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Abstract—Device-to-device (D2D) where users communicate
directly with each other with limited base station involvement
can significantly improve spectral efficiency, energy efficiency,
and throughput in future cellular networks. Moreover, RF (radio
frequency) energy harvesting (EH) promises to prolong the
battery life and improve energy efficiency of D2D communication.
Mobility diversity refers to the gains accrued via user mobility.
Is it possible to exploit the mobility of D2D terminals via user
movements to enhance their ability to harvest RF energy? To this
end, we analyze the performance of a mobile D2D device powered
by EH from the transmissions of underlying cellular base stations
(BSs), whose locations are modeled as a homogeneous Poisson
point process. We model the movements of D2D nodes via a
modified random waypoint model. Log-distance path loss is
considered, and it is assumed that EH takes place solely within
harvesting zones surrounding each BS and that each D2D user
requires a fixed number of charging time slots before being able
to transmit. We derive the probability of a D2D device being
within an EH region surrounding BSs after multiple transitions,
and the probability of being within the the fully charged state
using a Markov-chain approach taking into account temporal
effects. It is shown that the number of transitions required to
be within a harvesting region increases significantly when the
harvesting threshold power increases.

Index Terms—Energy harvesting, user mobility, mobility di-
versity, Stochastic geometry

I. INTRODUCTION

Radio frequency (RF) energy harvesting (EH) for low
powered wireless devices is an exciting preposition to improve
the overall energy efficiency and to reduce the carbon footprint
[1]. Thus, EH is increasingly seen as a viable technology
for the future fifth generation (5G) networks [2]. RF EH
can be suitable over other renewable sources such as solar
or wind energy because it is less likely to be affected by
weather events [3]. While RF EH can be based on either
dedicated energy transmitters or ambient RF sources, the latter
offers cost savings and a potentially self-sustaining nature. The
development RF energy harvesting circuits has significantly
progressed recently [3], [4].

However, EH from ambient sources such as cellular net-
works is subject to inherent uncertainty [5]. It emanates
from random propagation effects (e.g., fading), heterogeneous
transmit power levels, interference, and random locations of
nodes. Traditionally, these impairments (especially multipath
fading) have been considered as impediments to wireless com-
munication. However, the modern viewpoint is that multipath
fading can be harnessed to optimize wireless capacity and

gains. Analogously, mobility diversity refers to the exploitation
of user movements to combat small-scale fading [6].

EH is especially attractive for device-to-device (D2D) com-
munications which have been proposed for future wireless net-
works [7], [8]. D2D networks allow direct communication be-
tween nearby devices with limited base station involvement or
supervision [9], [10]. This allows significant resource savings
to the network in terms of spectral resources, processing, and
energy. D2D communication is especially attractive for traffic
offloading, sensor networks, and emergency communication
networks .

It is also worth noting that some D2D devices are hand held
or body mounted (i.e. motion enabled) [11]. Thus, in [12], the
authors exploit the mobility diversity principle to maximize the
net amount of energy by a mobile device. This paper is the
first one to exploit the mobility diversity principle to optimize
energy harvesting from an RF signal. The authors develop a
motion control law for the device to maximize its net energy
gain. However, in this paper, we focus on hand held D2D
devices subject to human motion, and we investigate the effect
of this mobility to harvest energy. Note that we do not assume
that EH output is the sole power source of a transmitting node,
rather a complementary one.

A. Prior Research

EH performance of sensor and D2D nodes has been inten-
sively researched. For example, [4] proposes a novel network
model and uses stochastic geometry to analyze EH devices co-
existing with a primary network, while [13] extends this model
by incorporating path loss inversion based power control and
incomplete power depletions. Meanwhile references [5], [7]
develop EH protocols when D2D devices harvest energy from
a multi-channel cellular network. Moreover, [14] characterizes
network performance when relay devices harvest energy, and
analytically model the amount of the harvested energy incor-
porating temporal effects via Markov chains. An energy field
model is introduced in [15] to analyze the coverage probability
of a network powered by ambient energy harvesting. The
authors of [12] incorporate user mobility in characterizing
the energy harvesting performance, and show that mobility
diversity can indeed improve the efficacy of EH process. In
[16], an analytical model is proposed for energy harvesting
via the ambient cellular network and power beacons under



multi-channel conditions using stochastic geometry, while [17]
characterizes the performance of D2D energy harvesting in
terms of the sum rate without degrading the quality-of-service
experience by regular cellular users. Furthermore, a novel
cellular architecture is proposed within [18] which integrates
energy harvesting and social-aware networking for D2D com-
munications, and it is shown that significant spectral and
energy gains are achievable.

