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Abstract—Hybrid beamforming is a promising low-cost solu-
tion for large multiple-input multiple-output (MIMO) systems,
where the base station (BS) is equipped with fewer radio
frequency chains. In these systems, the selection of codewords
for analog beamforming is essential to optimize the uplink sum-
rate. In this paper, based on machine learning, we propose
a data-driven method of analog beam selection to achieve a
near-optimal sum-rate with low complexity, which is highly
dependent on training data. Specifically, we take the beam
selection problem as a multiclass-classification problem, where
the training data set consists of a large number of samples of the
millimeter-wave channel. Using this training data, we exploit the
support vector machine (SVM) algorithm to obtain a statistical
classification model, which maximizes the sum rate. For real-time
transmissions, with the derived classification model, we can select,
with low complexity, the optimal analog beam of each user. We
also propose a novel method to determine the optimal parameter
of Gaussian kernel function via McLaughlin expansion. Analysis
and simulation results reveal that, as long as the training data
is sufficient, the proposed data-driven method achieves a near-
optimal sum-rate performance, while the complexity reduces
by several orders of magnitude, compared to the conventional
method.

Index Terms—hybrid beamforming, data-driven solution, mm-
wave, beam selection, SVM

I. INTRODUCTION

Although the fifth generation (5G) mobile communications
standards are still very much evolving, the aims for higher data
rates, lower latency, and higher energy-efficient performance
are firmly clear [1]. These aims bring about the demands for
wider bandwidth spectrum. Currently, available bandwidth in
the spectrum up through 6 GHz is not sufficient to satisfy
these requirements. This shortage, in turn, has helped us move
the target operating frequency bands up into the millimeter-
wave (mm-wave) [2] range for the next generation of wireless
communication systems [3] [4]. The shorter wavelengths at
these higher frequency bands enable implementations with
many more antenna elements per system within a super-
small space [5] [6]. However, it also increases the signal-
path and propagation challenges associated with operating at
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these frequencies. For example, due to the gas absorption, the
attenuation for a 60 GHz waveform is more than 10 dB/km,
while a 700 MHz waveform experiences an attenuation on the
order of 0.01 dB/km.

These losses can be compensated with the elaborate array
design and the application of spatial signal-processing tech-
niques, including beamforming. Beamforming can be enabled
by large antenna arrays and can be applied directly to provide
higher transmit gains to cope with the path loss and harmful
interference signals.

To achieve a desirable flexibility and controllability with
beamforming in the design of antenna array, adopting an
independent weighting control over each antenna-array ele-
ment is a feasible method. This requires a transmit or receive
component dedicated to each antenna-array element. However,
for large multiple-input multiple-output (MIMO) systems [7]
[8] whose array size is over a hundred antennas, such an
architecture is rather difficult to build due to cost, space,
and power limitations. For example, implementing a high
performance analog-to-digital converter (ADC) and digital-to-
analog converter (DAC) for each channel can drive the cost and
power beyond an affordable budget. Similarly, having variable
gain amplifiers in the radio frequency (RF) chain for each
channel can increase system cost.

Hybrid beamforming [9] [10] [11] is a popular technique
that can be used to partition beamforming into digital domain
and RF domain. Therefore, hybrid beamforming can be imple-
mented to balance tradeoffs between cost and flexibility, while
still fielding a system that meets the required performance
parameters. Hybrid-beamforming designs are developed by
combining multiple array elements into subarray modules.
A transmit or receive module can be dedicated to multiple
elements in the array. Thus, the system will need fewer
transmit or receive components (i.e., RF chains). The number
of elements in each subarray can be selected to ensure that
system performance is met across the range of steering angles.
Using the transmit path as an example, each element within
a subarray can have a phase shift applied directly in the
RF domain, while digital beamforming techniques based on
complex weighting vectors can be applied on the signals that
feed each subarray. Digital beamforming is able to conduct
the control of the signal for both amplitude and phase on
signals aggregated at the subarray level. Consequently, a cost-
efficient MIMO system architecture for low-cost deployment
is proposed, which is called hybrid MIMO.

In hybrid beamforming, each RF chain is equipped with
a bunch of phase shifters to conduct analog beamforming.
Thus, to ensure a high performance in terms of sum-rate or bit
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error rate for hybrid MIMO, choosing suitable analog beams
for each RF chain plays a key role. Thus, recently, a plenty
of works have focused on the selection of analog beams. In
[12], a low-complexity analog beam selection scheme under
point-to-point scenarios is proposed. When the number of
candidates of analog beams is small, the proposed scheme
is able to achieve a near-optimal spectral efficiency at high
SNR regime. Literature [13] presents two beam selection
algorithms for analog beamforming based on rotman lens
theory, which is able to achieve higher BER performance. In
[14], an exhaustive method is proposed to select the analog
beams that make SNR or SINR maximum. However, so far,
all the related works try to find the optimal combination of
analog beams by evaluating the design metric over all possible
combinations. Nevertheless, evaluating the design metric is a
high-complexity task, thus choosing suitable analog beams for
each RF chain is a high complexity-cost procedure, which
poses an unacceptable delay on real-time communications.
Therefore, developing a low-complexity method is motivated.

Recently, big data [15] [16], which is an emerging technol-
ogy about extracting meaningful value from large volume of
data, has attracted a plenty of interests in various fields. Big
data enables us to harness the volume, variety, and velocity of
data and deduce actionable insight from data. In the study of
cellular networks, big data would bring us huge opportunities
to innovate cellular networks, since big data is able to provide
novel efficient solutions to the design or optimization of
cellular networks. For example, cellular networks embracing
big data have been studied in [17]. A self-optimizing 5G
networking based on big data is proposed in [18]. Furthermore,
as mentioned in [17] and [18], machine learning [19] is a
powerful tool in big data, which is able to dig hidden insights
from training data and make a judgment for a new data set.

In this paper, to solve the analog beam selection problem
in a low-complexity way, we propose a data-driven solution
by resorting to support vector machine (SVM) [20]. SVM is a
preferred multi-class classification algorithm [21] in machine
learning, which is good at handling linearly inseparable dataset
of samples and avoiding over-fitting. To begin with, we con-
sider the beam selection problem as a multi-class classification
problem, where a large number of samples of mm-wave
channel are taken as training data. Based on these training data,
we adopt SVM algorithm to obtain a statistical classification
model in terms of maximizing sum-rate performance. By
using the derived classification model, we can choose the
optimal analog beam for each user with low complexity in
the middle of real-time transmission. Analysis and simulation
results reveal that, if training data can be provided sufficiently,
the proposed data-driven method is able to achieve a near-
optimal sum-rate performance, while the complexity would
reduce by several orders of magnitude, compared with the
conventional exhaustive method.

