
1

Data Allocation for Multi-Class Distributed Storage
Systems

K. P. Roshandeh, M. Noori, Member, IEEE,, M. Ardakani, Senior Member, IEEE,
and C. Tellambura, Fellow, IEEE

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
Email: {pourtahm, moslem, ardakani, ct4}@ualberta.ca

Abstract—Distributed storage systems (DSSs) are vastly used for
reliably storing large amounts of data generated by current and
future wireless networks, e.g. social mobile networks or Internet
of things. Depending on the features of the data source, various
data files may require different levels of quality of service (QoS),
e.g. in terms of the probability of successful recovery or data
recovery delay. This means that data files can be divided into
different classes in terms of their QoS requirements. To address
the requirements of each class of data, efficient data (storage)
allocation methods, meaning how data is spread over the storage
nodes, should be devised. In this paper, we study the optimal data
allocation for maximizing the weighted sum of the probability of
successful recovery of the data of different classes. Finding such
optimal allocations is intractable in general. Therefore, we focus on
finding the optimal minimal spreading allocation (MSA) where the
data of each class is spread minimally over the storage nodes. MSA
possesses several benefits including minimum expected recovery
delay and maximum average service rate. Simulation results show
that our proposed MSA is indeed the optimal storage allocation
in many cases.

Index Terms—DSS, storage allocation, data recovery, fixed-
access.

I. INTRODUCTION

D ISTRIBUTED storage systems (DSSs) have been exten-
sively employed to store different types of data, e.g. text,

audio and video. Availability and fault-tolerance are the two
important characteristics of DSSs [1]. That is, a DSS provides
anywhere/anytime access to one’s data and also enables data
recovery even when some data nodes fail. . Furthermore, DSSs
give a scalable and cost-effective solution for storing vast
amounts of data [2], where the storage capacity can be increased
simply by adding more servers.

A DSS consists of different storage nodes with equal or
different storage capacities. To store a data file over these nodes,
the file first encoded according to a suitable error correction
coding scheme. Then, the encoded blocks of the data are stored
over the storage nodes according to a storage allocation policy
[3], [4], determining which storage nodes store which encoded
data blocks.

To recover a file, the server needs to receive enough number
of encoded blocks that allows for successful decoding of
the file. To this end, the server tries to access those storage
nodes containing the encoded data blocks of the requested file.
Typically, two access models, i.e., probabilistic access and fixed
access are considered and studied [3].

In a probabilistic access model, the server asks all the storage
nodes that have the encoded blocks of the requested file to

send their stored data to the server. However, some nodes may
be unavailable or fail otherwise to send the requested data
resulting in server not receiving enough encoded blocks. Hence,
a probability of successful data recovery, denoted by Ps can be
defined [3]. In a fixed-access model, the server sends a request
to a random subset of size r of nodes to recover the data file.
All the nodes in the random subset send the requested data
without any failure. Due to the random selection of the accessed
nodes, there is a possibility that the selected nodes do not have
the whole file collectively. Hence, a probability of successful
recover can be associated with this access model as well.

Storage allocation significantly affects various performance
measures of DSSs, notably probability of successful recovery,
service rate, and recovery delay [3]–[12]. Therefore, several
prior studies have focused on finding efficient storage alloca-
tions to improve the aforementioned performance metrics.

The optimal storage allocation for minimizing the recovery
delay in a DSS with probabilistic access model has been studied
in [10]. The authors in [12] have investigated the optimal
storage allocation to maximize the service rate for both fixed
and probabilistic access models. The optimal symmetric alloca-
tion(i.e., when the encoded data blocks are spread evenly over
only a subset of nodes) has been studied for both probabilistic
and fixed access models in [3]. Two allocation algorithms that
try to maximize the probability of successful recovery when
different nodes have different access probability are proposed
in [6].

A multi-class DSS refers to a DSS that stores the data of
multiple data sources, each with different quality of service
(QoS) requirements. Multi-class DSSs have recently gained
attention as they can meet different QoS requirements of several
classes of data [13], [14]. The optimal storage allocation in
terms of maximizing the weighted sum of the probabilities of
successful recovery of all data classes in a multi-class DSS with
probabilistic access model has been studied in [14].