B. Motivation and Contribution

Despite extensive EH research, as far as we know only
[12] has improved the EH performance by exploiting mobility
diversity. However, [12] considers EH mobile devices with a
single transmitting BS which acts as a dedicated power source.
However, in this paper, we consider the spatial randomness of
random number of BSs. Specifically, the locations of the BSs
are modeled as a point process. The motion of D2D nodes is
modeled via the random way point model [19].

To this end, we consider a random set of cellular BSs in
R2 modelled stochastically as a Poisson point process (PPP).
The transmit signals of these BSs are subject to fading and
log-distance path loss. The EH devices can harvest energy as
long as they are within specific harvesting zones around the
BSs where the received ambient RF power is greater than the
threshold power level required for their conversion circuits to
operate. Whenever a device is outside of a harvesting region
and requires to cinduct a transmission, it conducts a motion
(i.e. the user carrying the EH device moves after receiving a
notification) till it is within the harvesting region. Our specific
contributions are summarized below.

1) We propose an EH protocol for motion enabled D2D
devices which have no prior knowledge of base station
locations.

2) Using tools from stochastic geometry, we derive the
probability of a random D2D node being inside a
harvesting region surrounding a base station at any given
time.

3) When an energy harvesting D2D user requires multiple
harvesting time slots, we derive the steady state trans-
mission probability of such a device using a Markov
chain based approach taking into account temporal cor-
relations.

This paper is organized as follows. Section II introduces
the system model in terms of the spatial distribution of
nodes, signal and channel characteristics, and energy har-
vesting protocol. Subsequently, Section III derives the steady
state transmission probability of a typical energy harvesting
device while Section IV evaluates the probability of the energy
harvesting device being within the harvesting region. Section
V illustrates numerical results while Section VI concludes the
paper.

Notations: Pr[A] is the probability of event A, fX(·) is the
probability density function (PDF), FX(·) is the cumulative
distribution function (CDF), MX(·) is the MGF, and E[·]
denotes the expectation.

Name PDF
Φcb Process of BSs
λcb BS density
Φcu Process of cellular users
λcu Cellular user density
Φeh Process of EH D2D devices
λeh D2D user density
P Transmit power of a BS
α Path loss exponent
Pγ Threshold power level for an en-

ergy harvest
T Time slot length
N Number of charging time slots re-

quired to fully charge
Dt A typical EH device
rj Threshold distance between Dt

and the j-th BS to harvest energy
H Harvesting region
v Velocity of Dt during motion
θ Angle of Dt during motion
pst Steady state transmission probabil-

ity of Dt
pc Probability of Dt being fully

charged
ν Probability that Dt has data to

transmit
Q State transition matrix
q Probability of transition between

state 0 and 1
qi Probability of Dt being within the

harvesting region before the i+ 1-
th time slot

ωk Steady state probability of being
within the k-th state

W Average number of transitions re-
quired

TABLE I: List of used symbols.

II. SYSTEM MODEL

A. Spatial Model

We consider a system where EH nodes are co-located with
an overlaying cellular network spanning R2. The cellular
network is composed of BSs and user devices which are
located randomly (Fig. 1). While the locations of BSs are
traditionally pre-planned, the advent of small cells, femto
access points, and heterogeneous networks have made modern
wireless networks inherently random. On the other hand, the
locations of cellular users and energy harvesting devices are
always random. Therefore, mathematical approaches such as
stochastic geometry must be used to model these networks.
Therefore, we will model the cellular BSs using homogeneous
PPPs [20]. The PPP can accurately model even pre-planned
wireless networks while allowing tractable analysis, which has
made it popular among researchers. In a homogeneous PPP
with node density per unit area λ, the probability of having k
nodes within a given area A is given by [20]

Pr[N(A) = k] =
(λA)k

k!
e−λA. (1)