To the best of our knowledge, this paper is the first attempt
to solve the problem of beam selection by the data-driven
method. Our main contributions are as follows:

1) As we know, directly calculating sum-rate for zero-
forcing (ZF) digital beamformer is involved with several
matrix inversion operations, which is a high-complexity

manipulation. Thus, in this paper, by using the vector-
combined manipulation, we derive a low-complexity met-
ric to measure sum-rate. Moreover, we take the derived
metric as the key performance indicator (KPI) of each
possible combination of analog beams.

2) In machine learning, training data is presented as feature
vector whose dimensionality is proportional to the com-
plexity of classification. In order to reduce the complexity
of classification, we take the direction of arrival (DoA)
and angle Of arrival (AoA) of each path of mm-wave
channels as entries of feature vectors. Due to the sparsity
of mm-wave channels [22], the number of transmission
path of mm-wave channels is few. Hence, the dimension-
ality of feature vector of training data is very small, which
is able to suppress the complexity of classification.

3) Generally, in hybrid beamforming, a codebook of analog
beams provides more than two candidates for beams
selection, which brings about the imbalance of training
data for an one-vs-the-rest classifier [20]. However, the
regular SVM does not perform well on imbalanced data.
Therefore, we propose a biased-SVM where the major
training data and minor training data use different error
penalty, respectively.

4) The classification performance of SVM primarily de-
pends on the design parameter of kernel functions. To
achieve a high classification performance, we propose a
new method to determine the optimal design parameter of
the Gaussian kernel function in virtue of McLaughlin ex-
pansion. The experiment results indicate that the proposed
method can achieve a better classification performance
than conventional cross-validation method.

The reminder of this paper is organised as follows. In
Section II, we introduce the system model. In Section III, a
low-complexity metric for sum-rate is obtained. In Section IV,
a data-driven solution for analog beam selection is proposed.
In Section V, the complexity analysis is conducted. Simulation
results are presented in Section VI. Finally, the paper is
summarized in Section VII.

Notations: x, x and X denote scalar, vector and ma-
trix, respectively. xT represents the transpose of vector x.
diag[x1, x2, · · · , xk] denotes a matrix whose diagonal ele-
ments are composed by x1, x2, · · · , xk while the rest of
elements are zero. ∥·∥ represents Forbinius norm. S denotes
a set, and |S| is the cardinality of set S.

II. SYSTEM MODEL
We introduce the system model in this section. As shown

in Fig. 1, an uplink massive MIMO system with hybrid beam-
forming is considered. In the given system, the BS employs
NB antennas to serve K mobile users, while each user is
equipped with Nu antennas. As illustrated in Fig. 1, the hybrid
beamforming architecture comprises digital beamforming part
and analog beamforming part. In the analog beamforming part,
there are Ns RF chains at the BS, where each RF chain is
equipped with NR antennas. Consequently, for the number
of antennas employed at the BS, we have NB = Ns × NR.
Here, we assume that the number of users is no more than the
number of RF chains, i.e., K ≤ Ns.
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Fig. 1. System model

A. Analog beamforming

Basically, as we know, analog beamforming is aim to adjust
the phase of the transmitted or received signal at antennas in
the RF domain by using phase shifters in front of each antenna.

To begin with, we assume only a single data stream needs
to be transmitted for each user. Hence, when the kth (k ∈
{1, 2, · · · ,K}) user transmits uplink signal to the BS through
an analog beam, the uplink signal of the kth user can be written
as

xk = cksk (1)

where sk ∈ C1×1 is the data symbol of the kth user, ck ∈
CNu×1 is the analog beam for the kth user, and the ith entry
of ck is the value of phase shift on the ith antenna, denoted by
ejθ

k
i with θki ∈ [0, 2π]. For each user, the maximum transmit

power of the uplink signal is P , namely, E
[
∥xk∥2

]
≤ P .

Then, the received data steams at the BS is expressed by

y =

K∑
i=1

Hixi + n =

K∑
i=1

Hicisi + n (2)

where Hi ∈ CNB×Nu is the uplink channel matrix of user i,
and n ∼ CN (0, INB

) represents the additive white Gaussian
noise (AWGN) at the BS.

On the other hand, the receive phase shifter vector for the
lth RF chain of the BS can be given by

gl =
[
ejθ

l
1 , · · · , ejθ

l
NR

]T
(3)

where the ith entry of gl, ejθ
l
i , is the value of phase shifter on

ith antenna of the lth RF chain. Hence, based on the system
model mentioned above, the receive phase shifter matrix at the
BS, G, can be written as a Ns × NB block diagonal matrix
which is consisted of the Ns receive phase shifter vectors and
can be expressed as

G =


gT
1 0 · · · 0
0 gT

1 · · · 0
...

...
. . .

...
0 0 · · · gT

Ns

 . (4)

Then, after being processed by the receive phase shifter

matrix, the received signal can be given by

ȳ = G
K∑
i=1

Hixi +Gn =
K∑
i=1

GHicisi +Gn

=
K∑
i=1

h̄isi +Gn

=
[
h̄1h̄2 · · · h̄K

]


s1
s2
...
sK

+Gn

= H̄s+Gn

(5)

where h̄i
∆
=GHici is the equivalent channel vector for the

uplink channel of the ith user and H̄
∆
=
[
h̄1, h̄2, · · · h̄K

]
.

