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Abstract—A novel opportunistic antenna selection aided spatial
modulation, called opportunistic spatial modulation (OSM), is
proposed, which exhibits an attractive system reliability enhance-
ment with low complexity. Its unique features enable a compre-
hensive analytical framework, which is challenging to acquire
with existing transmit-antenna-selection-aided spatial modulation
(TASS-SM) schemes. Closed-form expression of improved union
bound of the average symbol error probability (ASEP) of pro-
posed OSM-MISO system is derived. Furthermore, we compare
the proposed OSM with a prevalent existing TASS-SM scheme to
confirm the feasibility and effectiveness of our scheme. Simulation
results are provided to corroborate the analytical results.

Index Terms—Antenna selection, multiple-input single-output,
spatial modulation, symbol error probability.

I. INTRODUCTION

Spatial modulation (SM) is recently emerging as a promis-
ing research field to overcome some drawbacks of conven-
tional multiple-input multiple-output (MIMO), such as, inter-
antenna synchronization, ICI, high complexity and huge en-
ergy consumption, by activating only one of multiple available
transmit antennas with a single-RF chain for each transmis-
sion. However, for each channel use, SM achieves higher
spectral efficiency (SE) than that of conventional single-
antenna transmission via transmitting a 3D modulation signal
by combining the antenna-index modulation as well as the
conventional 2D signal modulation (such as QAM/PSK) [1].

SM is an open-loop scheme, as the active transmit antenna is
randomly determined by the spatially modulated information
bits [2]. However, the system is likely to transmit with errors if
the channel of active antenna is in highly faded condition. To
circumvent such scenario, some closed-loop SM schemes have
been proposed by exploiting CSI at the transmitter (CSIT) to
improve system reliability. Transmit antenna subset selection-
aided SM (TASS-SM), i.e., implementing SM based on se-
lected antennas subset instead of all the transmit antennas, is
an attractive such adaptive strategy to boost the reliability of
SM [3]–[16]. A capacity optimized TASS (COAS) scheme
was introduced for SM-MIMO system in [3], which does
not offer transmit-diversity but increases the coding gain.
An antenna correlation based TASS was also developed in
[4]. Euclidean distance (ED) optimized based TASS (EDAS)
scheme has shown to be able to offer high transmit diversity
gains for SM-MIMO system, which maximizes the minimum
ED of the received SM constellation (error performance), by
performing exhaustive search over all the possible antenna

subset [5]. The diversity order of EDAS-SM was quantified
by [6]. Nevertheless, the excellent performance of EDAS-SM
scheme is gained at the cost of high computational complexity.
Subsequently, a number of work has focused on complexity
reduction of EDAS-SM schemes, via either cutting the com-
plexity of evaluating ED [3], [7], [8], [13] or reducing the
search complexity burden [4], [9]–[12], [14]. While recently,
more practical scenarios of EDAS-SM systems were examined
in [15] with a realistic error-infested feedback channel and in
[16] by considering frequency selective channels. However,
most of existing TASS-SM are heuristic schemes, which,
unfortunately, lead to performance analysis intractable or
extremely difficult. For example, although the COAS-SM is
one of the simplest TASS-SM schemes, its explicit error
performance analysis is limited and almost unexplored [3].

To the best of our knowledge, analytical modeling/ frame-
works for TASS-SM are rarely studied in the literature to
date. To fulfill this research gap, in this paper, we propose
a novel low-complex TASS-SM scheme, called Opportunistic
Spatial Modulation (OSM) , by judiciously combining the op-
portunistic antenna selection and SM to significantly enhance
the system reliability. Its unique features enable us to develop
a comprehensive analytical framework of OSM over Rayleigh
fading channels. Note that, we focus on MISO systems for
simplicity, but it can easily be extended to MIMO systems by
conducting a priori single-antenna selection on receiver. The
key technical contributions of this paper are: 1). We propose
a novel and tractable antenna selection scheme in SM systems
called OSM. A complete derivation of explicit expression of
error performance of OSM-MISO system, based on accurate
’improved unionbound’ method, is presented, which is highly
challenging to quantitatively characterize with existing TASS-
SM schemes. 2). We also compare the proposed OSM with
prevalent low-complex COAS-SM scheme. Our OSM out-
shines COAS-SM in terms of analytical tractability, reduced
CSI feedback bits, low complexity and superior performance
as SNR increases, which implies our OSM scheme is a more
efficient low-complexity TASS-SM scheme. 3). The proposed
OSM analytical framework also opens up a new avenue for
possible designing the TASS-SM schemes with all the key
merits of tractability, low-complexity and high diversity order.