Let the PPP of cellular BSs be Φcb with a density of λcb. It
should noted that because homogeneous PPPs are used, λcb is
constant over all R2. Similarly, let the cellular receivers form



Fig. 1: System model. The shaded regions represent the har-
vesting zones. The EH node initially located at a0 moves; first
to a1 and subsequently to a2. As a2 is within the harvesting
zone, it concludes its motion there. Only a single EH node is
shown for clarity. While not shown in the figure, it should be
noted that harvesting zones could partially overlap.

a PPP of Φcu with density λcu. The energy harvesting nodes
also form their own PPP Φeh with density λeh.

In the cellular system, the users connect with their closest
base station. Thus, the BSs form Voronoi cells. We assume
without the loss of generality that λcu >> λcb, and that all
cellular BSs are fully loaded (i.e. active). However, partial
loading cases can be easily incorporated by thinning the PPP
of cellular BSs as necessary. For example, if only a κ fraction
of BSs are active, the active BSs form a thinned homogeneous
PPP with density κλcb [5].

B. Signal Model

In this work, we will assume full frequency reuse and each
BS serves only a single user. However, the case of multiple
users per BS can be easily incorporated [5]. Each cellular BS
transmits at power P . While power control procedures are
pervasive in modern cellular [21], power control is left open
as a future research topic.

We consider Rayleigh fading and log-distance path loss.
With Rayleigh fading, the channel power gain |h|2 has the
probability distribution f|h|2(x) = e−x, 0 ≤ x ≤ ∞. The
fading gains are assumed to be independent between different
pairs of users. With log-distance path loss, the received power
PR = Pr−α where P is transmit power, r is distance and α
is the path-loss exponent.

C. Network Operation

The cellular downlink is divided into time slots of duration
T each. It should be noted that these time slots can refer
to frames or super frames without the loss of generality. We
further assume that all cellular BSs are fully synchronized, and

that the EH nodes also synchronize with the cellular network
for the purposes of EH. These are standard assumptions.

In this paper, we only consider EH through ambient RF
energy from the cellular base stations, and ignore other backup
power sources. Moreover, due to practical requirements of
the energy harvesting circuitry, we assume that the ambient
received power must be greater than a certain threshold (Pγ)
for the feasibility of EH. If Dt is a typical EH node located
at x, and the location of a cellular BS is yj where yj ∈ Φcb,
the distance between Dt and the j-th cellular BS is written as
r̂j = ||x − yj ||. Formally, the node can thus harvest energy
from the j-th cellular BS whenever P r̂−αj > Pγ . It should be
noted that the effect of small-scale fading has been omitted
because it averages to 1 within a specific time slot. Thus,
for the purposes of this paper, the channel coherence time is
significantly lower than T . For Dt to harvest sufficient energy
from the j-th cellular BS, it should be within a distance of

rj =
(
P
Pγ

) 1
α

from it. Generalizing this concept, for Dt to
harvest energy from any cellular base station, it has to be
within a harvesting region H where H =

⋃
j∈Φcb

b(yj , rj).
Here b(yj , rj) ∈ R2 denotes a disc shaped area of radius rj
surrounding yj . While more realistic EH regions based on the
aggregate ambient energy can also be considered, they are
more complicated, and we defer such analysis for future work.
Furthermore, for mathematical tractability, independent of the
location and capability to harvest energy from multiple BSs,
node Dt harvests a fixed amount of energy at a time slot when
it is inside the harvesting regionH. This assumption is popular
in the literature considering zone based EH models [4].

In this paper, we assume that Dt needs to be within a
harvesting region for N time slots in order to fully charge
its batteries. Unless fully charged, no transmission occurs
from Dt. It should be noted that for Dt to rely on EH,
the transmissions have to be sporadic in nature, and not
continuous. When fully charged, Dt transmits during the
next time slot whenever it has data to transmit. We assume
that each transmission results in a full depletion of power,
and that Dt requests to resume EH anew. Because we only
focus on the EH success for brevity, we do not consider
the dynamics of the transmitted signal of Dt, which will be
addressed within a future paper. Therefore, receiver or sink
node selection criteria or power control schemes by Dt are
not considered. However, incorporating these factors would
be interesting research challenges for the future.