In this paper, we extend the analysis of [14] to a multi-
class DSS with fixed-access model. The goal is to maximize
the weighted sum of the probabilities of successful recovery of
all data classes where different weights represent different QoS
requirements of the data classes. The optimal storage allocation
for the considered problem is unknown even for a single-class
DSS (where there is only one data class) [3]. Having more than
one data class makes this problem even more difficult since the
storage allocation of a data class affects the storage allocation,

2

and consequently the probability of successful recovery of other
classes. In view of this, we focus on finding the optimal storage
allocation that spreads the data minimally over the storage
nodes, i.e. minimal spreading allocation (MSA). It has been
shown that MSA is optimal in terms of
1) minimum expected recovery delay [10] and maximum aver-
age service rate [12] for a single-class DSS
2) maximum probability of successful recovery in some ranges
of access probabilities to the nodes, e.g. for small access
probabilities, in a single-class DSS [3]
3) maximizing the weighted-sum of the probabilities of suc-
cessful recovery in a multi-class DSS with probabilistic access
model, for large access probabilities [14].

The success of MSA in other setups motivates us to study its
performance for multi-class fixed-access DSSs. More specifi-
cally, we propose an algorithm for finding the optimal MSA
in a multi-class DSS with heterogeneous nodes in term of
their storage capacities. Simulation results show that, when
the weighted sum of the probabilities of successful recovery
for the proposed optimal MSA achieves the upper bound. In
other words, the optimal MSA is indeed the optimal storage
allocation when r is sufficiently large. In [14], we have solved
a similar problem for probabilistic access model. However,
the same approach cannot be used here as the nature of the
objective function of the optimization problem is completely
different from that in [14], i.e. binomial instead of polynomial.
Moreover, here we solve the optimization problem for a more
general case, where the nodes may not have equal unit storage
capacity.

II. SYSTEM MODEL

A. Storage Model

We consider K different classes of data for storing over N
storage nodes. We assume each data class has k data blocks and
a proper minimum distance separable (MDS) code is used to
form ki coded data blocks for class i, ∀i ∈ K = {1, 2, ...,K},
from the original k blocks. The number of encoded blocks ki
is limited by a storage constraint ki ≤ Ti, where the storage
limit Ti is determined according to the corresponding data class
QoS. The vector of storage constraints for all data classes is
defined as T = (T1, T2, . . . , TN). The encoded data blocks of
all data classes are spread over the N storage nodes based on
a storage allocation policy. We denote the storage capacity of
node n by cn such that cn ≥ k, ∀n ∈ N = {1, 2, ..., N}. Since
an MDS coding is used, to recover the k data blocks of class
i, it is sufficient to receive k out of ki encoded data blocks
from the N storage nodes. Let us define xi,n as the number of
encoded data blocks of class i that is stored over storage node
n, where xi,n ≤ cn.

We normalize all the parameters by k to simplify the mathe-
matical representation. However, with some abuse of notations,
we still use cn and Ti as the normalized node storage capacities
and the normalized storage constraints. Moreover, xi,n and ki
denote the normalized number of encoded blocks of class i
stored in node n and the total number of encoded blocks of the
i-th class. Hence, the server needs at least one (normalized) unit
of encoded blocks of class i to recover the data of this class.

The node storage constraint and the class storage constraint
imply ∑

i∈K
xi,n ≤ cn,

and ∑
n∈N

xi,n = ki ≤ Ti.

A storage allocation policy describes how the encoded data
blocks of all data classes are spread over the storage nodes as
formally defined in the following:

Definition 1. A storage allocation is a K-tuple A =
(A1,A2, ...,AK) where Ai = (xi,1, xi,2, ..., xi,N) for all
i ∈ K.

B. Access Model

Here, we employ a fixed-access model where the server
randomly accesses a fixed number of nodes when a download
request arrives [3]. In other words, the server attempt to acquire
the required encoded blocks from a random subset of nodes r
where the cardinality of the subset is fixed, i.e. |r| = r. Data
of class i can be recovered if

∑
n∈r xi,n ≥ 1.