II. OPPORTUNISTIC SPATIAL MODULATION (OSM)
We consider an OSM-MISO system as shown in Fig.1,

which consists of a MISO wireless link with Nt transmit
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Fig. 1. Illustration of the OSM-MISO system model.

antennas. The cardinality of the APM signal constellation
diagram is denoted by M (M ≥ 2). We assume both Nt and M
are to be power of two. All the channels involved are assumed
to be iid Rayleigh fading. The transmitter-to-receiver channel
is denoted by h = [h1, · · · , hj , · · · , hNt ] ∈ C1×Nt , where the
entry hj is the channel coefficient between the jth transmit
antenna to the receiver, and hj ∼ CN (0, 1).

The idea of OSM scheme is to opportunistically select
the transmit antennas subset as the new spatial-constellation
diagram for SM, and is thus called as opportunistic SM (OSM)
scheme. More specifically, OSM scheme follows two steps: i)
the antenna selection, and ii) the conventional SM implemen-
tation. Step I: At the transmitter, Nt transmit antennas are
equally split into K groups (K is also assumed to be a power
of two). Let Ng , Nt

K . For each Group k, k ∈ [1,K], the
antenna with the largest channel gain is selected for the later
SM transmission, where the selected antenna index and the
corresponding channel are represented by N(k) and g(k), re-
spectively, and given as N(k) = arg maxi∈[(k−1)Ng+1,kNg] |hi|
and |g(k)| = maxi∈[(k−1)Ng+1,kNg] |hi|. Step II: The conven-
tional SM technique is implemented based on the selected K
antennas {N(1), · · · , N(K)} and M−ary APM symbols.

Thus, in the OSM scheme, the information bits are conveyed
via both the spatial constellation represented by K different
antenna index set {N(1), · · · , N(K)}, and the M -ary APM
signal constellation comprised of symbols set {s1, . . . , sM}
(E[|sm|2] = 1), given as B = log2(K) + log2(M) bpcu.
The first log2(K) bits are used to choose an unique antenna
index from {N(1), · · · , N(K)}, and the other log2(M) bits
are used to map an APM symbol from {s1, . . . , sM}. Then
at each transmission, only one of the K selected antennas
is activated for transmitting the mapped APM symbol while
all the other antennas remain in silent. Example: The OSM
mapping principle is shown in Fig. 2 for a transmitter with
Nt = 4, K = 2 and the BPSK modulation. We then have
B = log2(2) + log2(2) = 2 bpcu, where one bit is encoded in
the antenna group indexes(the bit “0” for Group 1 and “1” for
Group 2), and the other bit is encoded in the BPSK symbols
(the bit “1” for s1 = +1 and“0” for s2 = −1). Given binary
input bits “01”, it means the first antenna (which is the ’best’
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Fig. 2. Illustration of OSM bit-to-symbol mapping rule for Nt = 4,K =
2,BPSK case.

antenna of Group 1) will be activated to emit the s1.
It is easy to find that when K = Nt, the OSM-MISO scheme

reduces to the conventional SM-MISO system; when K = 1,
the OSM-MISO scheme reduces to the conventional MISO
with the ’best’ single transmit antenna selection scheme (TAS-
MISO). For encoding and decoding purposes, the opportunistic
antenna selection rules and the OSM mapping rules are
assumed to be known by both the transmitter and receiver
a priori. However, the transmitter does not required to access
full CSI. This can be achieved by assuming that the receiver
can correctly estimate the full CSI and sends the indexes
{N(1), · · · , N(K)} to transmitter via a perfect feedback link.

