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Blind Channel Estimation for Ambient Backscatter
Communication Systems

Shuo Ma, Gongpu Wang, Rongfei Fan, and Chintha Tellambura

Abstract—The availability of perfect channel state information
(CSI) is assumed in current ambient-backscatter studies. How-
ever, the channel estimation problem for ambient backscatter
is radically different from that for traditional wireless systems,
where it is common to transmit training (pilot) symbols for
this purpose. In this letter, we thus propose a blind channel
estimator based on the expectation maximization (EM) algorithm
to acquire the modulus values of channel parameters. We also
obtain the ranges of the initial values of the suggested estimator
and derive the modified Bayesian Cramér-Rao bound (MBCRB)
of the proposed estimator. Finally, simulation results are provided
to corroborate our theoretical studies.

Index Terms—Ambient backscatter, channel estimation, chan-
nel state information (CSI), expectation maximization (EM),
Internet of Things (IoT).

I. INTRODUCTION

INTERNET of Things (IoT) has attracted vast attentions
from both academic and industrial circles. For wireless

sensors or tags in IoT, two main challenges exist:
• Limitations of Energy sources – Batteries, the most

common energy source for sensors, have limited oper-
ational life and thus require maintenance of recharging
or replacement. Other sources including solar and wind
energy are subjected to the vagaries of the environment.

• Cost of radio frequency (RF) components – The nodes
will need oscillators, amplifiers and other RF compo-
nents, which are expensive compared with the baseband
circuits.

A potential solution to these two challenges is the emer-
gence of ambient backscatter wireless technology [1]. A basic
setup is shown in Fig. 1. First, the sensor node harvests
wireless energy from ambient RF signals; second, the sensor
switches the antenna impedance so as to backscatter outside
or absorb inside the received RF signal, which indicates for
the reader “1” or “0” state respectively. Harvesting energy
from ambient RF sources (e.g., TV signals, AM and FM
signals, cellular base stations, and Wi-Fi access points (APs))
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Fig. 1. System model.

is utilized. This approach can thus free sensors or tags from
batteries and decrease the cost by removing the expensive ac-
tive RF circuits. No dedicated frequency spectrum is required.
These advantages open up the possibility of many practical
IoT applications [2].

Most of the existing ambient-backscatter studies assume the
availability of perfect channel state information (CSI) or avoid
the need for CSI through differential encoding techniques
[3], [4]. In fact, ambient-backscatter channel estimation is
complicated due to the following reasons:

1) the ambient RF signals are unknown to both the sen-
sors/tags and the receivers/readers;

2) the sensors/tags are of simple design and subject to the
constraint of limited harvested power, and usually cannot
transmit training symbols;

3) the channel parameters when transmitting “1” are not
consistent with those when transmitting “0” bits.

The traditional estimators are based on the principles of
least square (LS) and linear minimum mean square error
(LMMSE), where it is necessary to send pilot symbols for
channel estimation [5], [6]. They cannot be directly applied
in ambient backscatter systems. To the best of our knowledge,
the problem of ambient-backscatter channel estimation has not
been studied before, which motivates our current work.

In this letter, we design a new ambient-backscatter channel
estimator and investigate its performance. Given these chal-
lenges, and especially because of not using pilot sequences,
a blind estimation approach is necessary. We thus select the
expectation maximization (EM) estimation algorithm [7] and
obtain the absolute values of channel parameters. We also
propose the ranges of initial values without requiring extra
pilots. In addition, we derive the modified Bayesian Cramér-
Rao bound (MBCRB) of the proposed estimator. Finally,
simulation results are provided to assess the mean square
error, MBCRB and the speed of convergence of our proposed
algorithm.
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II. SYSTEM MODEL

Consider an ambient backscatter communication system that
consists of a reader, a tag, and an RF source (Fig. 1). Assume
that the RF source transmits the signals x(n) with power Pt,
and the tag transmits binary information B(n) ∈ {0, 1} by
backscattering the message x(n) to the reader or by absorbing
x(n) inside. Suppose that the reader has no knowledge about
x(n) except the transmit power Pt.

Denote the channels between the RF source and the reader,
between the tag and the RF source, and between the reader and
the tag as h, f , and g, respectively. Suppose h ∼ N (0, Nh) and
f ∼ N (0, Nf ), where Nh and Nf represent the corresponding
channel variances. The distance between the reader and the tag
is short and typically line of sight (LOS), which renders the
channel g approximately a constant.

The tag transmits B(n) through backscattering its received
source signal x(n) or not. Suppose that the attenuation of the
signal x(n) inside the tag is η. The received signal y(n) can
be given as [3]

y(n) =

{
hx(n) + w(n), B(n) = 0

hx(n) + ηfgx(n) + w(n), B(n) = 1
(1)

where w(n) denotes the zero-mean additive white Gaussian
noise (AWGN) with variance Nw at the reader. Define the
combined channel parameter as

µ = h+ ηfg. (2)

Clearly, µ ∼ N (0, Nµ) where Nµ = Nh+ η2g2Nf . One goal
of the reader is to simultaneously estimate h and µ given data
y(n) with unknown x(n) and B(n).

