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Abstract—We consider a multi-cell two-way relay network

(TWRN) consisting of single-antenna user nodes and amplify-and-
forward (AF) relay nodes having very large antenna arrays. We
investigate the combined impact of co-channel interference (CCI),
imperfect channel state information (CSI), pilot contamination, and
the antenna correlation at the massive MIMO node. By using a
large number of antennas at the relay, we show that the effect of
CCI can completely be mitigated. However, the effects of imperfect
CSI and pilot contamination degrades the performance even with
a large antenna array. Yet, use of massive MIMO allows power
scaling at the user nodes and relay and thus, even with channel
imperfections, the benefits of employing a massive multiple-input
multiple-output (MIMO) enabled relay on transmit power savings
are significant. Furthermore, we derive closed-form approximations
for the sum rate in our system model for the simplified setup when
CCI and pilot contamination are absent and CSI is perfect. This
result will be useful to decide the required number of antennas at
the relay node to obtain a certain percentage of the asymptotic sum
rate. Also, our analysis of antenna correlation shows that the effect
of antenna correlation can be mitigated by using a large antenna
array. We, also find the optimal pilot sequence length to maximize
the sum rate of the system.

I. INTRODUCTION

Research on massive MIMO, an enabling technology for future
fifth generation (5G) wireless [2], [3], has shown very high
spectral efficiencies, low transmit powers per bit, and high en-
ergy efficiencies [4]. These advantages have greatly excited the
research community. However, the main performance limiting
factor is pilot contamination, which is the residual interference
caused by the reuse of non-orthogonal pilot sequences [4], [5].

In this paper, we consider massive MIMO with Two-way
relay networks (TWRNs), which offer two fold increase in the
achievable data rate compared to the one-way relay networks
(OWRNs) [6]. Multi-pair TWRNs enable mutual data exchanges
among multiple pairs of nodes with the aid of an intermediate
relay [7]. We are motivated to consider massive MIMO TWRNs
due to their wide range of potential applications. For example, the
system considered in this paper can be used as a heterogeneous
wireless entity for the existing cellular network architecture for
reducing the workload of the base-stations [8]. For example,
bypassing the base-station and using the two-way relaying instead
may be feasible. Service providers can thus use TWRNs to
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improve the data throughput without making drastic changes to
their existing infrastructure.

Another potential application scenario is the internet of things
(IoT), which connects multiple wireless devices and sensors
[9]. For example, the cooling system will require data from
temperature sensors while security system may require data from
the motion sensors. This scenario fits the model of a multi-pair
relay network with a central relay node. Moreover, when multiple
IoT networks coexist, the effect of co-channel interference can be
a significant impairment. Furthermore, these IoT devices often
rely on battery power and thus, the energy and power efficiency
is an important factor in IoT communications.

Combining massive MIMO with TWRNs provides the sum
rate and energy efficiency performance gains that are required by
the above mentioned applications. In the following, we classify
existing works into general massive MIMO and massive MIMO
TWRNs.
Related work: In [4], the asymptotic performance metrics of
multi-user massive MIMO base stations (BSs) in non-cooperative
cellular networks is investigated. Specifically, [4] concludes that
whenever the number of BS antennas increases unbounded,
simple linear precoders and decoders become asymptotically
optimal. Pilot contamination in multi-cell multi-user massive
MIMO systems is investigated by deriving rigorous asymptotic
signal-to-interference-plus-noise ratio (SINR) expressions [5].

In [10], the asymptotic performance of multi-pair OWRNs
with very large relay antenna arrays is investigated when there
is no co-channel interference (CCI) and the CSI is perfect. To
this end, the asymptotic SINR and sum rate expressions are
derived by considering three transmit power scaling laws. In [11],
the sum rate of a MIMO TWRN has been analyzed under ZF
beamforming at the relay or user nodes and closed-form results
and approximations for sum rate are obtained. Further, in [12],
the channel aging effects of multi-cell multi-way massive MIMO
relaying are investigated. In [13], the multi-pair TWRNs with
massive MIMO is investigated by employing linear precoders and
detectors, where again, perfect CSI and CCI/pilot contamination
free scenario is assumed. There are some recent publications
which analyze multi-pair massive MIMO TWRNs. In [14] and
[15], multi-pair massive MIMO TWRNs have been analyzed
for maximum ratio combining/transmission (MRC/MRT) beam-
forming. While [14] assumes perfect CSI, [15] analyzes the
system under imperfect CSI scenario. Furthermore, [16] analyzes
multi-pair massive MIMO TWRN with imperfect CSI under ZF
beamforming. In [17], a full-duplex multi-pair massive MIMO
system is analyzed under imperfect CSI with ZF beamforming.
However none of these work analyze the system under CCI and
pilot contamination in the context of two-way multi-pair massive
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MIMO relaying.
Problem statement and our contribution: With dense de-
ployment of wireless systems, CCI and pilot contamination are
dominant performance limiting factors [5]. Further, because pre-
coders/detectors need CSI, channel estimation errors (imperfect
CSI) severely degrade the overall performance. However, perfect
CSI is assumed in the analysis of [13]–[17]. In contrast, we
analyze the effects of CCI, imperfect CSI, pilot contamination,
and antenna correlation for multi-pair massive MIMO TWRNs.
Although our previous work [1] analyzed these effects separately,
this paper provides a complete analysis with a more generalized
system model which contains the effects of CCI, imperfect CSI,
and pilot contamination simultaneously. Furthermore, this paper
provides extended proofs of the SINR results [1].

In this work, we study these imperfections in massive MIMO
TWRNs. More specifically, the contributions of this paper can be
listed as follows.

1) The asymptotic SINR and sum rate expressions are derived
for three transmit power scaling laws: namely (i) power
scaling at user nodes, (ii) power scaling at the relay, and
(iii) power scaling at both the relay and user nodes. We
show that for the CCI case, the asymptotic SINR expres-
sions asymptotically become independent of the number
of co-channel interferers (L), and consequently, the CCI
degradation can be cancelled asymptotically, whenever the
relay antenna count grows unbounded. Nevertheless, the
asymptotic performance is limited by the residual interfer-
ence incurred due to pilot contamination, and its impact
cannot be completely mitigated even in the limit of infinitely
many relay antennas. Notably, the asymptotic performance
metrics are independent of the fast fading component of
the wireless channel, and hence, the cross-layer resource
scheduling becomes simple. Our analysis and Monte-Carlo
simulations reveal that substantial sum-rate gains can be
achieved via very large relay antenna arrays.