B. Digital beamforming
In the baseband process, the ZF beamforming is considered

to detect the each user’s uplink signal. Based on the criterion
of ZF, the receive digital-beamforming matrix is the pseudo
inverse of H̄, which is given by

W =
((

H̄
)H

H̄
)−1(

H̄
)H

. (6)
The detected signal by using ZF beamforming can be ex-
pressed as

ỹ = Wȳ =
((

H̄
)H

H̄
)−1(

H̄
)H

ȳ

=


s1
s2
...
sK

+
((

H̄
)H

H̄
)−1(

H̄
)H

Gn.
(7)

C. Mm-wave Channel
Although hybrid beamforming is able to be operated in

Rayleigh fading conditions, we need to adopt the mm-wave
frequency band due to the demands for wider bandwidth
spectrum. Hence, in this paper, we adopt the most widely
applicable geometric channel models. As a mm-wave channel
model, the geometric channel model has L limited scattering
path. Consequently, the uplink channel of user k, Hk, can be
written as

Hk =

√
NBNu

Lρk

L∑
i=1

αk,iaBS(θ
BS
k,i )a

H
user(θ

user
k,i ) (8)

where αk,i is the complex gain of the ith path with E [|αk,i|] =
1, ρk is the path loss between the BS and the kth user and
the variables θuserk,i ∈ [0, 2π] and θBS

k,i ∈ [0, 2π] are the AoDs
of user k and AoAs of the BS of the ith path, respectively.
Regardless of the elevation, we consider the azimuth only,
which implies that both BS and users conduct horizontal
beamforming only. Consequently, aHuser(θ

user
k,i ) and aBS(θ

BS
k,i )

are the antenna array response vectors at the user and the
BS, respectively. Here, we adopt uniform linear arrays. Thus,
aHuser(θ

user
k,i ) and aBS(θ

BS
k,i ) can be written as

auser(θ
user
k,i )

=
1√
NB

[1, ej
2π
λ d sin(θuser

k,i ), · · · ej(Nu−1) 2π
λ d sin(θuser

k,i )],
(9)

aBS(θ
BS
k,i )

=
1√
NB

[1, ej
2π
λ d sin(θBS

k,i ), · · · ej(NB−1) 2π
λ d sin(θBS

k,i )],
(10)
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respectively, where λ is the signal wavelength and d is the
distance between antenna elements. The channel model in (8)
can be written in a more compact form as

Hk = ABSdiag(b)A
H
user (11)

where b =
√

NBNu

Lρk
[αk,1, αk,2, · · · , αk,L]. The matrices

Auser and ABS contain the user and the BS array response
vectors, respectively, which are given by
Auser = [auser(θ

user
k,1 ),auser(θ

user
k,2 ), · · ·auser(θuserk,L )], (12)

ABS = [auser(θ
BS
k,1 ),auser(θ

BS
k,2 ), · · ·auser(θBS

k,L)]. (13)

The channel model in (8) turns out to be Rayleigh fading
channel when L is very large. Based on the channel state
information, the BS selects the analog beams for both the BS
and users.

Note that: Since channel estimation is beyond the scope of
this study, we consider that the parameters of the L channel
paths, such as AoA, AoD, and the complex gain of each path,
can be estimated perfectly and known to the BS.

D. Analog beam set

We assume each user chooses a transmit analog beam from a
codebook F which is a set consisted of |F| predefined analog
beams. The predefined codecook of transmit analog beams can
be represented as

F =
{
c1, c2, · · · c|F|

}
(14)

where ci ∈ CNu×1 (i ∈ {1, 2, · · · , |F|}) is a possible option
of the transmit analog beam for a given user. The nth entry
of ci is ejθ

i
n which is the value of phase shift on the corre-

sponding antenna for a given user. Similarly, the predefined
codecook of receive analog beams can be represented as

G =
{
G1,G2, · · ·G|G|

}
(15)

where Gm ∈ CNS×NB (m ∈ {1, 2, · · · , |G|}) is a possible
option of the receive analog beam for the BS.

If the kth user takes cn as the transmit analog beam, based
on (5), the equivalent uplink channel vector for the kth user
can be expressed as

h̄n,m
k = GmHkc

n. (16)
Here, we assume that each user shares a same predefined
codecook of transmit analog beams, which is known to the
BS.

E. Uplink Sum-rate

Based on (7), the sum-rate of the uplink MIMO system can
be given by

R =

K∑
i=1

log2(1 + γi) (17)

where γi is the signal-to-interference-plus-noise ratio (SINR)
of ith user and can be written as [23] [24]

γi =
P

NuNRσ2

[((
H̄
)H

H̄
)−1

]
i,i

. (18)

According to (17) and (18), it is worth noting that the
SINR of the ith user is dependent on the equivalent channel.
Based on the definition of the the equivalent channel, we know
that the equivalent channel is involved with analog beams.

Therefore, each user needs to select an optimal analog beam
from the predefined codecook of transmit analog beams to
maximize the uplink sum-rate. Specifically, the optimization
problem of analog beam selection can be formulated as{

Ḡ, c1, c2 · · · cK
}
= max

G∈G,ci∈F

K∑
i=1

log2(1 + γi). (19)

Intuitively, we can obtain an optimal solution for the above
problem by exhaustive search, such as [12] and [14]. How-
ever, the exhaustive search makes the complexity rather high,
especially when the number of antennas or the number of
candidates beams is very large. Hence, it is very meaningful
to develop a low-complexity method to solve this problem. In
the following subsection, we discuss a sub-optimal solution
for analog-beam selection.

III. SUB-OPTIMAL SOLUTION FOR ANALOG-BEAM
SELECTION

To begin with, we know that, directly calculating SINR (18)
for ZF digital beamforming is involved with matrix inversion
operation which is a high-complexity manipulation. Thus, we
need to derive a low-complexity metric to measure sum-rate.

A. Novel metric for sum-rate
Firstly, we conduct an analysis of sum-rate under a special

case where K = 2. And then, we would expand the analysis to
general multi-user cases. According to (18), the uplink sum-
rate under K = 2 can be given as

R =
2∑

i=1

log2

(
1 +

P det
(
h̄1, h̄2

)
NuNRσ2

∥∥h̄
ī

∥∥2
)

(20)

where ī = {1, 2} /i and
det
(
h̄1, h̄2

)
=
∥∥h̄1

∥∥2∥∥h̄2

∥∥2 − (h̄1

)H
h̄2

(
h̄2

)H
h̄1. (21)

Proof: See Appendix A.
By resorting to some math manipulations, (20) can be

rewritten as
R = log2

(
1 + Pf

(
h̄1, h̄2

))
(22)

where

f
(
h̄1, h̄2

)
=

det(h̄1h̄2)

NuNRσ2
∥∥h̄1

∥∥2 +
det(h̄1h̄2)

NuNRσ2
∥∥h̄2

∥∥2
+

P
(
det(h̄1h̄2)

)2
N2

u(NR)
2
σ4
∥∥h̄1

∥∥2∥∥h̄2

∥∥2 .
(23)

Due to the logarithmic function in (22), a positive corre-
lation exists between the uplink sum-rate R and f

(
h̄1, h̄2

)
.