For a fixed-access model, the probability of successful re-
covery for a given data class i can be expressed as

Ps,i =
1(
N
r

) ∑
r⊆N ,|r|=r

I

[∑
n∈r

xi,n ≥ 1

]
. (1)

where r denotes the cardinality of the random sets. Also, I[Y]
denotes the indicator function such that I[Y] = 1 if Y holds,
and I[Y] = 0 otherwise. It should be note that putting more
than one unit of data from a specific data class in a storage node
is pointless since only one unit of that class data is needed for
recovery.

For a given storage allocation policy A, ps = [Ps,i]i∈K
denotes the vector of probabilities of successful recovery of
all data classes where class i data is recovered with probability
Ps,i. For a given vector of storage constraints, the union of
all vectors ps is denoted by Θ, and is known as the feasible
region of probabilities of successful recovery for a multi-class
DSS [14].

III. PROBLEM DEFINITION

To account for different classes’s QoS requirements, we
assign a weight to the probability of successful recovery of each
data class. That is, the class with higher importance in terms
of QoS is assigned a higher weight compared to other classes.
Let wi denote the weight assigned to class i. Without loss of
generality, we assume

∑K
i=1 wi = 1. Moreover, w = [wi]i∈K

denotes the vector of weights of all data classes. The goal is to
maximize the weighted sum of the probabilities of successful
recovery of all data classes. The mathematical definition of the
optimization problem can be expressed as

maximize
A

〈w,ps〉

subject to ps ∈ Θ,
(P1)

3

where 〈·, ·〉 is the inner product of two vectors.
The weighted form of the objective function comes from

the fact that the optimization problem has a multi-objective
nature, if we aim at maximizing the probability of successful
recovery for all or a number of classes. One way to deal with
multi-objective optimization problems is to work with a sum
or a weighted sum of the objective functions. Here, we use the
weighted sum of Ps,i as the objective function.

In a general case, the problem (P1) is very difficult so
solve, however, the solution can be found in some cases. The
following proposition gives the optimal solution for a specific
case of system setup.

Proposition 1. Let m and j denote the node with smallest
storage capacity and the class with smallest storage constraint,
respectively. Assume K ≤ rcm and N ≤ rTj where r denotes
the cardinality of the random subsets accessed by the server.
Then, the optimal storage allocation is xi,n = 1

r ,∀i ∈ K and
∀n ∈ N .

Proof. If we set xi,n = 1
r ,∀i ∈ K and ∀n ∈ N , then neither

the budget limits of the classes are violated nor the capacity
limits of the storage nodes. Also, all the data classes have the
probability of successful recovery of one which is the highest
possible amount. Thus, the weighted sum achieves its highest
amount.

As can be seen, the proposed solution given in Proposition
1 is optimal. However, solving the optimization problem (P1)
in a general setup is intractable. This is because finding Θ is
burdensome, otherwise, (P1) turns into a linear optimization
problem, and one could easily solve the problem with a known
Θ. The difficulty of finding Θ lies in the fact that the data
allocation of one class is strongly correlated with the way the
data of other classes are allocated in the system. The following
example better illustrates the complexity of the problem.

Example 1. Consider a DSS with N = 3 nodes where
c1 = c2 = c3 = 1. We want to store two classes of data over
these nodes where the storage constraints are T1 = 3

2 , T2 = 5
4 .

Table I shows four possible allocations for this setup. For r = 1,
Case 1 results in the maximum of Ps,1, Ps,2 and 3Ps,1 + Ps,2.
Assuming r = 2, if we only focus on maximizing Ps,1 , then
Case 2 and 3 maximize Ps,1. However, Case 1 and 4 result in
maximum Ps,2 for r = 2. On the other hand, if the goal is to
maximize 3Ps,1+Ps,2, then Case 3 gives the optimal allocation.
�

TABLE I
DIFFERENT ALLOCATIONS

Storage allocation
Case 1: A1 = (1, 1

2 , 0) A2 = (0, 1
4 , 1)