2) The asymptotic results are valid only when the number
of antennas at the relay is infinite. However, for practical
purposes, the sum-rate results for a finite number of antennas
is important. Thus, we obtain closed-form sum rate results
for the finite relay antenna array. To make analysis tractable
we assume perfect channel conditions (i.e. no CCI, no pilot
contamination and perfect CSI). The benefits of this result
are that it can be used to decide the optimal number of relay
antennas to obtain a certain percentage of the asymptotic
performance and to determine how fast the performance of
the system approaches the asymptotic performance.

3) We obtain asymptotic SINR and sum-rates for multipair
massive MIMO TWRNs with relay antenna correlation.
Its effect on the performance of massive MIMO systems
can be significant. Fortunately, our analysis shows that the
correlation impact can be mitigated by using a large antenna
arrays in TWRNs.

Notation: ZH , [Z]k, and [Z]i,j denote the Hermitian-transpose,
the kth diagonal element of the matrix, Z, and the (i, j) th
diagonal element of the matrix, Z, respectively. The diagonal
matrix D with kth diagonal element dk is denoted as diag (dk).
IM and OM×N are the M×M Identity matrix and M×N matrix

of all zeros, respectively. A complex Gaussian random variable
(RV) X with mean µ and standard deviation σ is denoted as
X ∼ CN

(
µ, σ2

)
. Further, E1(z), <z > 0, is the exponential

integral function [18, Eqn. (8.211)]. Γ(z) is the Gamma function
[18, Eqn. (8.310.1)], and Γ(a, z) is the upper incomplete Gamma
function [18, Eqn. (8.350.2)].

II. SYSTEM, CHANNEL, AND SIGNAL MODEL

A. System and channel model

The system model consists of L adjacent TWRNs having
2K number of users each. The users in the lth TWRN are
denoted as (Ul,1, · · · , Ul,2K), where Ul,k exchange data signals
with its paired-user Ul,k′ via the half-duplex AF relay Rl for
k, k′ ∈ {1, · · · , 2K} and l ∈ {1, · · · , L}. Users are single-
antenna terminals, and the relays are equipped with N antennas.
The number of relay antennas are unbounded with respect to
the total number of users (N � 2K). The channel matrix
from 2K users in the jth TWRN to the lth relay is defined as
Gjl = FjlD

1
2

jl, where Fjl ∼ CNN×2K (0N×2K , IN ⊗ I2K) ac-
counts for small-scale fading, and Djl = diag (ηj,l,1, · · · , ηj,l,2K)
represents large-scale fading. As customary, the channel gains are
independent and identically distributed (i.i.d.) and are assumed to
remain fixed over two consecutive time-slots and reciprocal, and
hence, relay-to-user channel matrix becomes GT

jl. The CCI on
the lth TWRN occurs due to the data transmissions of the other
L− 1 TWRNs with relay Rj , where j ∈ {1, · · · , L} and j 6= l.

B. Channel Estimation
The lth relay estimates Gll by using the pilot sequences

transmitted by the users. To this end, 2K users in each TWRN
transmit mutually orthogonal pilot sequences of length τ . Yet, due
to the unavailability of orthogonal pilot sequences for all users in
L TWRNs, same sequence is reused by the L − 1 adjacent co-
channel TWRNs. Thus, the channel estimation at the relay not
only contains the desired channel, but also the channels belonging
to 2K users in each of the adjacent TWRNs. The corresponding
minimum mean square error (MMSE) estimation of the users-to-
relay channel is written as [19]

Ĝll =

 L∑
j=1

Gjl + Vl/
√
Pp

 D̃ll, for l ∈ {1, · · ·L}, (1)

where Pp is the transmit power of the pilot sequence, the elements
of Vl are distributed as independent CN (0, 1) random variables,

D̃ll =

(
1
Pp

(∑L
j=1 Djl

)−1

+ IK

)−1

, and Gjl is defined in the

previous section. The estimation error is El = Ĝll −
∑L
j=1 Gjl.

The receive-ZF detector and transmit-ZF precoder is constructed
at the relay by using the CSI with estimation errors. The elements
of the kth column of El is Gaussian distributed with mean
zero and variance

∑L
j=1 ηj,l,k/(Pp

∑L
j=1 ηj,l,k + 1). Due to the

MMSE properties, the matrices El and Ĝll are statistically
independent.

C. Signal model

During two time-slots, 2K users in each TWRN exchange
their information pair-wisely via their assigned relay. Specifi-
cally, the paired users (Ul,2i−1, Ul,2i) exchange their data signals
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γl,k′ =
β̂2
l PS

∥∥∥gTlk′Ŵlglk

∥∥∥2

β̂2
l PS

∑2K
m=1,m 6=k

∥∥∥gTlk′Ŵlglm

∥∥∥2

+β̂2
l PS

∑L
j=1,j 6=l

∥∥∥gTlk′ŴlGjl

∥∥∥2

+β̂2
l σ

2
Rl

∑L
j=1,j 6=l

∥∥∥gTlk′Ŵl

∥∥∥2

+ σ2
nl,k′

. (7)

β̂l=

√√√√√ PR

PS
∑L
j=1 Tr

(
GjlGH

jlĜll

[
ĜH
ll Ĝll

]−1

P
[
ĜT
llĜ
∗
ll

]−1

P
[
ĜH
ll Ĝll

]−1

ĜH
ll

)
+σ2

Rl
Tr

([
ĜH
ll Ĝll

]−1

P
[
ĜT
llĜ
∗
ll

]−1

P

) . (9)

(xl,2i−1, xl,2i), where i ∈ {1, · · · ,K} and l ∈ {1, · · · , L}. In the
first time-slot, users transmit 2K×1 signal vector xl, which is the
concatenated data signals of 2K users in the lth TWRN, towards
the relay Rl. The signal vector xl satisfies E

[
xlx

H
l

]
= I2K . The

received signal at Rl is written as

yRl =
√
PS

L∑
j=1

Gjlxj + nRl , (2)

where nRl is the N × 1 additive white Gaussian noise (AWGN)
vector at the relay satisfying E