Therefore, we consider the function f
(
h̄1, h̄2

)
as an evalu-

ating metric to select an optimal analog beam for each user,
which would derive the optimum solution for maximizing the
uplink sum-rate in a low-complexity way.

In order to generalize the metric to the general case where
K ≥ 3, we are able to combine K − 1 equivalent channel
vectors into a new equivalent channel vector. Specifically, the
evaluating metric can be written as f

(
h̄
k̄
, h̄k

)
where k̄ is the

complementary set of k, h̄
k̄

is the (K−1)-combined equivalent
channel vector and can be written as

h̄k̄ =
∑
i∈k̄

aiGmHici (24)

with ai being the normalized coefficient.
Thus, the multi-user case is turned into a two-user case.
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B. Sub-optimal solution

According to the metric derived above, the details of the
analog beam selection algorithm would be presented in the
following.

1) To begin with, we fix the receive analog beam by choos-
ing one of beams in G as receive analog beam. Then, we
represent the set of users who have already chosen analog
beams by S, while denote the set of users who have not
chosen analog beams by Ω. Then, compute the Forbinius
norm of equivalent channel vectors for each combination
of |F| transmit analog beams and K users, then we find
out the pair of user and beam which can obtain the
maximum Forbinius norm among K |F| combinations.
This procedure can be expressed as

(i, ci) = arg max
(k∈Ω,cn∈F)

∥∥h̄n,m
k

∥∥2. (25)

2) Compute the combined channel vector over the equivalent
channel vectors of users from set S. This procedure can
be expressed as

h̃ =
∑
i∈S

aiGmHici (26)

where ai = GmHici/
∑

i∈S GmHici is the weighted
factor of the ith user whose optimal analog beam is xi.
Similarly, this procedure can be formulated as

(i, ci) = arg max
(k∈Ω,cn∈F)

f
(
h̃, h̄n,m

k

)
. (27)

3) continue the procedures above until the optimal analog
beams of all users under current receive analog beam are
determined.

4) repeat the procedures above until all receive analog beams
in G are took. And take the analog beam Gm with
maximum value of metric (23) as the optimal receive
analog beam Ḡ.

C. Algorithm procedure

The detailed step of sub-optimization analog beam selection
algorithm is illustrated in Alg.1.

One may note that, the analog beam selection method
described above avoids searching over all candidates of analog
beams from codebook F . Consequently, the complexity can
reduce significantly compared with exhaustive search, as will
be demonstrated in section V.

IV. DATA-DRIVEN ANALOG BEAM SELECTION

Although the sub-optimization method of selecting analog
beam avoids the exhaustive search, it still involves some high-
complexity operations, such as Forbenius norm and matrix
multiplication. For reducing the complexity further, in this
section, we adopt machine learning to solve this problem in a
low-complexity way. To be more specific, we exploit SVM to
classify the uplink channels of each user to several different
types, where each type corresponds to a candidate of analog
beam. SVM is a supervised machine learning algorithm, which
is mostly used in classification problems. Especially, compared
with other classification algorithms, SVM has advantages on
both handling linearly inseparable set of samples and avoiding
over-fitting since the kernel trick is adopt. In SVM algorithm,

Algorithm 1: Suboptimal algorithm
Input: Ω = {1, 2, · · · ,K} ,S = ∅, m = 1
Output: ck, k = 1, 2, · · ·K
step 1: For all k ∈ Ω

For all cn ∈ F
h̄n
k = GmHkc

n

step 2: {i, ci} = arg max
k∈Ω,cn∈F

{∥∥h̄n,m
k

∥∥2,∀k, ∀n}
Ω = Ω− {i}, S = S + {i}

step 3: calculate h̃ =
∑
i∈S

aiGmHici based on (29)

step 4: For all k ∈ Ω
For all cn ∈ F
f(h̃, h̄n

k )

Step 5: {i, ci} = arg max
k∈Ω,cn∈F

{
f(h̃, h̄n,m

k ), ∀k, ∀n
}

Gm = max
k∈Ω

f(h̃,GmHici)

Ω = Ω− {i}, S = S + {i}
Step 6: If |Ω| = 0

If m < |G|
m = m+ 1, go to step 1;

Else
Ḡ = argmax

G∈G
{G1, G2, · · ·G|G |}

Else
go to Step 3.

we represent each data item as a point in n-dimensional space
(where n is the dimensionality of feature vectors) with the
value of each feature being the value of a particular coordinate.
Then, we perform classification by finding the separating
hyper-plane which differentiates the two classes very well. By
the hyper-plane, when a new input data (current channels of
users) comes up, we can predict the class (optimal analog
beam) of the new input data.

A. Training Samples Set
1) Generating Training Samples: In a supervised machine

learning, training data is indispensable for obtaining the clas-
sifying criterion. Here, we assume that M channel samples
are generated for training. Based on the model of mm-wave
channel, each channel sample can be presented by 4L + 1
real-value features including the path loss, L complex gain of
paths (including 2L real-value features), L angles of departure
of users and L angles of arrival of the BS. To guarantee the
effectiveness of training, the features of each sample should
be randomly generated based on their corresponding statistical
character. Furthermore, since high-value feature would bring
about bias, we need to normalize each feature as

ēlm =
elm −Mean(elm)

elmax − elmin

(28)

where elm is the value of the lth feature of the mth sample,
Mean(elm) represents the mean of the lth feature of M
samples, elmax donates the maximum value of the lth feature
among M samples, while elmin represents the minimum value
of the lth feature among M samples.

Then each channel sample can be represented as a feature
vector tm ∈ R1×(4L+1) consisted of 4L + 1 normalized
features.
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2) KPI Function: KPI is used to evaluate the objective
metric, such as BER, SNR and SINR. Based on the analysis in
the above section, for problem (25), we consider

∥∥GmHkc
i
∥∥2

as the KPI.
3) Labeling: There are |F| choices of analog beams for

each user, hence we evaluate the KPI for all possible combi-
nations of a given sample and all choices of analog beams.
And we label the training simple with cn which is able to
let this training sample obtain the maximum KPI. The label
of all training samples can be presented as vector r ∈ R1×M

consisted of the index of optimal analog beam for M training
samples.