Case 2: A1 = (1, 3
8 ,

1
8) A2 = (0, 5

8 ,
5
8)

Case 3: A1 = (3
4 ,

2
4 ,

1
4) A2 = (1

4 ,
1
4 ,

3
4)

Case 4: A1 = (1
2 ,

1
2 ,

1
2) A2 = (5

12 ,
5
12 ,

5
12)

As it can be seen from the above example, for a DSS with
given storage constraints and storage capacity of the nodes,

the optimal storage allocation depends on the choice of r.
In addition, even different feasible allocations vectors express
different recovery performances depending on the performance
objective function (goal) defined for the DSS. The problem
becomes even more challenging when storage constraints and
the node capacities can also take arbitrary values as we consider
in our problem.

To this end, we focus on one of the most promising storage
allocation schemes known as minimal spreading allocation
(MSA). In an MSA scheme, the data of each class is spread
minimally over the storage nodes. The formal description of an
MSA strategy is presented in the following.

Definition 2. Let Di ⊂ N denote the set of nodes in which the
data of the i-th class is stored. Then, for an MSA strategy, we
have

xi,n =

{
1 ∀n ∈ Di

0 otherwise.

In other words, in an MSA, we either put a unit amount of
data from class i on a node or we do not put any thing at all.
Thus, MSA does not require employing any coding scheme,
and therefore reduces the computational complexity to a great
extent at the server side.

It has been shown that an MSA strategy is optimal for min-
imizing the expected recovery delay, maximizing the average
service rate and maximizing probability of successful recovery
for many cases in single-class DSSs [3], [10], [12]. Moreover,
assuming a probabilistic access model, it is shown in [14]
that MSA scheme is near-optimal for a wide range of nodes’
access probabilities in terms of maximizing the weighted sum
of the probability of successful recovery of all data classes in a
multi-class DSS. Hence, we focus on finding the optimal MSA
strategy for our problem.

IV. OPTIMAL MSA SOLUTION

After narrowing our attention to MSA strategies, optimiza-
tion problem (P1) turns into a non-linear integer optimization
problem as follows

maximize
x′i,ns

K∑
i=1

∑
r⊆N ,|r|=r

wi(
N
r

)I[∑
n∈r

xi,n ≥ 1

]
subject to

∑
i∈K

xi,n ≤ cn,∀n ∈ N∑
n∈N

xi,n ≤ Ti,∀i ∈ K

xi,n ∈ {0, 1}.

(P2)

There is no systematic solution for the optimization problem
(P2), and therefore we propose a recursive algorithm for finding
the optimal MSA policy as shown in Algorithm 1.

Algorithm 1 works based on maximizing the reward gained
by assigning a storage unit to a data class at each step. The
reward for each class is defined as the amount of increase in
the weighted sum after assigning the next storage unit to that
data class. The reward for the i-th data class is denoted by
Rz→z+1

i where z is the number of storage units assigned to

4

the i-th data class until the current time. That is, for the i-th
data class we have

Rz→z+1
i =

U

(1)
i (z) if z = N − r

U
(2)
i (z) if z < N − r

0 otherwise

where

U
(1)
i (z) = wiP

z+1
s,i − wiP

z
s,i

= wi(1)− wi(1−
(
N−z
r

)(
N
r

))

=
wi(
N
r

)
(2)

and

U
(2)
i (z) = wiP

z+1
s,i − wiP

z
s,i

= wi(1−
(
N−z−1

r

)(
N
r

))− wi(1−
(
N−z
r

)(
N
r

))

= wi(

(
N−z
r

)
−
(
N−z−1

r

)(
N
r

))

= wi(

(
N−z−1
r−1

)(
N
r

))

(3)

where the last equality follows from Pascal’s formula, and P z
s,i

denotes the probability of successful recovery of the i-th class
when z units of its data blocks have been stored over the nodes.

It can be shown that the reward of the i-th class is a
decreasing function of the number of assigned storage units
to that data class. It turns out that this is an essential property
for proving the optimality of the proposed algorithm. Now, we
are ready to explain Algorithm 1 in detail.