[
nRln

H
Rl

]
= INσ

2
Rl

and PS is the
transmit power of the users. During the second-time slot, relay
first amplifies and then forwards its received signal towards the
users. The transmitted signal from the relay is y′Rl = β̂lŴlyRl ,

where Ŵl is the concatenated beamforming-and-amplification
matrix at the relay and βl is the amplification factor to satisfy
the relay power constraint which is presented in the sequel. Here,
Ŵl is designed to cancel sub-channel interference within a given
TWRN, and hence, it is constructed by using receive-ZF and
transmit-ZF precoding and detection concepts as follows [20]:1

Ŵl = Ĝ∗ll(Ĝ
T
llĜ
∗
ll)
−1P(ĜH

ll Ĝll)
−1ĜH

ll , (3)

where P is the block diagonal permutation matrix for user pairing,

constructed as P = diag(P1, · · · ,PK) and Pi =

(
0 1
1 0

)
for

i ∈ {1, · · · ,K}. Further, the relay power constraint is

PR = Tr
(
y′Rly

′H
Rl

)
. (4)

Next, the received signal at Ul,k′ is given as

yl,k′ = gT
lk′y

′
Rl + nl,k′ = β̂l

√
PSg

T
lk′ŴlGllxl

+ β̂l
√
PSg

T
lk′Ŵl

L∑
j=1,j 6=l

Gjlxj + β̂lg
T
lk′ŴlnRl + nl,k′ , (5)

where Ul,k and Ul,k′ are the paired-users exchanging their data
signals with (k, k′) = (2i − 1, 2i) for i ∈ {1, · · · , 2K}.
Further, glk′ is the k′th column vector of the matrix Gll for

1The results obtained in this paper can also be obtained for other detection and
precoding methods such as matched filter and MMSE. However due to the page
restrictions we have only included results for ZF detection and ZF precoding.

k ∈ {1, · · · ,K} and nl,k′ is the AWGN at the k′th user of the
lth TWRN with variance σ2

nl,k′
. (5) is further simplified as

yl,k′=β̂l
√
PSgTlk′Ŵlglkxl,k+β̂l

√
PSgTlk′Ŵl

2K∑
m=1,m 6=k

glmxl,m

+β̂l
√
PSgTlk′Ŵl

L∑
j=1,j 6=l

Gjlxj+β̂lg
T
lk′ŴlnRl+nl,k′ , (6)

where the first term is the desired signal at Ul,k′ and other terms
are the interferences and noise. Thus the end-to-end SINR at
Ul,k′ , γl,k′ is given in (7) at the top of this page. We derive
the asymptotic SINR for three power scaling scenarios in next
sections.

D. Calculation of value β̂l

By using (2) and y′Rl = β̂lŴlyRl , we simplify the power
constraint (4) as

PR = β̂2
l Tr

(
Ŵl

(
PS

L∑
j=1

GjlG
H
jl + σ2

RlIN

)
ŴH

l

)

= β̂2
l PSTr

(
Ŵl

L∑
j=1

GjlG
H
jlŴ

H
l

)
+β̂2

l σ
2
RlTr

(
ŴlŴ

H
l

)
. (8)

By substituting Ŵl into (8), β̂l is obtained in (9) at the top of
this page.

E. Overall sum rate of the system

The average sum rate for the lth 2K-user TWRN with esti-
mated CSI at the relay is defined as [4]

Rl =
(TC − τ)

2TC

2K∑
k=1

E [log (1 + γl,k)] , (10)

where TC and τ are the coherence time of the wireless channel
and length of the pilot sequence used for channel estimation.
In particular, the pre-log factor (TC − τ)/TC accounts for the
pilot overhead [4]. The two time-slots required for the data
transmission between the paired users results in the pre-log factor
of 1/2.
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lim
N→∞

β̂l√
N

=

 ER

ES
∑L
j=1

∑K
i=1

(
η2j,l,2i−1+η2j,l,2i
τES∗η̂2l,2i−1η̂

2
l,2i

)
+ 2σ2

Rl

∑K
i=1 (τES η̂l,2i−1η̂l,2i)

−2


1
2

. (12)

4
√
NgTlk′ŴlnRl =

4
√
NgTlk′Ĝ

∗
ll(Ĝ

T
llĜ
∗
ll)
−1P(ĜH

ll Ĝll)
−1ĜH

ll nRl =
gTlk′Ĝ

∗
ll√

N

(
ĜT
llĜ
∗
ll√

N

)−1

P

(
ĜH
ll Ĝll√
N

)−1
ĜH
ll nRl
4
√
N

. (18)

F. Energy efficiency of the system

As mentioned in the introduction, for applications with low-
power sensors, the power/energy efficiency of the system will be
very important. Thus, we analyze the energy efficiency of the
system defined as [13]

ρ =

∑2K
k=1 E [log (1 + γl,k)]

2KPS + PR
, (11)

where the denominator consists of the total power consumption
of the system and the numerator consists of the overall sum rate.

III. ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, we derive asymptotic SINR and sum rate for
the three power scaling laws [13] at the user nodes and relay
whenever the relay antenna count grows unbounded (N → ∞).
Moreover, we investigate the detrimental impacts of CCI, imper-
fect CSI, and pilot contamination on the SINR of the system.

A. Transmit power scaling at the user nodes

Whenever the transmit power at the user nodes is scaled
inversely proportional to the relay antenna count, the power of
the pilot sequence is also scaled accordingly. Thus, the overall
transmit power can only be scaled inversely proportional to the
square-root of the relay antenna count (

√
N ) for estimated CSI.