B. Regular SVM based classifier

For each feature vector tm (m ∈ {1, 2, · · · ,M}), we
have its corresponding class-label r[m]. By using the M
labeled training samples, we are able to develop a multi-class
classifier where the input is the channel feature vector and the
output is the optimal analog beam which can maximize KPI
for the input channel. Generally, in hybrid beamforming, a
codebook of analog beams provides more than two candidates
for beams selection. Hence, in order to classify |F| classes,
we exploit |F| one-vs-the-rest SVM classifiers, each of which
classifies a channel feature vector into one category or the
other categories. Let us take the nth (n ∈ {1, 2, · · · , |F|})
classifier as an example, where we classify the sample labeled
by n into one category but classify the other samples into
another category. For the ith sample, we set yi = +1 if the
label r[i] = n, while set yi = −1 if r[i] ̸= n. And w is the
vector consisting of parameters for the separating hyper-plane.
In SVM algorithm, the optimization problem of training the
separating hyper-plane of the nth classifier can be formulated
as

min
w,b,ζ

1

2
wTw + C

M∑
i=1

ζi

s.t. yi
(
wTϕ(ti) + b

)
≥ 1− ζi, i = 1, 2, · · · ,M

ζi ≥ 0, i = 1, 2, · · · ,M

(29)

where ϕ is the mapping function by which the sample data ti
can be mapped into high-dimensional space, b is the threshold,
C is the penalty constant, ζi is the value of error caused by
misclassification for sample ti.

However, in our problem, the number of samples labeled
by cn is much smaller than that of other categories. When
faced with imbalanced datasets where the number of negative
instances far outnumbers the positive instances, the perfor-
mance of regular SVM drops significantly. A popular approach
towards solving these problems is to preprocess the data by
oversampling the majority class or undersampling the minority
class in order to create a balanced dataset. However, by this
approach, the data structure is destroyed, which results in a
inaccurate separating hyper-plane.

C. Biased-SVM based classifier

In this paper, for solving these problems, we propose an
approach which pays more attention to the positive instances.
This can be done, for instance, by increasing the penalty

associated with misclassifying the positive class relative to
the negative class. Specifically, we choose two different plenty
constants for positive samples and negative samples, respec-
tively. The optimization can be reformulated as

min
w,b,ζ

1

2
wTw + C+

∑
{i|yi=+1}

ζi + C−
∑

{i|yi=−1}

ζi

s.t. yi
(
wTϕ(ti) + b

)
≥ 1− ζi, i = 1, 2, · · · ,M

ζi ≥ 0, i = 1, 2, · · · ,M
(30)

where C+ and C− are the plenty constants for positive samples
and negative samples, respectively.

The Lagrange duality problem of (30) can be written as

min
w,b,ζ

1

2

M∑
i=1

M∑
j=1

aiajyiyjK(ti, tj)−
M∑
i=1

ai

s.t.
N∑
i=1

yiai = 0,

0 ≤ ai ≤ C+, yi = +1,

0 ≤ aj ≤ C−, yj = −1,

(31)

where ai and aj are Lagrange multipliers,
K(ti, tj)= ⟨ϕ(ti), ϕ(tj)⟩ is the Gaussian radial-based
kernel function and can be further written as

K(ti, tj) = e(−∥ti−tj∥2/(2σ2)) (32)
with σ (⌣σ ≤ σ ≤ ⌢

σ) being the design parameter.
In regular SVM, the optimal set of Lagrange multipliers

of optimization problem can be solved by sequential minimal
optimization algorithm (SMO) [25] with the fast and reliable
convergence. SMO is an iterative algorithm for solving the
optimization problem described in (31). SMO can break this
problem into a series of smallest possible sub-problems, which
are then solved analytically. However, in the proposed SVM,
since the constraint conditions of Lagrange multipliers are
different with the regular SVM, we need to analyze new
constraint conditions of Lagrange multipliers for SMO al-
gorithm. After each iteration of SMO algorithm, the new
Lagrange multipliers must be within the constraint area. For
example, in the case where yi ̸= yj , Ci > Cj , a

old
i >

aoldj ,
(
aoldi − aoldj

)
< (Ci − Cj), based on the relationship

aoldi yi + aoldj yj = anewi yi + anewj yj , we have:

if aj < 0,

{
anewi = aoldi − aoldj

anewj = 0

if 0 < aj < Cj ,

{
anewi = ai
anewj = aj

if aj > Cj ,

{
anewi = Cj + aoldi − aoldj

anewj = Cj

. (33)

D. Parameter Optimization

As shown above, the classification performance of the
proposed SVM method primarily depends on the parameter
σ of kernel functions and the penalty constant C+ and C−. In
this subsection, we discuss how to determine the parameters
to achieve an optimal classification performance.

1) Parameter σ: Because SVM is a kind of machine
learning method based on the kernel function, the selection
of the corresponding parameter σ would bring about great
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Constraint conditions of 

traditional SMO

Constraint conditions of 

proposed method

Fig. 2. Constraint Conditions of Lagrange Multipliers

influences on the generalization performance of SVM. At
present, there has been a few researches on the parameter
selection for a given kernel. Among them, cross-validation
[26] is considered to be more precise, however it needs to
train SVM for many times, which results in high-complexity
tasks.

In this paper, we propose a novel method of determining the
optimal σ in according to spatial distance. For obtaining high
accuracy of classification results, we hope the spatial distance
between samples of same class is smaller, while the spatial
distance between samples of different classes is farther. Thus,
we are able to determine the optimal σ based on this criterion.
Specifically, the problem of determining the optimal σ can be
written as {

min
σ

∥ϕ(ti)− ϕ(tj)∥2, yiyj = 1

max
σ

∥ϕ(ti)− ϕ(tj)∥2, yiyj = −1.
(34)

Based on the fact ∥ϕ(ti)− ϕ(tj)∥2 = 2− 2K(ti, tj) whose
detailed proof is given in Appendix B, the problem (34) can
be rewritten as

yiyj ||ϕ(ti)− ϕ(tj)||2 ={
min
σ

[2− 2K (ϕ(ti), ϕ(tj))] , yiyj = 1

max
σ

[−2 + 2K (ϕ(ti), ϕ(tj))] , yiyj = −1.