We assign one storage unit at each step of the algorithm.
Before the assignment happens, the rewards of all classes are
calculated. At each step, we choose those classes that meet
three conditions
• The class should have a nonzero reward.
• There should be at least a node with available capacity

that does not contain the data of the chosen class (the
node availability constraint).

• The class storage constraint should not be violated by
assigning the next storage unit to the data class.

The first condition indicates that assigning a storage unit to
a class with zero reward is pointless. The second condition
implies that only one unit of data is needed for data recovery.
The algorithm also takes care of not violating the storage
constraint of the data class by assigning the next storage unit
to this class. As Algorithms 1 proceeds, two cases can happen:
• Case1: there is at least one data class satisfying all the

three conditions
• Case2: there is no such data class

It should be noted that at the first step (assigning the first
storage unit) of the algorithm, Case 1 surely happens. Thus,
we first consider Case 1. Among all the classes satisfying the
three conditions (having nonzero reward, the node availability
constraint and the class storage constraint), the algorithm picks

the class with the largest reward. This is because the class with
the largest reward makes the largest contribution to the objective
function while satisfying the conditions. Assume the i-th class
is selected. Based on the node availability constraint, there is
at least a node with available capacity that does not contain
the data of the chosen class. Among the nodes satisfying the
condition for class i, the node with largest available capacity is
chosen. We put the i-th class data in the node with the largest
available capacity to make sure we neither use the total storage
capacity of a node (if possible) nor increase the chance of the
node being filled sooner. That is, we try to keep a node available
to other data classes as long as it is possible. This strategy as
we assign the storage units plays a major role in the optimality
of the algorithm. The algorithm then updates the number of
storage units dedicated to class i, i.e. increases z by one. Next,
the algorithm goes back to the first step and updates the reward
of the i-th data class and repeats the procedure.

Now, assume Case 2 happens. In this case, the algorithm is
terminated and returns the number of storage units assigned to
each data class until this step. Since we assign one storage unit

at a time, the complexity of the algorithm is O(
N∑

n=1
cn).

Algorithm 1:

while can put data do
compute all the rewards of all classes;
find all the classes with nonzero reward that satisfy

both node availability constraint, class storage
constraint;

if could not find such data class then
return;

else
pick the class with largest reward among the
selected classes;

put the chosen class data in the node with largest
available capacity;

update z for the chosen data class;
end

end

V. CASE STUDY: r = 1, WITHOUT CLASS STORAGE
CONSTRAINT

In this section, we consider a special setup where the server
has access to only one node each time. Moreover, we do not
consider any storage constraint for the data classes, i.e. Ti ≥ N .
The following lemma is used for our discussion later in the
section.

Lemma 1. Assume r = 1 and Ti ≥ N, ∀i ∈ K. Then, the
following procedure results in the optimal MSA.

Procedure 1: in each step, we pick a class and put its data
on the largest number of nodes that have available capacity.
We start with the most important class and continue our way
towards the least important one.

5

Proof. In the first step of the procedure, the data of the class
with the largest weight is stored in all nodes. Then, the data
of the class with the second largest weight is stored in the
largest number of nodes with available capacity. We follow this
procedure for all data classes. This procedure ends either when
we have gone through all data classes or when all the storage
nodes are filled.

According to (2) and (3), the reward for the i-th class when
r = 1 is Rz→z+1

i =
wi

N
. That is, the data of the class with a

larger weight should be stored over the maximum number of
nodes before putting the data of a class with a lower weight.
This proves the optimality of the explained procedure.

The next theorem gives a closed-form expression for the
weighted sum achieved by the optimal MSA for the considered
setup.