We obtain the normalized relay gain for unlimited number of
relay antennas by letting PS = ES/

√
N , PP = τES/

√
N and

PR = ER while keeping ES and ER fixed, as (12) given at the
top of this page (see Appendix B for the proof). Here, we define
η̂l,k as

η̂l,k =

L∑
j=1

ηj,l,k. (13)

The parameter η̂l,k, is a measure of the pilot contamination ex-
perienced by Ul,k and will extensively appear in SINR equations
we obtain in the sequel. Further, if pilot contamination is absent,
then η̂l,k = ηl,l,k. We rewrite (6) by dividing both sides by 4

√
N

and substituting ES values as

yl,k′
4
√
N

=
β̂l√
N

√
ESg

T
lk′Ŵlglkxl,k+

β̂l√
N

√
ESg

T
lk′Ŵl

2K∑
m=1,m 6=k

glmxl,m

+
β̂l√
N

√
ESg

T
lk′Ŵl

L∑
j=1,j 6=l

Gjlxj

+
β̂l√
N

4
√
NgT

lk′ŴlnRl +
1

4
√
N
nl,k′ . (14)

Next, we obtain the asymptotic limit of the intended signal term
in (14) by using the limits given in Appendix A, as

lim
N→∞

√
ESg

T
lk′Ŵlglkxl,k

=
√
ES lim

N→∞

gT
lk′Ĝ

∗
ll√

N

(
ĜT

llĜ
∗
ll√

N

)−1

P

(
ĜH

ll Ĝll√
N

)−1
ĜH

ll glk√
N

xl,k

=
√
ES

ηl,l,k′ηl,l,k
η̂2l,k

xl,k. (15)

Similarly we obtain the asymptotic limit of the second term,
which represents the inter-user interference in (14), as

lim
N→∞

√
ESgTlk′Ŵl

2K∑
m=1,m6=k

glmxl,m = 0. (16)

Above, inter-user interferences are removed due to ZF receiving
and transmission at the relay. Even with a different beamforming
method, it can be shown that this value asymptotically goes to
zero. Further, we derive the asymptotic limit of the third term in
(14), which is the co-channel interference from the nearby jth
TWRN as

lim
N→∞

√
ESg

T
lk′ŴlGjlxj

=
√
ES lim

N→∞

gT
lk′Ĝ

∗
ll√

N

(
ĜT

llĜ
∗
ll√

N

)−1

P

(
ĜH

ll Ĝll√
N

)−1
ĜH

ll Gjl√
N

xj

=
√
ES

ηl,l,k′ηj,l,k
η̂2l,k

xj,k. (17)

Also, we rewrite the fourth term in (14), which represents the
added noise at the relay as (18) given at the top of this page.
Based on (18), we can obtain the asymptotic distribution of the
fourth term as

4
√
NgTlk′ŴlnRl

d−−−−→
N→∞

ηl,l,k′

τES η̂3
l,k

ñl, (19)

where ñl ∼ CN
(

0, τES η̂
2
l,kσ

2
Rl

)
. Furthermore, we obtain the

asymptotic limit of the last term in (14) as

lim
N→∞

1
4
√
N
nl,k′ = 0. (20)

By using the above asymptotic values and distributions of the
terms in (14), we derive the asymptotic SINR for transmit power
scaling at the user nodes as
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lim
N→∞

β̂l =

 ER

ES
∑L
j=1

∑K
i=1

(η2j,l,2i−1(1+τES η̂l,2i)+η2j,l,2i(1+τES η̂l,2i−1))
τES η̂2l,2i−1η̂

2
l,2i


1
2

. (22)

lim
N→∞

β̂l
4
√
N

=

 ER

ES
∑L
j=1

∑K
i=1

(
η2j,l,2i−1+η2j,l,2i
τES∗η̂2l,2i−1η̂

2
l,2i

)
+ 2σ2

Rl

∑K
i=1 (τES η̂l,2i−1η̂l,2i)

−2


1
2

. (24)

lim
N→∞

γl,k′ =

ESη
2
l,l,k′η

2
l,l,k

η̂4l,k

ESη2l,l,k′
∑L
j=1,j 6=l η

2
j,l,k

η̂4l,k
+

η2
l,l,k′

τES η̂4l,k
σ2
Rl

=
τE2

Sη
2
l,l,k

τE2
S

∑L
j=1,j 6=l η

2
j,l,k + σ2

Rl

= γ∞. (21)

B. Transmit power scaling at the relay

In this case, we derive the asymptotic SINR by scaling transmit
power at the relay inversely proportional to the number of relay
antennas. Thus, we substitute PR = ER/N , PS = ES and
Pp = τES to obtain the asymptotic SINR. We omit the proofs in
this section due to their similarity to the results in Section III-A.
We obtain the asymptotic value of the normalized relay gain as
(22) on the top of this page. Proof of (22) is based on the results
in Appendix C.

Similar to the previous case, received signal at Ul,k′ is given
by (6). We use the limits on each term of (6) to obtain the SINR
value at Ul,k′ as

lim
N→∞

γl,k′ =
Ψ2
lESη

2
l,l,k′η

2
l,l,k

Ψ2
lESη

2
l,l,k′

∑L
j=1,j 6=l η

2
j,l,k + η̂4

l,kσ
2
nl,k′

, (23)

where Ψl = limN→∞ β̂l and given in (22).

C. Transmit power scaling at the user nodes and relay

In this section, we obtain the asymptotic SINR for the transmit
power scaling at the relay and user nodes (where PS = ES/

√
N ,

PP = τES/
√
N and PR = ER/

√
N ). As in the previous section,

we omit the proofs due to their similarity to the results in Section
III-A. We obtain the asymptotic value of the normalized relay gain
in (24) at the top of this page. Then by substituting ES values,
we rewrite (6) for the received signal as

yl,k′ =
β̂l
4
√
N

√
ESg

T
lk′Ŵlglkxl,k

+
β̂l
4
√
N

√
ESg

T
lk′Ŵl

2K∑
m=1,m 6=k

glmxl,m+
β̂l
4
√
N

√
ESg

T
lk′Ŵl

L∑
j=1,j 6=l

Gjlxj

+
β̂l
4
√
N

4
√
NgT

lk′ŴlnRl + nl,k′ . (25)

By using the same procedure as in the Section III-A, we obtain
the SINR as

lim
N→∞

γl,k′=
τΛ2

lE
2
Sη

2
l,l,k′η

2
l,l,k

τΛ2
lE

2
Sη

2
l,l,k′

∑L
j=1,j 6=l η

2
j,l,k+Λ2

l η
2
l,l,k′σ

2
Rl

+τES η̂4l,kσ
2
nl,k′

,(26)

where Λl = limN→∞
β̂l
4√
N

and given in (24).
Remark V.1: We can clearly see that the asymptotic SINRs
(21), (23), and (26) are affected by the pilot contamination.
Interestingly, whenever ηj,l,k = 0 for j 6= l or when L = 1,
the asymptotic SINRs results in (21), (23), and (26) approaches
the same SINRs provided in [13]. Furthermore, by substituting
asymptotic SINRs (21), (23), and (26) into (10) and (11), overall
sum rate and the energy efficiency of the system is obtained.