Therefore, the problem (34) can be reformulated as

max
σ

M∑
i=1

i−1∑
j=1

yiyjK(ti, tj) = max
σ

M∑
i=1

i−1∑
j=1

yiyje
τεij (35)

where εij = ∥ti − tj∥2 and τ = −1
/
2σ2. Now, by using

Mclaughlin expansion [27],
∑M

i=1

∑i−1
j=1 yiyje

τεij in (35) can
be represented as

M∑
i=1

i−1∑
j=1

yiyje
τεij =

M∑
i=1

i−1∑
j=1

yiyj(1 + τεij +
1

2
τ2ε2ij)

=

M∑
i=1

i−1∑
j=1

yiyj + τ

M∑
i=1

i−1∑
j=1

yiyjτεij + τ2
M∑
i=1

i−1∑
j=1

1

2
yiyjε

2
ij .

(36)

When
M∑
i=1

i−1∑
j=1

1
2yiyjε

2
ij < 0, the optimal τ∗ can be deter-

mined as

τ∗ = −
M∑
i=1

i−1∑
j=1

yiyjτεij

/
M∑
i=1

i−1∑
j=1

yiyjε
2
ij . (37)

When
M∑
i=1

i−1∑
j=1

1
2yiyjε

2
ij > 0, the optimal τ∗ can be deter-

mined as
τ∗= max

τ={⌣
τ ,

⌢
τ }

L(τ) (38)

where L
∆
=
∑M

i=1

∑i−1
j=1 yiyje

τεij .
2) Parameter C+ and C−: As mentioned in section IV,

for the accuracy of the separating hyperplane in imbalanced
datasets, we choose the larger penalty constant for positive
samples, while we choose the smaller penalty constant for
negative samples. In this way, as shown in the optimization
problem (30), the misclassification for the fewer positive class
would result in larger penalty, thereby improving the accuracy
of the SVM classifier. Therefore, based on this criterion, we
adopt the reciprocal of the number of positive samples and
negative samples as the C+ and C−, respectively.

E. Classifying Stage

When w, b and design parameters are determined, the
classifier of analog beam cn ∈ |F| can be presented as

gn1 (̄tk) =
∑
si∈V1

aiyiK(si, t̄k) + b (39)

where t̄k is a new feature vector needed to be classified, si is
a support vector, V1 is the set of support vectors.

If gn1 (̄tk) > 0, we consider ∥GHkc
n∥2 outperforms∥∥GHkc

i
∥∥2, i ̸= n. Thus the optimal beam for user k is cn.

F. Optimization problem (27)

1) Generating Training Samples: In the problem (27), the
aim is to find the optimal combination of k and cn in terms of
maximizing the objective function f

(
h̃, h̄n,m

k

)
whose input

vectors are h̃ and t̄k. Basically, the combined channel vector
h̃ is also an equivalent channel vector, so it is justified to
take the training samples of equivalent channel vector as the
training samples of h̃. Since there are M training samples for
the mm-wave channel H and |F| candidate analog beams, we
are able to generate M |F| training samples for the combined
channel vectors h̃ based on (16). Since another input is feature
vector t̄k which has M training samples, thus there are M2 |F|
training samples for the input of (27) by combining h̃ and
t̄k. And each training sample is presented as (Ns + 4L+ 1)-
dimension feature vector. Similarly, each feature entry should
be normalized in case of bias.

2) KPI Function and Labeling: For the problem (27), we
set f (a,b) in (23) as KPI, and each training sample is
labeled with the reference number of the analog beam which
is able to obtain maximum KPI. Thus, the M2 |F| samples are
divided into |F| classes. Based on the training of SVM, the
separating hyperplane for each class is obtained. Therefore,
when a new feature vector comes up, we are able to derive
the optimal analog beam with which the maximum f (a,b)
can be obtained.

3) Classifying Stage: Similarly, the classifier of analog
beam cn can be represented as

gn2

([
h̃, t̄k

])
=
∑
si∈V2

aiyiK
(
si,
[
h̃, t̄k

])
+ b (40)
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where t̄k is a new feature vector needed to be classified,[
h̃, t̄k

]
is a vector combined h̃ and t̄k, si is a support vector,

V2 is the set of support vectors.
If gn2

([
h̃, t̄k

])
> 0, the current analog beam cn can

maximize the KPI function f
(
h̃, h̄n,m

k

)
for the new feature

vector t̄k.

G. Algorithm procedure

The detailed step of data-driven analog beam selection
algorithm is illustrated in Alg.2.

Algorithm 2: Data-driven analog beam selection algorithm
Input: Ω = {1, 2, · · · ,K} ,S = ∅,

t̄k, k ∈ Ω, m = 1,
w1

cn , b
1
cn ,w

2
cn , b

2
cn , ai

Output: ck, k = 1, 2, · · ·K
Step 1: For all k ∈ Ω

For all cn ∈ F
If gn1 (̄tk) > 0
ck = cn, k = k + 1, end;

Else
n = n+ 1.

Step 2: i = arg max
k∈Ω

{∥∥h̄n,m
k

∥∥2, ∀k}
Ω = Ω− {i}, S = S + {i}

Step 3: calculate h̃ =
∑
i∈S

ajGmHici based on (25)

Step 4: For all
[
h̃, t̄k

]
, k ∈ Ω

For all cn ∈ F
If gn2

([
h̃, t̄k

])
> 0

ck = cn, k = k + 1, end;
Else
n = n+ 1.

Step 5: i = arg max
k∈Ω

{
f(h̃, h̄n,m

k ), ∀k
}

Gm = max
k∈Ω

{f(h̃,GmHici)}
Ω = Ω− {i}, S = S + {i}

Step 6: If |Ω| = 0
If m < |G|
m = m+ 1, go to Step 1;

Else
Ḡ = argmax

G∈G
{G1, G2, · · ·G|G |}

Else
go to Step 3.

V. COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the exhaustive
search, sub-optimization method and data-driven method for
analog beam selection.