Theorem 1. Assume r = 1 and Ti > N, ∀i ∈ K. Also let
w1 ≥ w2 ≥ . . . ≥ wN and c1 ≥ c2 ≥ . . . ≥ cN . Assume there
are M unique values among the capacities of storage nodes. Let
u1, u2, . . . , uM denote these unique storage capacities where
u1 > u2 > . . . > uM and M ≤ N . Also, assume there are
ni nodes with storage capacity ui. Then, the weighted-sum of
probabilities of successful recovery for all data classes achieved
by the optimal MSA is

〈w,ps〉 =

K∑
i=1

wi K ≤ uN

F1 K > u1

F2 K = ut, t ∈ N

F3 otherwise

where

F1 =

M+1∑
p=2

up−1∑
i=up+1

wi(N −
M+1∑
j=p

nj)

N

F2 =

M+1∑
p=t+1

up−1∑
i=up+1

wi(N −
M+1∑
j=p

nj)

N

F3 =

M+1∑
p=b+1

up−1∑
i=up+1

wi(N −
M+1∑
j=p

nj)

N
+

K∑
i=ub+1

wi(N −
M+1∑
j=b

nj)

N

and ub is the largest unique capacity of nodes smaller than K.
Also, uM+1 = nM+1 = 0.

Proof: As shown in Lemma 1, Procedure 1 results in the
optimal MSA in this setup. Following the explained procedure,
one can easily show that the number of classes that their data is
stored over N nodes is uM , and their probability of successful
recovery is 1. There are uM−1 − uM number of classes that
N − nM data blocks of each one of them have been stored
over the storage nodes with probability of successful recovery
of Ps,i = N−nM

N . Also, the number of classes that their data is

Fig. 1. The performance of optimal MSA compared to the averaged random
MSA.

stored over N−nM−nM−1 nodes is uM−2−uM−1 each with
Ps,i = N−nM−nM−1

N and so on. By continuing this procedure
and adding all the probabilities of successful recovery, one can
achieve the weighted sum shown in Theorem 1 based on the
value of K.

VI. SIMULATION RESULTS

Simulation results for a multi-class DSS with three data
classes and 20 nodes is depicted in Figure 1. The capacity of
the nodes and weights of classes are ci = 1,∀i ∈ {1, 2, ..., 20},
w1 = 8

11 , w2 = 2
11 and w3 = 1

11 , respectively. Also, the storage
constraints for data classes are T1 = 20, T2 = 14 and T3 = 5.

The optimal MSA achieved using Algorithm 1 for maximiz-
ing the weighted sum of the probabilities of successful recovery
of all data classes is given in Figure 1. Also, the average random
MSA strategy where a random number of storage units assigned
to each data class while taking care of the feasibility conditions
of the system (e.g. the class storage constraint) is also depicted
for comparison. The term average comes from the fact that
the curve is obtained by averaging over 104 weighted sums
of different random MSAs. As can be seen, the optimal MSA
outperforms the average random MSA.

Moreover, the weighted sum achieved by the proposed algo-
rithm and weighted storage assignment method for a DSS with
arbitrary node capacities have been given in Figure 2. More
specifically, we consider 10 storage nodes where the storage
capacity of nodes are given as c1 = 5, c2 = 4 c3 = 6, c4 = 5,
c5 = 2, c6 = 2, c7 = 3, c8 = 2, c9 = 1 and c10 = 3.
We also consider seven data classes with storage constraints
T1 = 10, T2 = 10, T3 = 9, T4 = 8, T5 = 6, T6 = 5 and
T7 = 4. The weights for the classes are w1 = 18

51 , w2 = 12
51 ,

w3 = 10
51 , w4 = 6

51 , w5 = 3
51 , w6 = 1

51 and w7 = 1
51 .

In the weighted storage assignment method, the number of
storage units of class i stored over a DSS is determined
by
∑

n∈N xi,n = min{dwi
∑

n∈N cn∑K
i=1 wi

e, N}. Note that this is

possible if min{dwi
∑

n∈N cn∑K
i=1 wi

e, N} ≤ Ti, ∀i ∈ K which is
the case in the considered setup.

6

Fig. 2. The performance of optimal MSA.

As shown in Figure 2, the optimal MSA obtained using the
proposed algorithm almost achieves the upperbound (the line
where the weighted sum is equal to one) for some ranges
of r (cardinality of the random subsets), i.e. r ≥ 6, and
therefore is the optimal storage allocation. Also, the optimal
MSA outperforms the weighted storage assignment method.

