. 898–911, Jun. 2009.

[17] I. Ahmed, K. T. Phan, and T. Le-Ngoc, “Optimal stochastic power
control for energy harvesting systems with delay constraints,” IEEE
J. Sel. Areas Commun., vol. 34, no. 12, pp. 3512–3527, Dec. 2016.

[18] M. K. Sharma, A. Zappone, M. Debbah, and M. Assaad, “Deep learn-
ing based online power control for large energy harvesting networks,”
in Proc. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP),
Brighton, U.K., May 2019, pp. 8429–8433.

[19] M. K. Sharma, A. Zappone, M. Debbah, and M. Assaad, “Multi-agent
deep reinforcement learning based power control for large energy har-
vesting networks,” in Proc. 17th Int. Symp. Model. Optim. Mobile Ad
Hoc Wireless Netw. (WiOpt), Avignon, France, Jun. 2019, pp. 1–7.

[20] M. K. Sharma, A. Zappone, M. Assaad, M. Debbah, and S. Vassilaras,
“Distributed power control for large energy harvesting networks: A
multi-agent deep reinforcement learning approach,” arXiv preprint,
Apr. 2019. [Online]. Available: https://arxiv.org/abs/1904.00601

[21] M. Chu, H. Li, X. Liao, and S. Cui, “Reinforcement learning-based
multiaccess control and battery prediction With energy harvesting in
IoT systems,” IEEE Internet Things J., vol. 6, no. 2, pp. 2009–2020,
Apr. 2019.

[22] N. Ashraf, A. Hasan, H. K. Qureshi, and M. Lestas, “Combined data
rate and energy management in harvesting enabled tactile IoT sensing
devices,” IEEE Trans. Ind. Informat., vol. 15, no. 5, pp. 3006–3015,
May 2019.

[23] N. Ashraf, M. Faizan, W. Asif, H. K. Qureshi, A. Iqbal, and M. Lestas,
“Energy management in harvesting enabled sensing nodes: Prediction
and control,” J. Netw. Comput. Appl., vol. 132, pp. 104–117, Apr. 2019.

[24] K. Suto, H. Nishiyama, N. Kato, and T. Kuri, “Model predictive joint
transmit power control for improving system availability in energy-
harvesting wireless mesh networks,” IEEE Commun. Lett., vol. 22,
no. 10, pp. 2112–2115, Oct. 2018.

[25] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling in
wireless sensor networks,” in Proc. ACM Int. Symp. Mobile Ad Hoc
Netw. Comput., Florence, Italy, 2006, pp. 322–333.

[26] J. Ma, W. Lou, Y. Wu, X.-Y. Li, and G. Chen, “Energy efficient
TDMA sleep scheduling in wireless sensor networks,” in Proc. IEEE
INFOCOM, Rio de Janeiro, Brazil, Apr. 2009, pp. 630–638.

[27] D. Ye and M. Zhang, “A self-adaptive sleep/wake-up scheduling
approach for wireless sensor networks,” IEEE Trans. Cybern., vol. 48,
no. 3, pp. 979–992, Mar. 2018.

[28] Z. Zhou, S. Zhou, J.-H. Cui, and S. Cui, “Energy-efficient cooperative
communication based on power control and selective single-relay in
wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 7, no. 8,
pp. 3066–3078, Aug. 2008.

[29] M. Dong, W. Li, and F. Amirnavaei, “Online joint power control for two-
hop wireless relay networks with energy harvesting,” IEEE Trans. Signal
Process., vol. 66, no. 2, pp. 463–478, Jan. 2018.

[30] S. K. Pallapothu and N. B. Mehta, “Energy-efficient detection using
ordered transmissions in energy harvesting WSNs,” in Proc. IEEE
Int. Conf. Commun. (ICC), Kansas City, MO, USA, May 2018,
pp. 1–6.

[31] L. Lin, N. B. Shroff, and R. Srikant, “Asymptotically optimal energy-
aware routing for multihop wireless networks with renewable energy
sources,” IEEE/ACM Trans. Netw., vol. 15, no. 5, pp. 1021–1034,
Oct. 2007.

[32] G. Martinez, S. Li, and C. Zhou, “Wastage-aware routing in energy-
harvesting wireless sensor networks,” IEEE Sensors J., vol. 14, no. 9,
pp. 2967–2974, Sep. 2014.

[33] T. D. Nguyen, J. Y. Khan, and D. T. Ngo, “A distributed energy-
harvesting-aware routing algorithm for heterogeneous IoT networks,”
IEEE Trans. Green Commun. Netw., vol. 2, no. 4, pp. 1115–1127,
Dec. 2018.

[34] L. Huang, “Fast-convergent learning-aided control in energy harvest-
ing networks,” in Proc. 54th IEEE Conf. Decis. Control (CDC), Osaka,
Japan, 2015, pp. 5518–5525.

[35] J. Carle and D. Simplot-Ryl, “Energy-efficient area monitoring
for sensor networks,” IEEE Comput., vol. 37, no. 2, pp. 40–46,
Feb. 2004.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

9978 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 6, DECEMBER 2019

[36] J. Zhang, W. Li, Z. Yin, S. Liu, and X. Guo, “Forest fire detec-
tion system based on wireless sensor network,” in Proc. IEEE
Conf. Ind. Electron. Appl. (ICIEA), Xi’an, China, May 2009,
pp. 520–523.

[37] T. Cui and C. Tellambura, “Joint data detection and channel estimation
for OFDM systems,” IEEE Trans. Commun., vol. 54, no. 4, pp. 670–679,
Apr. 2006.