Remark 1: The channel reciprocity holds in our model.
However, we only focus on uplink channel in our paper.

Remark 2: In our model, the tag is a battery-free device and
can not generate active radio signals. The distance between
the tag and the reader is one key factor deciding the channel
quality.

III. EM-BASED CHANNEL ESTIMATION

In this section, we will design an EM-based estimator to
obtain the absolute values of the channel parameters h and µ.

The EM algorithm [7] is an iterative method to find
maximum likelihood estimates of parameters when there are
unobserved variables. It has two steps: (a) expectation of
the log-likelihood evaluated using the current estimate for
the parameters and (b) maximization of the log-likelihood
derived in the expectation step to compute parameters. The
EM iteration alternates between these two steps. The parameter
estimates in each iteration are then used in the next expectation
step. In the ambient backscatter estimation problem, we in fact
will work with a lower bound of the log-likelihood function.

A. Channel Estimation
For brevity of our discussion, we assume that x(n) has only

two states x1 and x2, e.g., binary phase shift keying (BPSK)
signal.1

1Our algorithm can be straightly extended to the case of x(n) with multiple
states such as multiple phase shift keying (MSPK) or multiple quadrature
amplitude modulation (MQAM).
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Fig. 2. Constellation of hidden variables and intermediate variables.

Let us first rewrite the signal y(n) (1) as

y(n) = θmxj + w(n), m, j = 1, 2 (3)

where θm denotes the two channel parameters h and µ, and
if θ1 = h or θ1 = µ is to be determined.

Next we introduce the following two intermediate variables:
1) Sm,j denotes the four combinations of xj and θm as

shown in Fig.2 where m = 1, 2 and j = 1, 2.
2) Qm,j(i) is the posterior probability for Sm,j when the

received signal is y(i).
It can be readily checked that

Qm,j (i) = p(Sm,j |y(i)) =
f (y(i)|Sm,j) p(Sm,j)

f(y(i))
, (4)

where f (y(i)|Sm,j) denotes the conditional probability den-
sity function (PDF) of y(i). Since both x(n) and B(n) are
equiprobable, we have p(Sm,j) = 0.25. Thus the posterior
probability Qm,j(i) can be further derived as

Qm,j (i) =
f (y(i)|Sm,j ; θm) p(Sm,j)

2∑
m=1

2∑
j=1

f (y(i)|Sm,j ; θm) p(Sm,j)

=
e−

(y(i)−θmxj)
2

2σ2

2∑
m=1

2∑
j=1

e−
(y(i)−θmxj)2

2σ2

. (5)

Define θ
(n)
m as the value of θm at the nth iteration. The

lower bound of the log-likelihood function of θ(n)m is

L̃
(
θ(n)m

)
=

N∑
i=1

2∑
m=1

2∑
j=1

Qm,j(i) ln
f
(
y(i) | Sm,j ; θ(n)m

)
p(Sm,j)

Qm,j (i)
. (6)

We compute the partial derivatives with respect to θ(n)1 and
θ
(n)
2 respectively to update the estimates in the (n + 1)th

iteration

θ(n+1)
m =

∂L̃

∂θ
(n)
m

=

N∑
i=1

2∑
j=1

Qm,j(i)xjy(i)

N∑
i=1

2∑
j=1

Qm,j(i)x2j

. (7)
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Algorithm 1 Our proposed channel estimator

Input: [y(1), · · · , y(N)], Pt, h̃.
Output: CSI estimates ĥ, µ̂.
Initialization: according to (10) and (11).
Iteration:

while L̃ (6) does not converges do
for i=1:N do

update Qm,j(i) according to (5);
end for
update L̃ according to (6);
update θ(n+1)

1 and θ(n+1)
2 through (7);

end while
if |θ(n+1)

1 − h̃| < |θ(n+1)
2 − h̃| then

ĥ = θ
(n+1)
1 ;µ̂ = θ

(n+1)
2 ;

else
µ̂ = θ

(n+1)
1 ;ĥ = θ

(n+1)
2 ;

end if
return ĥ and µ̂;

TABLE I
COMPUTATIONAL COMPLEXITY OF EACH ITERATION.

Steps Computational complexity
Compute (5) N [3(1 +MJ) + 1]
Calculate (6) 5NMJ
Update (7) M(4JN + 1)

Total complexity in each iteration 12NMJ + 4N +M

Without loss of generality, we assume |θ1| < |θ2|. Let us
introduce a new variable q defined as

q =

N∑
i=1

|y(i)|
√
Pt

. (8)

The expectation of q can be found as

E(q) =
E(|θ1|) + E(|θ2|)

2
=

√
Nh +

√
Nµ√

2π
. (9)

where E|θ1| < E(q) < E|θ2|.
Proposition 1: Define Pth = 9πNw/(2(

√
Nh +

√
Nµ)

2).
The initial values of θ(0)m can be set as

θ
(0)
1 = q − ε, θ

(0)
2 = q + ε. (10)

where ε is a constant that satisfies{
0 < ε < q, if Pt ≤ Pth√

Nw/Pt/2 < ε < q −
√
Nw/Pt, if Pt > Pth.