For a given transmission instance, only one transmit antenna
is in active. Without loss of generality, the transmission
of Group k with symbol sm is elaborated here. Thus, the
transmitted signal can be given as xk,m = AΥksm, where
xk,m ∈ CNt×1; A ∈ CNt×Nt is a diagonal matrix denoted
as A = diag(a1, ..., aNt), with ai = 1 if the i-th antenna is
selected as the ’best’ antenna in one of the antenna group,
i.e. i ∈ {N(1), · · · , N(K)}, otherwise ai = 0; Υk ∈ CNt×1

indicates that the antenna Group k is chosen by first log2(K)
information bits, which is given as

Υk , [0 . . . 0 1 . . . 1 0 . . . 0]T︸ ︷︷ ︸
From (k − 1)Ng + 1 to kNg entries are “1”

; (1)

and sm is one of the APM symbols determined by the rest
log2(M) information bits. Then, the received signal at the
receiver of OSM-MISO, denoted as y, can be given as

y = hAΥksm + n
(a)
=

kNg∑
j=(k−1)Ng+1

ajhjsm + n
(b)
= g(k)sm + n

where n ∼ CN (0, σ2) is the additive white Gaussian noise; (a)
follows as we consider Group k transmission; (b) follows as
Group k has only one active antenna N(k) with corresponding
channel g(k). OSM-MISO can be treated as conventional SM-
MISO with effective channels g ∈ C1×K = [g(1), · · · , g(K)].

Therefore, similar to conventional SM-MISO, the maxi-
mum likelihood (ML) detection criterion is adopted at the
receiver of our OSM-MISO to jointly decode both the active
antenna group index and the transmitted symbol, given as,
(k̂, m̂) = arg mink∈[1,K],m∈[1,M ] |y− g(k)sm|2. An important
performance measure for the ML detector is the symbol error



probability (SEP). Define X as the set of all possible OSM
transmit signal vectors, i.e., X = {xk,m = AΥksm|k =
1, . . . ,K; m = 1, . . . ,M}, with the size |X| = KM . We
assume all the elements of X to be equally likely. It is easy
to find that each signal vector has only one non-zero element,
and the dissimilar between any two signal vectors xk,m and
xk′,m′ is either one element or two elements. The first situation
occurs when xk,m and xk′,m′ have same active antenna group
index(i.e., k = k′); while the second situation happens when
they have different antenna activation position (i.e., k 6= k′).

Based on above mentioned two situations, the average SEP
(ASEP), denoted as PS , can be calculated as [17]

PS =
1

K

∑
k

Pssingal(k)+

1

KM

∑
k

∑
k′ 6=k

∑
m

∑
m′

Eh [Pr{xk,m = xk′,m′ |xk,m}] (2)

where Pssingal(k) = 1
M

∑
m

∑
m′ 6=m Eg(k) [Pr{sm = sm′ |sm}].

We can interpret (2) as follows: (1) The first term
1
K

∑
k Pssingal(k) corresponds to the ASEP of OSM-MISO

when k = k′. It means that only the symbol is wrongly
detected, and Pssingal(k) can thus be regarded as the ASEP of a
conventional TAS-MISO for a given Group k. (2) The second
term is the ASEP of the OSM-MISO when k 6= k′, which
implies that the antenna group index is detected incorrectly.

The exact analysis of the PS in (2) is an arduous task
due to the intricate 2nd term. However, due to the low
implement complexity of OSM-MISO, the low-moderate SNR
performance can be easily obtained via Monte Carlo, and the
computational difficulty only exists in getting the high-SNR
performance. Therefore, here we focus on obtaining a exact
upper bound performance, which is highly accurate in high-
SNR. For this purpose, it is natural to consider conventional
union-bound. But the challenge in (2) is only the 2nd term, we
will apply the union-bound to 2nd term only. This is known
as “Improved Union-bound” [17], a tighter upper bound for
ASEP. Denoting such bound as PIU , it can be formulated as,

PS ≤ PIU =
1

K

∑
k

Pssingal(k)+

1

KM

∑
k

∑
k′ 6=k

∑
m

∑
m′

APEP(k,m)→(k′,m′) (3)

where APEP(k,m)→(k′,m′) is average pairwise error probability
(APEP) of xk,m being erroneously decoded as xk′,m′ ∈ X,

APEP(k,m)→(k′,m′) ,Eg[Pr(|y − g(k)sm|2 ≥ |y − g(k′)sm′ |2|g)]

=Eg

[
Q

(√
|g(k)sm − g(k′)sm′ |2

2σ2

)]
,

(4)

with Q(·) being the Gaussian Q-function.