[38] G. Wang, F. Gao, Y.-C. Wu, and C. Tellambura, “Joint CFO and
channel estimation for OFDM-based two-way relay networks,” IEEE
Trans. Wireless Commun., vol. 10, no. 2, pp. 456–465, Feb. 2011.

[39] G. Wang, F. Gao, W. Chen, and C. Tellambura, “Channel estima-
tion and training design for two-way relay networks in time-selective
fading environments,” IEEE Trans. Wireless Commun., vol. 10, no. 8,
pp. 2681–2691, Aug. 2011.

[40] H. Arslan and G. E. Bottomley, “Channel estimation in narrowband
wireless communication systems,” Wireless Commun. Mobile Comput.,
vol. 1, no. 2, pp. 201–219, Mar. 2001.

[41] M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. New York, NY, USA: Wiley, 1994.

[42] H. Daniels and M. Velikova, “Monotone and partially monotone neu-
ral networks,” IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 906–917,
Jun. 2010.

[43] H. Kushner and G. G. Yin, Stochastic Approximation and Recursive
Algorithms and Applications. New York, NY, USA: Springer, 2003.

[44] S. Weber, J. G. Andrews, and N. Jindal, “The effect of fading, chan-
nel inversion, and threshold scheduling on ad hoc networks,” IEEE
Trans. Inf. Theory, vol. 53, no. 11, pp. 4127–4149, Nov. 2007.

[45] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[46] N. Salodkar, “Online algorithms for delay constrained scheduling over
a fading channel,” Ph.D. dissertation, Dept. Comput. Sci. Eng., Indian
Inst. Technol. Bombay, Bombay, India, 2008.

[47] N. Mastronarde and M. van der Schaar, “Fast reinforcement learning for
energy-efficient wireless communication,” IEEE Trans. Signal Process.,
vol. 59, no. 12, pp. 6262–6266, Dec. 2011.

[48] Y. Cui, V. K. N. Lau, and Y. Wu, “Delay-aware BS discontinuous
transmission control and user scheduling for energy harvesting down-
link coordinated MIMO systems,” IEEE Trans. Signal Process., vol. 60,
no. 7, pp. 3786–3795, Apr. 2012.

[49] F. Fu and M. van der Schaar, “Structure-aware stochastic control for
transmission scheduling,” IEEE Trans. Veh. Technol., vol. 61, no. 9,
pp. 3931–3945, Aug. 2012.

[50] K. Wu, H. Jiang, and C. Tellambura, “Sensing, probing, and trans-
mitting strategy for energy harvesting cognitive radio,” in Proc. IEEE
Int. Conf. Commun. (ICC), Paris, France, May 2017, pp. 1–6.

[51] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA, USA: Athena Sci., 1996.

[52] T. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
1997.

[53] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, Feb. 1989.

[54] M. Riedmiller, “Neural fitted Q iteration—First experiences with a
data efficient neural reinforcement learning method,” in Proc. Eur.
Conf. Mach. Learn. (ECML), Porto, Portugal, Oct. 2005, pp. 317–328.

[55] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[56] S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, “Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,”
IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 2, pp. 257–265, Jun.
2018.

[57] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learn-
ing,” in Reinforcement Learning: State-of-the-Art, M. Wiering and
M. van Otterlo, Eds. Heidelberg, Germany: Springer, 2012, pp. 45–73.

[58] R. Munos and C. Szepesvári, “Finite-time bounds for fitted value
iteration,” J. Mach. Learn. Res., vol. 9, no. 5, pp. 815–857, May 2008.

[59] J. Seguro and T. Lambert, “Modern estimation of the parameters of the
Weibull wind speed distribution for wind energy analysis,” J. Wind Eng.
Ind. Aerodyn., vol. 85, no. 1, pp. 75–84, Mar. 2000.

[60] L. M. Candanedo, V. Feldheim, and D. Deramaix, “Data driven
prediction models of energy use of appliances in a low-energy house,”
Energy Build., vol. 140, no. 4, pp. 81–97, Apr. 2017.

Keyu Wu received the Ph.D. degree in electri-
cal engineering from the University of Alberta,
Edmonton, AB, Canada, in 2018.

His current research interests include detec-
tion and estimation, dynamic stochastic control,
machine learning, and their applications in wireless
communications.

Fudong Li is currently pursuing the Ph.D. degree
with the University of Alberta, Edmonton, AB,
Canada.

His current research interests include resource
allocation in wireless systems, nonorthogonal
multiple access, and energy harvesting.

Chintha Tellambura (F’11) received the
Ph.D. degree in electrical engineering from the
University of Victoria, Victoria, BC, Canada.

He was with Monash University, Clayton, VIC,
Australia, from 1997 to 2002. He is currently a
Professor with the Department of Electrical and
Computer Engineering, University of Alberta,
Edmonton, AB, Canada. His current research
interests include design, modeling, and analysis of
cognitive radio, heterogeneous cellular networks,
5G wireless networks, and machine learning
algorithms.

Hai Jiang (SM’15) received the Ph.D. degree
in electrical engineering from the University of
Waterloo, Waterloo, ON, Canada, in 2006.

Since July 2007, he has been a Faculty Member
with the University of Alberta, Edmonton, AB,
Canada, where he is currently a Professor with the
Department of Electrical and Computer Engineering.
His current research interests include radio resource
management, cognitive radio networking, and coop-
erative communications.

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on August 05,2020 at 23:16:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