A. Exhaustive search

To begin with, we know that complexity of calculating
inversion of a matrix X ∈ Ct×t is O(t3) [28]. Consequently,
the complexity of exhaustive search is

O
(
|G| |F |KK5N4

SN
2
uNR

)
. (41)

B. Sub-optimization method

Firstly, we know that the complexity of calculating For-
benius norm of a vector x ∈ Ct×1 is O(t) [28]. Since
there are K users and each user has |F| possible analog
beams, we need to consider K |F| equivalent channels and
to find the first user and its corresponding optimal analog
beam which provides the maximum vector norm (25) among
K |F| equivalent channel vectors. And then the complexity
of calculating h̄k = GHktk is N3

SN
2
uNR. Consequently, the

complexity of (25) is N3
SN

2
uNRNSK |F|.

Since the analog beams for the other K − 1 users are
selected by using the metric in (23) which is involved with two
operations of Forbenius norm for vector and two operations
of inner product for vectors, the complexity of selecting the
optimal analog beams for the other K − 1 users is

O
(
(K − 1) |F|N3

SN
2
uNR (2NS)

)
+O

(
(K − 2) |F|N3

SN
2
uNR (2NS)

)
· · ·+O

(
|F|N3

SN
2
uNR (2NS)

)
= O

(
(K − 1)K

2
|F|N3

SN
2
uNR (2NS)

)
.

(42)

Therefore, the complexity for the sub-optimization analog
beam selection algorithm can be estimated as

O
(

N3
SN

2
uNRNSK |F| |G|

+ (K−1)K
2 |F|

(
N3

SN
2
uNR2NS |G|

) ) . (43)

C. Data-driven method

In the data-driven method, the algorithm complexity should
exclude the training complexity of SVM, due to that the
training stage is performed offline. Hence, only complexity
of classifying should be taken into account. Since the kernel
function requires a Forbenius norm of a feature vector, this
needs O(N3

SN
2
uNRK + |V1| (4L+ 1)K |F|).

Since the analog beams for the other K−1 users are selected
by using the metric in (23), the complexity of selecting the
analog beams for the other K − 1 users is

O
(

(K − 1) |F| |V2| ((NS + 4L+ 1))
+ (K − 1)N3

SN
2
uNR

)
+O

(
(K − 2) |F| |V2| ((NS + 4L+ 1))
+ (K − 2)N3

SN
2
uNR

)
· · ·

+O
(
|F| |V2| ((NS + 4L+ 1)) +N3

SN
2
uNR

)
= O

(
(K−1)K

2 |F| |V2| ((NS + 4L+ 1))

+ (K−1)K
2 N3

SN
2
uNR

)
.

(44)

Therefore, the complexity for the data-driven method can
be estimated as

O


(
N3

SN
2
uNRK + |V1| (4L+ 1)K |F|

)
|G|

+ (K−1)K
2 (|F| |V2| (NS + 4L+ 1)) |G|

+ (K−1)K
2

(
N3

SN
2
uNR

)
|G|

 . (45)

Since the poor scattering nature of the mm-wave channel,
the number of scattering path L is rather few. On the other
side, the number of support vectors, i.e., |V1|, |V2|, is very few.
Thus, the complexity of data-driven method (45) can reduce
dramatically, compared with sub-optimization method (43).

Remark 1. Similar to [29], the algorithm complexity of the
data-driven method should exclude the training complexity,
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since the training stage is performed offline. Hence, only clas-
sifying complexity is taken into account. Besides, only when
the statistical characters (such as the probability distribution
of DOA, AOA and complex gain of each path) of channels
change, we have to take a new training stage to obtain the
classifying model for the new channel conditions.

VI. SIMULATIONS

In this section, numerical results are presented to verify
the proposed data-driven analog beam selection method. We
model path loss of k-user as ρk = D

−β/2
k where Dk is the

distance between the BS and the kth user and β is the path
loss exponent. Here, we set β = 3.76. The number of users in
each cell K is set to 10. For simplicity, the distance between
each user and the BS Dk is a variable uniformly distributed
with the interval [10, 15]. Besides, we set Ns = K, NR = 5
and Nu = 5. For the mm-wave channel, we set the number of
scattering path L = 4 and the azimuth angles of departure or
arrival of user and the BS are uniformly distributed between 0
and 2π, signal wavelength λ=5 mm and the antenna spacing
distance λ/2. We assume there are 5 candidates of transmit
analog beams, which can be represented as

F =
{
c1, c2, c3, c4, c5

}
(46)

where codeword cn can be expressed as

cn =
1√
Nu

[
1, e−j2π1n∗

, e−j2π2n∗
, · · · , e−j2π(Nu−1)n∗

]T
(47)

with n∗ = n−1
|F| . Besides, we assume there are three candidates

of receive analog beams in G, and each codeword is also
structured by the rule (47).
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Fig. 3. Average uplink sum-rate versus SNR

Fig. 3 shows the average uplink sum-rate under different
SNR, where the average sum-rate is obtained over 10000
channel realizations. One may note that the sum-rate of data-
driven analog beam selection method with M = 4×103 is very
close to the sub-optimization method. However, as shown in
Fig.3, the data-driven method with M = 2× 103 brings about
an obvious degression of uplink sum-rate.

Fig. 4 shows the average uplink sum-rate versus number
of training samples. One may note that the sum-rate of data-
driven analog beam selection method tends to close to the
sum-rate of sub-optimization method as the number of training
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Fig. 4. Average uplink sum-rate versus the number of training samples

samples increases. For example, when the number of training
samples is 1000, the sum-rate of data-driven method is 15%
lower of the counterpart of the sub-optimization method,
which is unacceptable. Nevertheless, when the number of
training samples is 10000, the sum-rate of data-driven method
is almost the same with the counterpart of the sub-optimization
method. Therefore, Fig. 3 and Fig. 4 reveal that the data-
driven method is highly dependent on the number of training
data. As long as the the number of training data is large
enough, the data-driven method is able to provide a near-
optimal performance.
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Fig. 5. Effectiveness of data-driven method

The effectiveness of the data-driven analog beam selection
method under SNR=5 dB is verified in Fig.5 where the
cumulative distribution functions (CDFs) over 10000 times
realization of uplink channel are shown. The result for the
exhaustive search is provided as a base line. One may notice
that the CDF curve of data-driven analog beam selection
method with M = 4 × 103 approaches the curve of the sub-
optimization method and exhaustive search, while the CDF
curve of data-driven method with M = 2×103 lags far behind
that of the data-driven method with M = 4× 103.