III. PERFORMANCE ANALYSIS OF OSM-MISO

A. Explicit Error Performance of OSM-MISO

In this section, we derive the closed-form expression for the
improved-upper bound of the ASEP given in (3) with PSK

signal modulation. We first derive the exact expression for the
first term of (3), i.e., 1

K

∑
k Pssingal(k). As Pssingal(k) can be

considered as the exact ASEP of the conventional TAS-MISO
with the selected best channel g(k), according to [18, eq.(30)]
[19, eq.(5.66)], Pssingal(k) only depends on the distribution of
its channel gain |g(k)|2. Given all the channels are iid Rayleigh
fading distributed, according to [20] , the pdf distribution of
the selected best channel gain for k−th antenna group (denoted
as zk = |g(k)|2 = maxi∈[(k−1)Ng+1,kNg ] |hi|2) is given as

f(zk) = Ng
(
1− e−zk

)Ng−1
e−zk , k = 1, . . . ,K, (5)

As all |g(1)|2, . . . , |g(K)|2 are also iid, we can obtain
Pssingal(1) = · · · = Pssingal(K) , Pssingal , i.e., 1

K

∑
k Pssingal(k) =

Pssingal . Then based on [19] [18] and the distribution (5), the
closed-form expression for Pssingal with the M−PSK modula-
tion is given in the following Proposition 1.

Proposition 1: With M -PSK modulation, the exact expres-
sion of Pssingal = Pssingal(k),∀k is

Pssingal=

M − 1

M
−
Ng−1∑
n=0

(
Ng

n+ 1

)
(−1)n

π

√
sin2

(
π
M

)
σ2(1 + n) + sin2

(
π
M

)[
π

2
+ tan−1

(√
sin2

(
π
M

)
σ2(1 + n) + sin2

(
π
M

) cot
( π
M

))]
. (6)

Proof: The proof can be obtained by applying Bino-
mial theorem and [19, eq.(5A.15)] to [18, eq.(30)] and [19,
eq.(5.66)], and is omitted due to space limit.
Note that our Proposition 1 provides a simpler closed-form
expression of Pssingal than [18, eq.(33)], which involved Ng
number of infinite sums and still too complicated to compute.

Now, we focus on deriving the closed-form formulation
for the second term of (3). To obtain the analytic expres-
sion of APEP(k,m)→(k′,m′), it is indispensable to know the
distribution of |g(k)sm − g(k′)sm′ | when k 6= k′. This, in
general, is a challenging task, but we are able to tackle
this impediment. Let Ψ , |g(k)sm − g(k′)sm′ | when k 6=
k′. The complex random variable g(k) can be written as
g(k) = rke

jθk , k = 1, . . . ,K where rk = |g(k)| and
θk is the phase of g(k). For the M−PSK modulation, any
symbol can be given as sm = ej

2πm
M ,∀m = 1, . . . ,M .

Then, we have Ψ =

∣∣∣∣rkej(θk+ 2πm
M ) − rk′e

j
(
θk′+

2πm′
M

)∣∣∣∣ =∣∣∣∣rkej(θk+ 2πm
M ) + rk′e

j
(
θk′+

2πm′
M +π

)∣∣∣∣ . The PDFs of rk and

θk are given in the following Lemma 1.
Lemma 1: Given that g(k) = rke

jθk , k = 1, . . . ,K, rk =
|g(k)|,∀k are iid. with pdf given as

frk(x) = 2Ngxe
−x2

(
1− e−x

2
)Ng−1

. (7)

The phase θk is uniformly distributed over the range [0, 2π],
i.e., fθk(y) = 1

2π . And rk and θk are independent .
Proof: See Appendix A.

From Lemma 1, we can see that rk and rk′ are iid., so do θk
and θk′ ; θk + 2πm

M and θk′ + 2πm′

M + π are also uniformly
distributed in [0, 2π]. This also implies that the M−PSK



symbols have no impact on Ψ. By using the result of the
distribution for the magnitude of the sum of complex random
variables [21, Eq. (10)], the PDF of Ψ can be given as

fΨ(x) = xH0x{Λ(ρ)} (8)

where H0x{Λ(ρ)} =
∫∞

0
ρJ0(xρ)Λ(ρ)dρ is the zero-

order Hankel transform of function Λ(ρ), J0(·) is the
zero-order Bessel function of the first kind, and Λ(ρ) =
Erk,rk′ [J0(rkρ)J0(r′kρ)]. Based on Lemma 1 and (8), we can
acquire the following Lemma 2 and Proposition 2.