IV. FINDING THE OPTIMAL PILOT SEQUENCE LENGTH

In this section we analyze the optimal pilot sequence length to
maximize the sum rate of the system for the case with L = 1
under power scaling at the user nodes scenario. For this case, (21)
can be written as

lim
N→∞

γl,k′ =
τE2

Sη
2
l,l,k

σ2
Rl

= τξl,k, (27)

where ξl,k =
E2
Sη

2
l,l,k

σ2
Rl

. By substituting this value to (10), we obtain
the overall sum rate of the system as

Rl =
(TC − τ)

2TC

2K∑
k=1

log (1 + τξl,k) . (28)

By taking the partial derivation of (28) with respect to τ and by
equating it to zero, we obtain the following equation.

2K∑
k=1

(TC − τ)ξl,k
1 + τξl,k

=

2K∑
k=1

ln (1 + τξl,k) . (29)

Since the total sum rate can be maximized by maximizing the sum
rates of individual user nodes, above equation can be rewritten
and rearranged as

exp
(

(TC − τ)ξl,k
1 + τξl,k

+ 1

)
= (1 + τξl,k) exp(1) , (30)

1 + TCξl,k
1 + τξl,k

exp
(

1 + TCξl,k
1 + τξl,k

)
= (1 + TCξl,k) exp(1) . (31)

By using the Lambert-W function [21], (31) is solved as

W ([1 + TCξl,k] exp(1)) =
1 + TCξl,k
1 + τξl,k

. (32)

The optimal value for τ to maximize the sum rate can be derived
as

τ∗k =

⌊
1

ξl,k

(
1 + TCξl,k

W ([1 + TCξl,k] exp(1))
− 1

)⌋
, (33)
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β̄2
l =

(
(N − 2K)

2 − 1
)

(N − 2K)PR(
(N − 2K)

2 − 1
)
PS
∑2K
i=1 η

−1
l,l,i + 2 (N − 2K)σ2

Rl

∑K
i=0 (ηl,l,2i−1ηl,l,2i)

−1
. (40)

where b.c is the floor function. Analysis on the second partial
derivative of Rl with respect to τ shows that the solution in (33),
maximizes the sum rate of the system.

V. ANALYSIS FOR A FINITE NUMBER OF ANTENNAS

In this section, we derive the approximate closed-form sum rate
for the three power scaling laws at the user nodes and relay with
a finite number of antennas. Further, for mathematical tractability
we limit our analysis for CCI free, perfect CSI and no pilot
contamination case. Furthermore, we obtain the cumulative dis-
tribution function (CDF) and the probability distribution function
(PDF) of the end-to-end SINR at Ul,k′ .

For this case, the beamforming matrix Ŵl can be rewritten as

Ŵl = Wl = G∗ll(G
T
llG
∗
ll)
−1P(GH

ll Gll)
−1GH

ll , (34)

By using Wl, the amplification factor βl is given as

βl =

√√√√ PR

PSTr
(
[GT

llG
∗
ll]
−1
)

+ σ2
Rl

Tr
(
[GH

llGll]
−1

P[GT
llG
∗
ll]
−1

P
) .(35)

Using Wl and the absence of co-channel interfering TWRNs,
(5) is further simplified as

yl,k′ = βl
√
PSxl,k + βl1k′P(GH

ll Gll)
−1GH

ll nRl + nl,k′ , (36)

where 1k′ represents 1×2K vector with value 1 at the k′ location
and zeros in all other places. Thus the end-to-end SINR at Ul,k′ ,
γl,k′ is derived as

γl,k′ =
β2
l PS

β2
l σ

2
Rl

[(
GH
ll Gll

)−1
]
k′

+ σ2
nl,k′

(37)

where
[(

GH
ll Gll

)−1
]
k′

is the k′th diagonal entry of the matrix(
GH
ll Gll

)−1
. To begin the analysis of SINR value we use the long

term power amplification factor βl . Here, we use the following
matrix identities from [22].

Tr
(
E
[(

GH
ll Gll

)−1
])

=
Tr
(
D−1
ll

)
N − 2K

=

∑2K
i=1 η

−1
l,l,i

N − 2K
. (38)

Tr

(
E
[(

GH
ll Gll

)−1

P
(
GT

llG
∗
ll

)−1

P

])
=

Tr
(
PD−1

ll PD−1
ll

)
(N − 2K)2 − 1

+
Tr
(
PTr

(
PD−1

ll

)
D−1

ll

)(
(N − 2K)2 − 1

)
(N − 2K)

=
2
∑K

i=0 (ηl,l,2i−1ηl,l,2i)
−1

(N − 2K)2 − 1
. (39)

By using the above equations the value of β̄l is rewritten as (40)
at the top of this page. By substituting the value of β̄l to (37),
we obtain

γl,k′ =
αl,k′X

ηl,k′X + ζl,k′
, (41)

where X =

([(
GH
ll Gll

)−1
]
k′,k′

)−1

and other symbols are

given as follows:

αl,k′ =
(

(N − 2K)
2 − 1

)
(N − 2K)PRPS . (42)

ζl,k′ =
(

(N − 2K)
2 − 1

)
(N − 2K)PRσ

2
Rl
. (43)

ηl,k′ =
(

(N − 2K)
2 − 1

)
PSσ

2
nl,k′

2K∑
i=1

η−1
l,l,i

+ 2 (N − 2K)σ2
nl,k′

σ2
Rl

K∑
i=0

(ηl,l,2i−1ηl,l,2i)
−1
. (44)

By using distribution of the kth diagonal element of the inverse
Wishart matrix [23], the CDF of γl,k′ was obtained as [11]:

Fγl,k′ (x) =

1−
Γ

(
N−2K+1,

ζ
l,k′x

α
l,k′−ηl,k′x

)
Γ(N−2K+1) , 0 < x <

αl,k′

ηl,k′

1, x ≥ αl,k′

ηl,k′
.