The effectiveness of the proposed SVM solution under
SNR=5 dB is verified in Fig.6 where the cumulative distribu-
tion functions (CDFs) over 10000 times realization of uplink
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Fig. 6. Effectiveness of proposed parameter optimization

channel are shown. The CDF curves of parameter selection by
cross-validation and undersampling method are provided for
comparison. Especially, we adopt 10-fold method for cross-
validation, the original samples of channel are randomly split
into 10 same-size subsamples. Each one of the 10 subsamples
is taken as the testing data for validating the obtained model,
and the remaining 9 subsamples are taken as training data.
The same process is then repeated 10 times, with each of the
10 subsamples used exactly once as the testing data. The 10
results of 10 repeats can then be averaged to obtain a single es-
timation. As shown in Fig.6, we can note that the CDF curve of
data-driven analog beam selection method apparently outper-
forms the curves of parameter selection by cross-validation and
undersampling method. Therefore, specific to the analog beam
selection, the proposed biased-SVM method and parameter
optimization method is superior to traditional undersampling
method and cross-validation method, respectively.
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Fig. 7. Complexity of exhaustive search and sub-optimization

In Fig. 7 and Fig. 8, the complexity is compared. As shown
in Fig. 8, compared with sub-optimization method, the com-
plexity of proposed data-driven method reduces dramatically.
For example, when the number of users is 2, the complexity
of data-driven method is only one-tenth of the complexity
of sub-optimization method. Moreover, one may note that,

as the number of users increases, the complexity of sub-
optimization method grows dramatically, while the growth of
the complexity of data-driven method is very little. Thus, when
the number of users grows large, the advantage of the data-
driven method on complexity tends to be more obvious.
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Fig. 8. Complexity of sub-optimization and data-driven method

VII. CONCLUSION

In hybrid MIMO systems, beam selection for analog beam-
forming is essential to achieve an optimal performance. In
this paper, based on machine learning, we proposed a data-
driven method of analog beam selection, which is highly
dependent on training data. Specifically, we considered the
beam selection problem as a multiclass-classification problem,
and we exploited SVM to solve this problem. Normally,
a codebook provides more than two candidates for beams
selection, which brings about the imbalance of training data.
However, regular SVM solves the problem with imbalanced
training data not ideally. For overcoming it, we proposed a
biased-SVM to solve the classification problem with imbal-
anced training data. Based on the biased-SVM, we obtained
a statistical classification model in terms of maximizing sum-
rate. During the real-time transmission, by using the derived
classification model, we are able to select the optimal analog
beam for each user with low complexity. Besides, we proposed
a novel method to determine the optimal design parameter by
McLaughlin expansion of the Gaussian kernel function. As
long as the training data is large enough, the proposed method
is able to achieve the same sum-rate with conventional method,
while the complexity would reduce dramatically. Moreover,
when the number of users grows large, the advantage of the
data-driven method on complexity tends to be more obvious.

APPENDIX A
THE PROOF OF EQUATION (21)

Proof: Based on the property of inverse matrix, we have((
H̄
)H

H̄
)−1

=
adj
((

H̄
)H

H̄
)

det
∣∣∣(H̄)HH̄

∣∣∣ (48)
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where adj
((

H̄
)H

H̄
)

represents the adjugate of matrix(
H̄
)H

H̄.

To begin with, adj
((

H̄
)H

H̄
)

can be written as

adj
((

H̄
)H

H̄
)
=

[ ∥∥h̄2

∥∥2 −
(
h̄1

)H
h̄2

−
(
h̄2

)H
h̄1

∥∥h̄1

∥∥2
]
. (49)

Then, det
∣∣∣(H̄)HH̄

∣∣∣ can be written as

det
∣∣∣(H̄)HH̄

∣∣∣ = ∥∥h̄1

∥∥2∥∥h̄2

∥∥2 − (h̄1

)H
h̄2

(
h̄2

)H
h̄1. (50)

Substituting (49) and (50) into (48), we arrive at((
H̄
)H

H̄
)−1

=
1∥∥h̄1

∥∥2∥∥h̄2

∥∥2 − (h̄1

)H
h̄2

(
h̄2

)H
h̄1

×

[ ∥∥h̄2

∥∥2 −
(
h̄1

)H
h̄2

−
(
h̄2

)H
h̄1

∥∥h̄1

∥∥2
]
.

(51)

According to (18), the SINR of user 1 and 2 can be written
as

γ1 =
P

NuNRσ2

[((
H̄
)H

H̄
)−1

]
1,1

=
P
(∥∥h̄1

∥∥2∥∥h̄2

∥∥2 − (h̄1

)H
h̄2

(
h̄2

)H
h̄1

)
NuNRσ2

∥∥h̄2

∥∥2 ,

γ2 =
P

NuNRσ2

[((
H̄
)H

H̄
)−1

]
2,2

=
P
(∥∥h̄1

∥∥2∥∥h̄2

∥∥2 − (h̄1

)H
h̄2

(
h̄2

)H
h̄1

)
NuNRσ2

∥∥h̄1

∥∥2 ,

(52)

respectively.
The proof is completed by substituting (52) into (7).

APPENDIX B
EQUATION (21)

Proof: Firstly, based on the definition of Forbinius norm,
we have,
||ϕ(ti)− ϕ(tj)||2

= ⟨ϕ(ti), ϕ(ti)⟩+ ⟨ϕ(tj), ϕ(tj)⟩ − 2 ⟨ϕ(ti), ϕ(tj)⟩ .
(53)

By resorting to the fact K(ti, tj)= ⟨ϕ(ti), ϕ(tj)⟩, the above
formula can be further written as
||ϕ(ti)− ϕ(tj)||2

= K (ϕ(ti), ϕ(ti)) +K (ϕ(tj), ϕ(tj))− 2K (ϕ(ti), ϕ(tj)) .
(54)

Based on Gaussian radial-based kernel function, i.e.,
K(ti, tj) = e(−∥ti−tj∥2/(2σ2)), we have

K (ϕ(ti), ϕ(ti)) = K (ϕ(tj), ϕ(tj)) = 1. (55)
By substituting the above results into (54), we arrive at

||ϕ(ti)− ϕ(tj)||2 = 2− 2K (ϕ(ti), ϕ(tj)) . (56)
Thus, the proof of the result is completed.
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