Lemma 2: The PDF of Ψ can be derived as

fΨ(x) =

Ng−1∑
n=0

Ng−1∑
l=0

2(Ng!)2(−1)n+lxe−
(n+1)(l+1)
n+l+2 x2

n!(Ng − 1− n)!l!(Ng − 1− l)!(n+ l + 2)

(9)

Proof: See Appendix B.
Proposition 2: The closed-form expression for

APEP(k,m)→(k′,m′) can be derived as

APEP(k,m)→(k′,m′) =

Ng−1∑
n=0

Ng−1∑
l=0

(
Ng

n+ 1

)(
Ng

l + 1

)
(−1)n+l

2[
1−

(
1 +

4(n+ 1)(l + 1)

n+ l + 2
σ2

)− 1
2

]
. (10)

Proof: See Appendix C.
Proposition 2 shows an interesting observation that given k 6=
k′ and the M−PSK modulation, the APEP(k,m)→(k′,m′) in
(10) is identical for any given set of {k, k′,m,m′}. This is be-
cause i) all selected channels are iid; and ii) the effective phase
distributions of channels after absorbing the impact of symbol
are still iid uniform distributions. Thus for the presentation
simplicity, we denote APEP = APEP(k,m)→(k′,m′),∀k 6=
k′,∀m,m′.Therefore, for the proposed OSM-MISO scheme,
an explicit improved-union-bound can be derived as

PIU = Pssingal +M(K − 1)APEP (11)

with closed-form expressions of Pssingal and APEP given in (6)
of Proposition 1 and (10) of Proposition 2, respectively.

B. Comparisons between OSM and other TASS-SM scheme

We compare our OSM scheme with a popular low-complex
TASS-SM schemes, i.e., COAS-SM, which chooses K out
of Nt transmit antennas that corresponding to the first K
largest channel gains [3]. Then, the conventional SM scheme
is implemented on selected K antennas with M−ary APM
symbols. Despite distinct antenna selections, the OSM and
COAS-SM schemes support for the same data rate, i.e.,
B = log2(KM) bpcu, and have identical set-up when K = 1
(pure antenna selection TAS) and K = Nt (conventional SM).
However when 1 < K < Nt, with significantly dissimilar set-
ups, our OSM outshines COAS-SM with following benefits.

Analytical tractability: The performance analysis of OSM
scheme is tractable, as shown in Section III, benefit from its
independent group antenna selection setting. On the contrary,
although also being a low-complexity TASS-SM scheme, no

much explicit analysis of the COAS-SM has been carried
out [3]. And such analysis is challenging for COAS-SM, due
to the coupling of order statistic distribution of selected K
antennas, and the problem is greatly exacerbated by increasing
the number of K. Reduced feedback bits for CSI: For both
schemes, the receiver only needs to feedback the selected
antenna indices to the transmitter. The COAS-SM scheme
requires log

(Nt
K)

2 feedback bits, which is much larger than

that of OSM scheme K log
Nt
K
2 . E.g., when Nt = 32 and

K = 8, the OSM and COAS-SM schemes will feedback
at least 16 and 24 bits, respectively. Lower complexity: (1)
For antenna selection - while the OSM scheme requires K
times of sorting Nt

K elements, the COAS-SM requires sorting
Nt elements which costs higher computations, e.g., when
Nt = 32 and K = 8, the worst-case complexity ( O

(
n2
)
)

of the COAS-SM scheme is eight times higher than that of
OSM scheme. (2) For analytical computation - Since there is
no rigorous analytical expressions to calculate error rate of
the COAS-SM scheme, we always need to perform Monte-
Carlo simulations. Although the COAS-SM scheme may has
low implement complexity, it consumes significant time for
numerical evaluation, especially in high-SNR region.And the
problem is dramatically aggravated by increasing the number
of Nt and/or feedback bits B. Conversely, the high-SNR
performance of the OSM scheme can be instantly computed by
the derived explicit expressions with a high accuracy. Superior
performance at high SNR: While the both scheme have
similar performance at low SNR, the benefit of OSM scheme
becomes more pronounced as SNR increases. Performance
comparison is shown in Section IV.

IV. NUMERICAL RESULT

In this section, we validate the derived theoretical expres-
sions, and evaluate the performance of the proposed OSM-
MISO scheme via numerical simulations. The performance
is also compared with COAS-SM-MISO. It is important to
note that, for a given number of transmit antennas Nt, in
order to convey fixed B information bits, we may have
different combinations of K (number of antenna groups) and
M (modulation size ), to achieve log2KM = B bits.