D. Motion Model

The energy harvesting nodes are assumed to be mobile (i.e.
by being hand held or body mounted), while the cellular BSs
are stationary. However, in the energy harvesting stages, Dt is
assumed to be static as long as its within a harvesting region
(i.e. Dt notifies the user once charging is complete). To model
the movements of Dt, we will assume a modified version of
the random waypoint model [19]. The specific protocol is
described below. It should be noted that when we refer to



Fig. 2: Markov chain model – 0 represents the depleted state
and N , the fully charged state.

the movement or stationarity of Dt, we imply the person that
holds Dt or the user on which Dt is mounted.

• When Dt has depleted it’s power after a previous trans-
mission, it checks whether its location x is within the
harvesting region H.

• If x ∈ H, energy is harvested for N time slots. Dt
remains static till the harvesting procedure is complete
after notifying the user.

• If x /∈ H, Dt notifies the user, and travels for 1 time
slot at any random direction θ with velocity v. Here, we
assume that the EH devices are not specifically aware of
BS locations. If x1 is the location of Dt afterwards, it
checks whether x1 ∈ H. If yes, energy is harvested for
N time slots. If not, Dt travels in the same angle θ at
velocity v for another time slot. This process continues
till Dt is within the harvesting region.

• After the harvesting is complete, Dt can either remain
stationary or move about either randomly or depending
on its requirements till its transmission is complete.

III. STEADY STATE TRANSMISSION PROBABILITY

Here we derive the steady state transmission probability of
node Dt, denoted as pst. pst depends on the probability that
Dt is fully charged (pc), and the probability that Dt has data
to transmit (ν) when the charging process is finished. It should
be noted that ν depends on the specific traffic generation and
receiver association models which are beyond the scope of this
paper. On the other hand, pc depends on temporal effects, and
we develop a Markov chain analysis.

Fig. 2 represents the state transition diagram for the energy
harvesting process. The Markov chain has N + 1 levels as
we assume Dt needs N charging slots. The state 0 represents
the uncharged state while state N represents the fully charged
state. The probability of transitioning from state 0 to state
1 is represented as q, which depends on the probability of
being within the harvesting region, and will be analyzed in
the subsequent section. As Dt remains static once within a
harvesting region, the probability of transitioning from state k
to k + 1 where 1 ≤ k ≤ N − 1 after a subsequent time slot
is 1. When Dt is fully charged (i. e. in state N ) the transition
probability is ν. The overall procedure can be represented in
matrix form as follows where Q is the state transition matrix.

Q =


1− q q 0 0 . 0

0 0 1 0 . 0
0 0 0 1 . 0
. . . . . .
0 0 0 0 . 1
ν 0 0 . . 1− ν

 .
The probability of Dt in state N is denoted by pc. As Dt can

transmit only after arriving at the N -th state, pc is critical in
assessing the performance. If ω = [ω0 ω1 . . ωN ] is the vector
of steady state probabilities, we may express ω at steady state
as

ω = Qω. (2)

Thus, similar to the derivations in [4], [5], we can solve (2)
to obtain the following equations:

qω0 − νωN = 0

−ω0q + ω1 = 0

−ω1 + ω2 = 0

−ω2 + ω3 = 0
... (3)

−ωN−1 + νωN = 0.

(4)

Using (3) and noting that ω0 +ω1 +· · ·+ωN = 1, we obtain

pc = ωN =
q

q + ν + (N − 1)qν
. (5)

IV. Dt IN THE HARVESTING REGION

We now derive the probability of Dt being within the
harvesting region H (q). Without the loss of generality, let
Dt be located initially at the origin. As per Section II, Dt
moves during each time slot till it comes within a harvesting
region. Therefore, the probability of Dt being within H after
each subsequent time slot needs to be taken into account for
the derivation of q. Thus, we can write

q =
1

W + 1
, (6)

where W is the average number of required transitions. W
can be written as

W =

∞∑
t=1

tqt

t−1∏
s=0

(1− qs), (7)

where qi, i = 0, 1 . . . is the probability that Dt is within
H before the i + 1-th time slot, and t is the number of time
slots that Dt conducts a motion. W is an important metric for
Dt considering that a higher W means a larger time is spent
trying to locate a harvesting region.