(45)

By differentiating (45) by using the Leibniz integral rule the PDF
is obtained as

fγl,k′ (x)=
d

dx

[
ζl,k′x

αl,k′−ηl,k′x

](
ζl,k′x

αl,k′−ηl,k′x

)N−2K
e
−

ζ
l,k′x

α
l,k′−ηl,k′x

Γ(N − 2K + 1)

=
αl,k′(ζl,k′)

N−2K+1xN−2Ke
−

ζ
l,k′x

α
l,k′−ηl,k′x

Γ(N − 2K +1)(αl,k′−ηl,k′x)
N−2K+2

, (46)

where 0≤ x<
αl,k′

ηl,k′
. The average sum rate can be approximated

by solving R̄l = 1
2 ln(2)

∫∞
0

ln(1 + x)fγl,k′ (x) dx as

R̄L∗ ≈
1

2 ln(2)

1

(N − 2K)!
I1, (47)

where I1 is defined as follows:

I1 = αl,k′ζ
N−2K+1
l,k′

∫ α
l,k′
η
l,k′

0

xN−2K

(αl,k′ − ηl,k′x)N−2K+2

× exp
(
− ζl,k′x

αl,k′ − ηl,k′x

)
ln (1 + x) dx, (48)

By substituting the dummy variable t = ζl,k′x/(αl,k′ − ηl,k′x)
into (48) the integral I1 can be simplified as

I1=

∫ ∞
0

tN−2Ke−t ln

(
ζl,k′+(αl,k′ + ηl,k′)t

ζl,k′+ηl,k′t

)
dt, (49)

Next, I1 in (49) can be solved in closed-form as follows:

I1 = J (N − 2K, ζl,k′ , αl,k′ + ηl,k′)− J (N − 2K, ζl,k′ , ηl,k′) ,(50)
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J(x, y, z)=

∫ ∞
0

λxexp(−λ) ln(y+zλ) dλ=Γ(x+1)

(
ln(y)+

x∑
p=0

1

Γ(x−p+1)

((
−y
z

)x−p
exp
(y
z

)
E1

(y
z

)
+

x−p∑
q=1

Γ(q)

(
−y
z

)x−p−q))
. (51)

where the function J(x, y, z) is defined in (51) at the top of this
page. By substituting (50) into (47), an approximation of the sum
rate can be derived in closed-form as in (52).

R̄L∗=
J (N−2K, ζl,k′ , αl,k′ + ηl,k′)−J (N−2K, ζl,k′ , ηl,k′)

2 ln(2) (N − 2K)!
. (52)

The sum rates under different power scaling scenarios can be
obtained by substituting the PS and PR values to αl,k′ , ζl,k′ and
ηl,k′ . The results obtained in (52) will be useful to identify the
number of antennas required to obtain a certain percentage of the
asymptotic sum rate.

VI. ASYMPTOTIC ANALYSIS FOR ANTENNA CORRELATION AT
THE RELAY

In this section, we derive asymptotic results for the SINR and
sum-rate under the antenna correlation at the relay nodes under
the three power scaling scenarios identified in section III. Further,
for mathematical tractability we limit our analysis for CCI free,
perfect CSI and no pilot contamination case.

When there is antenna correlation at the relay the channel
vector to the relay from the user k is written as ḡTll,k =

(Ψl,k)
1
2 fTll,kd

1
2

lk, where Ψl,k is the N×N correlation matrix at the
relay. Furthermore, fTll,k is the kth column vector in the matrix Fll
and dlk is the kth diagonal entry of the matrix Dll that is given
in II-A. Accordingly the channel matrix between all relay and
all the users is given as Ḡll =

[
ḡTll,1 ḡTll,2 · · · ḡTll,2K

]
. This

corresponds to the max-semi-correlated Rayleigh fading scenario
presented in [24]. For this case, the beamforming matrix Ŵl can
be rewritten as

W̄l = Ḡ∗ll(Ḡ
T
llḠ
∗
ll)
−1P(ḠH

ll Ḡll)
−1ḠH

ll , (53)

By using Wl, the amplification factor βl is given as

β̄l =

√√√√ PR

PSTr
([
ḠT

llḠ
∗
ll

]−1
)

+ σ2
Rl

Tr
([
ḠH

llḠll

]−1
P
[
ḠT

llḠ
∗
ll

]−1
P
) .(54)

By using the similar steps as in section V, we obtain the end-
to-end SINR at Ul,k′ , γl,k′ as

γl,k′ =
β̄2
l PS

β̄2
l σ

2
Rl

[(
ḠH
ll Ḡll

)−1
]
k′

+ σ2
nl,k′

(55)

where
[(

ḠH
ll Ḡll

)−1
]
k′

is the k′th diagonal entry of the matrix(
ḠH
ll Ḡll

)−1
.

To analyse the asymptotic performance of antenna correlation
at the relay, we first look at the limit results relevant to the channel
matrix Ḡll. Here, we obtain

[
ḠH
ll Ḡll

N

]
i,j

= d
1/2
li

fHll,i

(
ΨH
l,iΨl,j

)1/2

fll,j

N
d

1/2
lj . (56)
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Fig. 1. Spectral efficiency versus the number of relay antennas of an 12-user
TWRN with different L values. The channels in Gjl are i.i.d. Rayleigh RVs
with Dll = I2K and Djl =

1
2
I2K , where j, l ∈ {1, · · · , L} and j 6= l.

By using the limit results, it can be shown that if i 6= j, then the
value of (65) goes to zero. If i = j then the above value equals
Tr(Ψl,j) which is equal to N for correlation matrices. Based on
this, the limit result can be given as[

ḠH
ll Ḡll

N

]
a.s.−−−−→
N→∞

Dll, (57)

and coincidently the asymptotic results for the case with antenna
correlation is equal to the results obtained for the case without
any antenna correlation. This shows that by using massive MIMO,
the degenerative effect of antenna correlation can be removed in
our system model.

VII. SIMULATION RESULTS

This section presents our simulation results and comparisons
with the derived asymptotic results. The power at the user nodes
and the relay nodes is taken as ES = ER = 10, and the noise
powers at user and relay nodes is taken as σ2

nl,k
= σ2

nR = 1.
The pathloss exponent η is assumed to be two. The normalized
pilot sequence power factor τ/TC is 0.8. Spectral and energy
efficiencies under different power scaling scenarios, different K
values, and different L values are presented in the sequel.