Fig. 3 shows the ASEP performance of OSM-MISO scheme
versus the average SNR when Nt = 8 and B = 6 bits by
considering some possible set of (K,M) combinations such as
(K,M) = {(1, 64), (2, 32), (8, 8)} ( (K,M) = (4, 16) case is
omitted to make the figure less busy). It illustrates the accuracy
of the improved union-bound (analytical expression (11)),
by comparing with exact ASEP (Monte Carlo simulations)
and the conventional union-bound. For all three cases, figure
shows that the improved union-bound is more accurate than
the union-bound as expected. Furthermore, improved union-
bound is completely identical to the Monte Carlo results of
K = 1 case (i.e., conventional TAS-MISO case) for the entire
SNR region. It also well overlap with the exact performance
of K ≥ 2 cases for the moderate or high SNR region.
These validate the explicit expressions of improved union-
bound of OSM-MISO in (11), which thus can be employed
to instantly and efficiently obtain the ASEP of OSM-MISO
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Fig. 3. Performance comparison among improved union-bound, exact ASEP
and conventional union-bound, given Nt = 8 and 6 bits data rate

scheme at moderate-to-high SNR instead of Monte Carlo
simulations. Fig.4 demonstrates the performance comparison
between OSM-MISO and COAS-SM-MISO, for Nt = 16 with
4, 6, 8 bits data rate (1 < K < Nt) (K = 4 cases are omited to
keep figure clear), respectively. From the Fig.4, we can see that
for any given cases with 1 < K < Nt, at low SNR, the perfor-
mance of two schemes looks very similar, however, as SNR
increases, OSM-MISO clearly exhibits pronounced advantage
and outshines COAS-SM-MISO, especially for small K cases.
Although, at high SNR, both schemes fail to offer the transmit
diversity, the coding gain of our OSM scheme surpasses that
of the COAS-SM scheme. This confirm that OSM-MISO is
a more effective low-complexity TASS-SM scheme than the
existing COAS-SM-MISO.

V. CONCLUSIONS AND POSSIBLE EXTENSIONS TO
OSM-MIMO SYSTEMS

In this paper, a novel and tractable low-complexity TASS-
SM scheme, OSM, is proposed to enhance system reliability.
We develop a closed-form expression for error performance
of OSM-MISO system over Rayleigh fading channels. By
comparing to a prevalent TASS-SM scheme (COAS-SM),
OSM shows excellent and appealing performance-complexity
trade-off. The concept and the results of OSM-MISO can be
easily extended to MIMO systems, i.e.,more than one receive
antenna, with a priori best single-antenna selection on the
receiver side as well.

APPENDIX

A. Proof of Lemma 1

Let hi = bie
jφi ,∀i = 1, . . . Nt, where bi = |hi| is the

magnitude of hi and φi is the phase. Since hi ∼ CN (0, 1),
bi follows the Rayleigh distribution as fbi(u) = 2ue−u

2

, and
b2i follows the exponential distribution as fb2i (v) = e−v . The
phase φi is uniformly distributed over the range [0, 2π], i.e.,
fφi(t) = 1

2π , and it is independent of bi. For Group k,∀k =

1, . . . ,K, as N(k) = arg max
k(Ng−1)+1≤i≤kNg

b2i , the joint CDF

of the magnitude and phase of g(k) is given as

F(rk,θk)(x, y)

= Pr

{
bN(k)

≤ x, φN(k)
≤ y
∣∣∣∣b2N(k)

= max
k(Ng−1)+1≤i≤kNg

b2i

}

=

Pr

{
bN(k)

≤ x, φN(k)
≤ y, b2N(k)

= max
k(Ng−1)+1≤i≤kNg

b2i

}
Pr
{
b2N(k)

= max
kNg
i=k(Ng−1)+1 b

2
i

}
=

(∫ y
0
dt
2π

) ∫ x
0

(
∫ u2

0
e−vdv)Ng−12ue−u

2

du∫∞
0

(
∫ u2

0
e−vdv)Ng−12ue−u2du

=
y

2π

(
1− e−x

2
)Ng

. (12)

Thus, the CDF of rk is given as Frk(x) = F(rk,θk)(x, 2π) =(
1− e−x2

)Ng
and the CDF of θk is given as Fθk(y) =

F(rk,θk)(∞, y) = y
2π . Since we have F(rk,θk)(x, y) =

Frk(x)Fθk(y), random variables rk and θk are indepen-
dent. The PDFs of rk and θk can be obtained respec-

tively as frk(x) =
∂Frk (x)

∂x = 2Ng

(
1− e−x2

)Ng−1

xe−x
2

,

andfθk(y) =
∂Fθk (y)

∂y = 1
2π .