The probability of Dt being within H at the onset is q0.
Using the void probability of PPPs, we can obtain q0 as the
complement of having 0 cellular BSs within b(0, rj). Thus,
we have

q0 = 1− e−πλcb
(
P
Pγ

) 2
α

. (8)



Now, to find qs for s > 0, we need the distribution of the
distances from Dt to the cellular BSs. The distance rk from
the origin (the initial location of Dt) to the k-th nearest cellular
BS (denoted as Ck) is distributed as [22]

frk(x) =
2(πλcb)

k

(k − 1)!
x2k−1e−πλcbx

2

, 0 < x <∞. (9)

Because the cellular BSs are stationary, the distance distri-
butions will change whenever Dt moves at velocity v at an
angle θ. Let rk(s) be the distance from Dt to the cellular BS
which was initially the k-th closest 1 (Ck) after moving for s
time slots. Via the cosine rule, we can write

rk(s) =
√
r2
k + (vsT )2 + 2vsTrk cos θ. (10)

Let ρk be the probability that Ck is within a distance of rj
from Dt after moving for s time slots. Thus, we obtain

ρk = Pr[rk(s) < rj ]

= Pr

rk <
√(

P

Pγ

) 2
α

+ (vsT )2(cos2 θ − 1)− vsT cos θ


= Eθ

[
1−

k−1∑
i=0

(λcbπU
2
s )i

i!
e−πλcbU

2
s

]
, (11)

where Us is given as

Us =

√(
P

Pγ

) 2
α

+ (vsT )2(cos2 θ − 1)− vsT cos θ (12)

Even if a single BS is within rj , Dt will be able to harvest
energy. Therefore, we can write qs as

qs = 1−
∞∏
k=1

(1− ρk). (13)

After substituting the relevant terms, we can finally obtain
the steady state probability of being within the fully charged
state pc as (14), where the final expression for W is given in
(15).

V. NUMERICAL RESULTS

We now present numerical results for pc and the aver-
age number of transitions (W ). Simulation is conducted in
MATLAB under P = 1, T = 1, ν = 0.5, N = 5, and
α = 3, and the theoretical results are evaluated using Wolfram
Mathematica (infinite sums quickly converged for finite t
and k). Because the simulation coincides with the theoretical
results, it has not been specially highlighted.

Fig. 3 plots the average number of transitions required to
harvest energy with respect to the energy harvesting threshold
Pγ . The average number of transitions increases steadily with
Pγ for all the velocities considered, and is extremely low
beyond a system-specific threshold value. This is due to the
increasing radii of harvesting zones as Pγ reduces, which in
turn increases the probability of being within one. However,

1This BS may not necessarily be the k-th closest after Dt moves.

the higher the velocity, the lower the number of transitions
required. If Dt is outside the EH zone H, there is a higher
probability that Dt is still outside H after a transition when v
is low due to correlations.

The probability of node Dt being at state N at steady state
(pc) is plotted in Fig. 4 against velocity (v). While increasing
the velocity slightly increases pc, but the rate of increase
also diminishes. The value at which the curves flatten out
is the value if Dt sees a new realization of Φcb after each
transition. Moreover, the effect of velocity is higher for lower
BS densities; the change in pc when λcb = 0.001 is minute.
With a high density of base stations, Dt has a higher chance
of arriving within H irrespective of the velocity. While the
charging probability is low for the values used, a lower Pγ ,
a higher P , a lower α, and a higher λb among other factors
would significantly increase the charging probability.

VI. CONCLUSION

This paper investigated the process of ambient cellar RF
energy harvesting by a mobile D2D device. The locations
of cellular BSs and path loss were modeled as a homoge-
neous PPP and log-distance, respectively. Furthermore, the
movements of D2D devices followed the modified random
waypoint model. In discrete time slots, the D2D devices were
assumed to repeatedly transition to a new location until they
came within a harvesting zone, and each device needs N time
slots within a zone to be fully charged. Using a Markov chain
based approach, the probability of the fully charged state was
derived. The numerical results show that higher velocities and
BS densities reduce temporal correlations, thus reducing the
required time slots for transitions and increasing pc.
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