What is the effect of having multiple TWRNs on the spectral
efficiency and the energy efficiency? In Fig. 1 and Fig. 2, the
spectral efficiency and the energy efficiency are presented for
power scaling at user nodes (case 1), for L = 2, L = 4 and
L = 8 values, when K = 6, respectively. The obtained asymptotic
values (21) are also plotted for comparison. We can see in Fig. 1
that for all L values, the spectral efficiency asymptotically reaches
our analytical results, validating our derived results. Furthermore,
as the number of TWRNs (L) in the system is increased, the
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Fig. 2. Energy efficiency versus the number of relay antennas of 12-user, L
TWRNs. The channels in Gjl are i.i.d. Rayleigh RVs with Dll = I2K and
Djl =

1
2
I2K , where j, l ∈ {1, · · · , L} and j 6= l.

achievable spectral efficiency and the energy efficiency of a single
TWRN decreases due to the interference and pilot contamination
introduced by other TWRNs. As an example, a L = 2 system
can obtain 4.9bps/Hz efficiency while an L = 8 system can only
achieve a spectral efficiency of 3bps/Hz. However, if we consider
the spectral efficiency of the whole system (by multiplying the
spectral efficiency of a single TWRN by L), we can conclude
that the bandwidth can be utilized further by increasing the
number of TWRNs. According to the values obtained in Fig.
1, the total spectral efficiency is 9.8 bps/Hz when L = 2 and
approximately 15 bps/Hz when L = 8. Thus we can conclude
that by using multipair massive MIMO TWRNs for pairwise
communications between nodes, that the limited bandwidth can
be utilized effectively.

We analyze the effect of number of users in a single system
(2K) in Fig. 3. Specifically, the sum rate is plotted for a system
with eight relay networks under power scaling at the relay nodes
for K = 2 and K = 6 (case 2). A four-user TWRN achieves
0.62bps/Hz while a 12-user TWRN obtains 1.28 bps/Hz. Once
again, we have plotted our analytical results (23), which match
the simulated values. Note that the spectral efficiency increases
as the number of users increases, as the same bandwidth is used
by the additional users. Thus, a massive MIMO pairwise TWRN
improves bandwidth utilization by serving more users. However,
there will be countering factors that will limit the number of user
pairs in a network, such as the number of available orthogonal
pilot sequences which is limited by the coherence time of the
system.

We compare the spectral efficiency gains and energy efficiency
gains of different power scaling scenarios in Fig. 4 and Fig.
5 for 12-user TWRNs (L = 8). The analytical results ( (21,
(23), and (26)) are also plotted for comparison purposes. Power
scaling at the user nodes has the highest asymptotic of 7.2 bps/Hz
out of all the three cases while case-2 and case-3 achieved
asymptotically 5.2 bps/Hz and 1.8 bps/Hz, respectively. Moreover,
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Fig. 3. Spectral efficiency versus the number of relay antennas of a L = 4 TWRN
systems with different number of user pairs. The channel gains of Gjl are i.i.d.
Rayleigh RVs. with Dll = I2K and Djl = 1

2
I2K , where j, l ∈ {1, · · · , L}

and j 6= l.
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Fig. 4. Spectral efficiency versus the number of relay antennas of 12-user, L = 8
TWRNs. The channels in Gjl are i.i.d. Rayleigh RVs with Dll = I2K and
Djl =

1
2
I2K , where j, l ∈ {1, · · · , L} and j 6= l.

in Fig. 5 power scaling at both user and relay nodes obtains the
highest energy efficiency as expected. Furthermore, the energy
efficiency of case-2 (power scaling at the relay only) is very
low compared to other two cases. This result is expected as the
power of user nodes are kept unchanged in this scenario. Thus
the numerator in (11) is relatively constant for different N values,
and thus the power efficiency will be low.

How accurate are our analytical results when the number of
antennas is finite? In Fig. 6, we answer this question by plotting
the sum rate results. The simulated sum rate values match with
our closed-form result in (52), justifying the accuracy of our
approximation. For example, as few as 14 relay antennas yields
about 85% of the asymptotic performance (N = ∞). Moreover,
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Fig. 6. Sum rate versus the number of relay antennas of a 4-user TWRN (L =
1) under different power scaling scenarios. The channel gains of Gll are i.i.d.
Rayleigh RVs.

increasing to N = 22 relay antennas yields a 92%. This is good
news because more or less the performance of massive MIMO is
possible with a finite number of antennas.

How much degradation of the sum rate occurs due to antenna
correlation? In Fig. 7, we have used the antenna correlation model
given in [25, Eqn. (4)]. Here, the (p, q)th element of correlation
matrix is given as e−j2π(p−q)l cos(θ)e−

1
2 (2π(p−q)l sin(θ)σ2) [24],

where l is the relative antenna spacing, θ is the average angle
of arrival/departure, and σ is the standard deviation of the angle
of arrival/departure. We have plotted the sum rate of the system
under low correlation and high correlation at the relay as well
as with no correlation. As seen from Fig. 7, although antenna
correlation degrades the sum rate, as the number of relay antennas
increases, the sum rate approaches to that of the uncorrelated
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Fig. 7. Sum-rate versus the number of relay antennas of a 4-user TWRN (L = 1)
under relay antenna correlation.

antenna case. This observation corroborates our analysis that the
effect of antenna correlation can be mitigated by a massive relay
antenna array.

VIII. CONCLUSION

For multi-pair massive MIMO TWRNs, we have investigated
the impact of several key impairments, namely co-channel in-
terference, imperfect CSI, antenna correlation and pilot contam-
ination. We derived the asymptotic SINR, sum rate, and energy
efficiency for the three transmit power scaling laws. Importantly,
we show that the user transmit power can be scaled down
inversely proportional to the square-root of the number of relay
antennas. Notably, if power scaling is limited to the relay node,
power can be scaled down inversely proportional to the number
of relay antennas without any performance penalty. Our analytical
and simulation results reveal that substantial sum-rate gains and
energy-efficiency gains can be achieved via a massive antenna
array at the relay. Also, the closed-form results obtained for a
finite number of antennas at the relay help wireless engineers
to compute the number of antennas required to obtain a certain
percentage of the asymptotic sum rate. Further, our results show
that massive MIMO mitigates the degenerative effects of antenna
correlation.

In terms of future research, further work is required to rig-
orously analyze (by considering all imperfections) the sum-rate
results for multiple massive MIMO TWRNs with not so large
number of antennas, especially in a practical range between 100
to 200.