Finally, the weighted sum achieved by the optimal MSA
and the closed-form equation given in Theorem 1 have been
depicted in Figure 3. The capacity of nodes are c1 = 5, c2 = 5
c3 = 7, c4 = 5, c5 = 6, c6 = 2, c7 = 3, c8 = 2, c9 = 1
and c10 = 3. The initial weights (as we remove one class and
its correspondences each time to reduce K) of the classes are
w1 = 18

74 , w2 = 10
74 , w3 = 14

74 , w4 = 6
74 , w5 = 8

74 , w6 = 8
74 ,

w7 = 7
74 and w8 = 3

74 , and r = 1 . Figure 3 verifies the
mathematical analysis given in Theorem 1.

VII. CONCLUSION

In this paper, we considered a multi-class DSS with arbitrary
storage node capacities. The term multi-class refers to different
classes of data, each requiring different levels of QoS which
are to be stored over the storage nodes. To account for different
QoS requirements, we aimed at maximizing a weighted-sum
of the probabilities of successful recovery of different classes.
A fixed-access model has been considered for the DSS. An
algorithm for finding the optimal MSA has been proposed. The
simulation results confirmed an improvement gap between the
optimal MSA and average random MSA. Moreover, simulation
results showed that MSA achieves the upperbound.

VIII. ACKNOWLEDGEMENT

This work was supported by Alberta Innovates Technology
Futures (AITF), Natural Sciences and Engineering Research
Council of Canada (NSERC), and TELUS Corporation.

REFERENCES

[1] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE Trans.
Inf. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[2] M. Placek and R. Buyya, “A taxonomy of distributed storage systems,”
Reporte técnico, Universidad de Melbourne, Laboratorio de sistemas
distribuidos y cómputo grid, 2006.

Fig. 3. Closed-form equation result for the considered DSS.

[3] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocations,”
IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4733–4752, 2012.

[4] M. Sardari, R. Restrepo, F. Fekri, and E. Soljanin, “Memory allocation in
distributed storage networks,” in IEEE Intl. Symp. on Information Theory
(ISIT), June 2010, pp. 1958–1962.

[5] B. Hong and W. Choi, “Optimal storage allocation for wireless cloud
caching systems with a limited sum storage capacity,” IEEE Trans.
Wireless Commun., vol. 15, no. 9, pp. 6010–6021, Sept 2016.

[6] V. Ntranos, G. Caire, and A. G. Dimakis, “Allocations for heterogenous
distributed storage,” in IEEE Intl. Symp. on Information Theory (ISIT),
2012, pp. 2761–2765.

[7] Z. Li, T. Ho, D. Leong, and H. Yao, “Distributed storage allocation for
heterogeneous systems,” in Allerton Conf. on Communication, Control,
and Computing, Oct 2013, pp. 320–326.

[8] M. Noori and M. Ardakani, “Allocation for heterogeneous storage nodes,”
IEEE Commun. Lett., vol. 19, no. 12, pp. 2102–2105, Dec 2015.

[9] I. Andriyanova and P. M. Olmos, “On distributed storage allocations
for memory-limited systems,” in IEEE Global Communications Conf.
(GLOBECOM), 2015, pp. 1–6.

[10] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocations for
optimal delay,” in IEEE Intl. Symp. on Information Theory (ISIT), July
2011, pp. 1447–1451.

[11] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off in
content download from coded distributed storage systems,” IEEE J. Sel.
Areas Commun., vol. 32, no. 5, pp. 989–997, 2014.

[12] M. Noori, E. Soljanin, and M. Ardakani, “On storage allocation for
maximum service rate in distributed storage systems,” in IEEE Intl. Symp.
on Information Theory (ISIT), July 2016, pp. 240–244.

[13] A. Kumar, R. Tandon, and T. C. Clancy, “On the latency and energy
efficiency of distributed storage systems,” IEEE Transactions on Cloud
Computing, vol. 5, no. 2, pp. 221–233, 2017.

[14] K. Roshandeh, M. Noori, M. Ardakani, and C. Tellambura, “Distributed
storage allocation for multi-class data,” in Information Theory (ISIT),
2017 IEEE International Symposium on. IEEE, 2017, pp. 2223–2227.