B. Proof of Lemma 2
rk and rk′ are i.i.d. with the pdf given in Lemma 1, then,

Λ(ρ) = (Erk [J0(rkρ)])
2

=

(∫ ∞
0

J0(rkρ)2Ng

(
1− e−r

2
k

)Ng−1

rke
−r2kdrk

)2

let t,r2k=

(
Ng

∫ ∞
0

J0(
√
tρ)
(
1− e−t

)Ng−1
e−tdt

)2

(a)
=

Ng−1∑
n=0

Ng!(−1)n

n!(Ng − 1− n)!

∫ ∞
0

J0(
√
tρ)e−(n+1)tdt

2

(b)
=

Ng−1∑
n=0

Ng!(−1)n

(n+ 1)!(Ng − 1− n)!
e−

ρ2

4(n+1)

2

=

Ng−1∑
n=0

Ng−1∑
l=0

(Ng!)
2(−1)n+le−

n+l+2
4(n+1)(l+1)

ρ2

(n+ 1)!(Ng − 1− n)!(l + 1)!(Ng − 1− l)!
(13)

where (a) is obtained by applying the Binomial theo-
rem (1 + x)n =

∑n
i=0

n!
i!(n−i)!x

i and (b) is due to∫∞
0
J0(b
√
x)e−axdx = 1

ae
− b24a [22, eq 6.614] . Substituting

(13) into (8), we have,

fΨ(x) = x

∫ ∞
0

ρJ0(xρ)Λ(ρ)dρ

=

Ng−1∑
n=0

Ng−1∑
l=0

(Ng!)
2(−1)n+lx

∫∞
0
ρJ0(xρ)e−

n+l+2
4(n+1)(l+1)

ρ2dρ

(n+ 1)!(Ng − 1− n)!(l + 1)!(Ng − 1− l)!

(c)
=

Ng−1∑
n=0

Ng−1∑
l=0

2(Ng!)
2(−1)n+lxe−

(n+1)(l+1)
n+l+2 x2

n!(Ng − 1− n)!l!(Ng − 1− l)!(n+ l + 2)

(14)
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where (c) is due to changing variable ρ to ρ2 and then applying
[22, eq 6.614].

C. Proof of Proposition 2

From (4), we have,

APEP(k,m)→(k′,m′) = Eg

[
Q

(√
|g(k)sm − g(k′)sm′ |2

2σ2

)]

=

∫ ∞
0

Q

(
x√
2σ

)
fΨ(x)dx

(a)
=

∫ ∞
0

Q

(
x√
2σ

)
x

∫ ∞
0

ρJ0(xρ)Λ(ρ)dρdx

(b)
=

1

2

∫ ∞
0

e−β [I0(β)− I1(β)]Λ

(√
2β

σ

)
dβ (15)

(a) is due to applying the integral representation of fΨ(x) from
(8) and (b) is obtained by applying [23, eq.(20)]. Substituting
(13) into (15), we have,

APEP(k,m)→(k′,m′) =

1

2

Ng−1∑
n=0

Ng−1∑
l=0

(Ng!)
2(−1)n+l

(n+ 1)!(Ng − 1− n)!(l + 1)!(Ng − 1− l)!∫ ∞
0

[I0(β)− I1(β)]e
−β

(
n+l+2

2σ2(n+1)(l+1)
+1

)
dβ (16)

According to [22, eq 6.611.4], we can get
∫∞

0
I0(β)e−cβdβ =

1√
c2−1

, c > 1 and
∫∞

0
I1(β)e−cβ dβ = c√

c2−1
− 1. Thus we

have,∫ ∞
0

[I0(β)− I1(β)]e−cβdβ = 1−
√
c− 1

c+ 1
, c > 1. (17)

Applying (17) into (16), the closed-form expression of
APEP(k,m)→(k′,m′) in (10) is obtained.
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