(11)

Proof: In high SNR, it is desirable that the gap between
the two initial values is large. Therefore, we can have

|2εxj | > E|w(n)|, |θ(0)m xj | > E|w(n)|. (12)

After averaging both sides of (12), we can obtain ε ∈
(
√
Nw/Pt/2, q−

√
Nw/Pt). Further utilizing q−

√
Nw/Pt ≥√

Nw/Pt/2, we can obtain the expression of Pth.
Our proposed estimator is summarized in Algorithm 1.

It includes three inputs: received data y(n), transmit power
Pt, and the estimate h̃ of the channel parameter |h| through
traditional EM algorithm before tag transmission.

B. Complexity Analysis

The time complexity of our proposed channel estimator
is due to (a) three steps in each iteration and (b) the total
number of iterations T . The computational complexity per
iteration arises mainly from the three sub-steps: computing
(5), calculating (6) and updating (7) (Table III-A.)

Thus, the total complexity of the proposed algorithm is
T (12NMJ + 4N + M) where M denotes the number of
parameters and J denotes the number of states of the signal
x(n). In our case, M = 2 and J = 2. Thus, the complexity
of each iteration is O(N) and the total complexity of our
estimator can be approximated as O(TN).

C. Modified Bayesian Cramér-Rao bound (MBCRB)

The modified Bayesian Cramér-Rao lower bound (MBCRB)
is a lower bound of MSE when the observed data depend on
other nuisance parameters [9] and the channel estimates are
random variables with a priori information available [8]. The
MBCRB of the channel h is the inverse of ψh defined as

ψh = Eh[G(h)] + Eh

[
−∂

2 ln f(h)

∂h2

]
, (13)

where f(h) is the PDF of h and G(h) is the modified Fisher
Information Matrix (FIM)

G(h) = ESEy|S,h

[
−∂

2 ln f(y|S;h)
∂h2

]
=

N∑
i=1

2∑
j=1

p(Sm,j)

(
Eyi

[
−∂

2 ln f(yi|Sm,j ;h)
∂h2

])
=
NPt
2Nw

.

The second term of (13) can be obtained as

Eh

[
−∂

2 ln f(h)

∂h2

]
=

1

Nh
. (14)

Consequently, the MBCRB of h can be obtained as

Mh =
2NwNh

NPtNh + 2Nw
. (15)

Similarly, the MBCRB of µ can be found as

Mµ =
2NwNµ

NPtNµ + 2Nw
. (16)

IV. SIMULATION RESULTS

In this section, we provide numerical results of the proposed
estimator. The attenuation η is set to 0.8 and the variances Nh,
Nf and Nw are set to 1.

Fig. 3 depicts the MSE and MBCRB curves versus SNR
when the signal length N=10. For each SNR, we choose the
initial values (11), estimate the channels h and µ utilizing Al-
gorithm 1, and calculate the corresponding MSE and MBCRBs
(15) and (16). This figure shows that the simulated MSEs
converge to theirs MBCRBs when the SNR is sufficiently high.
The gap between the two curves for the case of estimation of
µ is very small. However, the gap for the case of estimation
of h is fairly large and persistent, and this may be due to the
use of blind estimation [10].
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Fig. 3. MSE and MBCRB versus SNR.
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Fig. 4. MSE and MBCRB versus signal lengths N .

Fig. 4 plots the MSE and MBCRB curves versus different
signal lengths N when SNR is 15 dB and 30 dB respectively.
Both MSE and MBCRB decline with larger N. The MSE gains
from increasing N are small when N > 20.

Fig. 5 shows the the number of iterations when the signal
length N is 10, 20, and 30 respectively. It can be seen that
the average number of iterations decreases rapidly when SNR
increases, and that our proposed estimator needs only three
iterations for an SNR of 20 dB.

V. CONCLUSION AND FUTURE WORK

This letter investigated the channel estimation problem for
ambient backscatter communications. Specifically, an EM-
based estimator was proposed to obtain the modulus values
of the ambient backscatter channel parameters. The ranges of
initial values were suggested for the proposed estimator. To
assess the quality of the estimates, the The modified Bayesian
Cramér-Rao lower bounds were derived. Finally, numerical
results were provided to corroborate our theoretical results.
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Fig. 5. The number of the iterations for the proposed algorithm.

Regarding ambient-backscatter channel estimation, the work
reported in this letter is just the tip of the iceberg because
there are many open problems [2]. For example, channel
estimates are needed for optimal backscatter scheme at the tag,
multiple tag access and tag selection by the reader. Moreover,
the estimation of individual channel parameters f and g
can also be a fruitful future research since these parameters
play a fundamental role in transceiver design and security
enhancement [11].
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