APPENDIX A
PROOF OF LIMITS

In this section, several important limit results are provided.
We begin with expressing the following three results [26].
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GH
jlĜll

N

a.s.−−−−→
N→∞

EP diag

(
ηj,l,1

∑L
j=1 ηj,l,1

1 + EP
∑L
j=1 ηj,l,1

, · · · ,
ηj,l,2K

∑L
j=1 ηj,l,2K

1 + EP
∑L
j=1 ηj,l,2K

)
, for PP = EP . (64)

GH
jlĜll√
N

a.s.−−−−→
N→∞

EP diag

ηj,l,1 L∑
j=1

ηj,l,1, · · · , ηj,l,2K
L∑
j=1

ηj,l,2K

 , for PP =
EP√
N
. (65)

Tr

(
GjlG

H
jlĜll

[
ĜH
ll Ĝll

]−1

P
[
ĜT
llĜ
∗
ll

]−1

P
[
ĜH
llĜll

]−1

ĜH
ll

)
=

1√
N

Tr

GH
jlĜll√
N

[
ĜH
ll Ĝll√
N

]−1

P

[
ĜT
llĜ
∗
ll√

N

]−1

P

[
ĜH
llĜll√
N

]−1
ĜH
ll Gjl√
N

.(66)

√
NTr

(
GjlG

H
jlĜll

[
ĜH
llĜll

]−1

P
[
ĜT
llĜ
∗
ll

]−1

P
[
ĜH
llĜll

]−1

ĜH
ll

)
a.s.−−−−→
N→∞

1

EP

K∑
i=1

(
η2
j,l,2i−1

η̂2
l,2i−1η̂l,2i

+
η2
j,l,2i−1

η̂l,2i−1η̂2
l,2i

)
. (67)

NTr

(
GjlG

H
jlĜll

[
ĜH
ll Ĝll

]−1

P
[
ĜT
llĜ
∗
ll

]−1

P
[
ĜH
llĜll

]−1

ĜH
ll

)
a.s.−−−−→
N→∞

K∑
i=1

(1 + PP η̂l,2i−1) (1 + PP η̂l,2i−1)

P 2
P η̂l,2i−1η̂l,2i

[
ηj,l,2i−1 (1 + PP η̂l,2i−1)

PP η̂l,2i−1
+
ηj,l,2i (1 + PP η̂l,2i)

PP η̂l,2i

]
. (69)

For two independent vectors, p ∼ CNN×1

(
0, σ2

p

)
and q ∼

CNN×1

(
0, σ2

q

)
, the following identities are valid.

pHp
/
N

a.s.−−−−→
N→∞

σ2
p and pHq

/
N

a.s.−−−−→
N→∞

0, (58)

pHq
/√

N
d−−−−→

N→∞
CN

(
0, σ2

pσ
2
q

)
, (59)

where subscripts a.s. and d stands for almost sure convergence
and the convergence of distributions, respectively. By using the
aforementioned identities, it can be shown that

GH
jlGjl

N
= D

1
2
jl

(
FH

jlFjl

N

)
D

1
2
jl

a.s.−−−−→
N→∞

Djl, and (60)

GH
jlGml

N
= D

1
2
jl

(
FH

jlFml

N

)
D

1
2
ml

a.s.−−−−→
N→∞

02K , for j 6= m. (61)

Furthermore, by using the above two results, following limit
can be obtained.

ĜH
ll Ĝll

N
=

1

N

[(
L∑

j=1

Gjl+
Vl√
Pp

)
D̃ll

]H( L∑
j=1

Gjl +
Vl√
Pp

)
D̃ll

= D̃H
ll

(
L∑

j=1

L∑
m=1

GH
jlGml

N
+

VH
l

∑L
j=1 Gjl√
PpN

+

∑L
j=1 G

H
jlVl

√
PPN

+
VH

l Vl

N

)
D̃ll

= D̃H
ll

(
L∑

j=1

Djl + I2K

)
D̃ll

a.s.−−−−→
N→∞

Hll, (62)

where Hll is a diagonal matrix with kth diagonal entry given

by
PP (

∑L
j=1 ηj,l,k)

2

1+PP
∑L
j=1 ηj,l,k

. Furthermore when transmit power scaling is

done at the users (ie. PP = EP /
√
N ), the following limit can be

obtained.

ĜH
ll Ĝll√
N

a.s.−−−−→
N→∞

Ĥll, (63)

where Ĥll is a diagonal matrix with kth diagonal entry given by

EP

(∑L
j=1 ηj,l,k

)2

. Furthermore, the limit results (64) and (65)
that are shown at the top of this page are obtained using the same
procedure.

APPENDIX B
PROOF OF LIMITS FOR POWER SCALING AT THE USER NODES

This section provides a sketch of the proof of SINR for the
transmit power scaling scenario. First we prove the limits for the
power normalizing factor β̂l. The first term in the denominator
in (9) can be written as shown in (66) at the top of this page.
By using the limit results (62) and (63) given in Appendix
A on each term in the above equation, following result is
formulated as (67) shown at the top of this page. Here in (67),
η̂l,k =

∑L
j=1 ηj,l,k. Similarly, the limit of the second term in the

denominator in (9) is derived as

NTr

([
ĜH

llĜll

]−1

P
[
ĜT

llĜ
∗
ll

]−1

P

)
a.s.−−−−→

N→∞
2

K∑
i=1

1

(EP η̂l,2i−1η̂l,2i)
2. (68)

By using the above two results, (12) is obtained.
APPENDIX C

PROOF OF LIMITS FOR POWER SCALING AT THE RELAY NODES

This section provides a sketch of the proof of SINR for
the transmit power scaling at the relay. The first term in the
denominator in (9) can be written in a similar way by replacing√
N by N in (66) in Appendix B. By using the limit results (62)
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and (64) given in Appendix A, the limit result (69) shown at the
top of this page is obtained. Similarly, the limit of the second
term in the denominator in (9) is derived as

N2 Tr

([
ĜH
ll Ĝll

]−1

P
[
ĜT
llĜ
∗
ll

]−1

P

)
a.s.−−−−→
N→∞

2

K∑
i=1

(
1 + PP η̂l,2i−1

PP η̂l,2i−1

)2(
1 + PP η̂l,2i
PP η̂l,2i

)2

. (70)

By using the above two results, (22) is obtained.
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