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Abstract—In this paper, we demonstrate the coverage prob-
ability improvement of a millimeter wave (mmWave) network
due to the deployment of spatially random decode-and-forward
(DF) relays. We assume the transmitter and receiver are located
at a fixed distance and that the potential relay nodes are
spatially distributed as a two dimensional homogeneous Poisson
point process (PPP). We first derive the spatial distribution of
potential set of relays which meet the required SNR (signal-to-
noise ratio) threshold. From this set, we select a relay that has
minimum path-loss from the receiver and derive the coverage
probability achievable due to this selection. The analysis is
based on stochastic geometry and is verified via Monte-Carlo
simulation. The coverage probabilities of (a) direct link without
relaying and (b) relayed link are compared to show that relaying
provides significant coverage improvements.

I. INTRODUCTION

The unprecedented wireless data growth is expected to
continue in upcoming years due to the emergence of data
demanding services and massive number of connected devices
envisioned in the fifth generation of wireless networks [1].
Given that sub-6 GHz bands are already saturated and that the
spectral efficiencies of current systems already approaching
theoretical limits, millimeter wave (mmWave) frequency bands
(20-100 GHz) offer huge bandwidth opportunities [1], [2].

However, unlike the sub-6 GHz bands, mmWave bands
suffer very high propagation loss, give directional channels,
and exhibit high sensitivity to blockages [3]. The channel mea-
surement results show that path-loss is substantially different
in line-of-sight (LOS) and non-line-of-sight (NLOS) regions
making it necessary to use different path-loss exponents for
LOS and NLOS cases [3]. Because of this disparity, mmWave
links are susceptible to outage resulting in poor coverage even
at the nearby receivers which fall in NLOS zone [4].

Relay aided transmission has been established as an effec-
tive way to increase the coverage, throughput and reliability
in the conventional wireless networks [5]–[7]. Authors in
[6] have derived the closed-form expressions for the outage
probability and average channel capacity and demonstrate that
selecting a relay node that maximizes the signal-to-noise ratio
(SNR) at the destination provides the full diversity order.
In [7], authors investigate the relay selection problem in
networks with multiple users and multiple common amplify-
and-forward (AF) relays.

In mmWave networks, because of the blockage, the role of
relays is considered to be critical to provide seamless coverage
to NLOS regions such as the areas blocked by buildings, and
also to extend outdoor to indoor coverage [4]. In [8], the

authors provide the first multi-hop medium access control pro-
tocol for a 60 GHz network, by utilizing the diffracted signals
to overcome outage when the direct transmitter-receiver link is
not available. The use of densely placed mmWave relays has
been investigated to improve the coverage in [9] where the
authors propose amplify-and-forward (AF) mmWave relays
and evaluate coverage probability by considering spatially
random located relays, effect of blockage, and log-normal
shadowing.

Majority of works on performance analysis of wireless
relay networks consider the fixed network topology, where
the locations of users and relay nodes are assumed fixed and
known. However, in practice, the location of users as well
as the relays are not fixed because of deployment constraints
or mobility. Therefore, in our system, we assume the spatially
random placement of the relay nodes and model their locations
using a homogeneous Poisson point process (PPP). The PPP
model is widely used to analyze wireless networks as it allows
for the tractable computation of coverage probability [10]. For
instance, the PPP model and other stochastic geometry models
have been used to study self-backhauled cellular networks
[10], ad-hoc networks [11], and multi-tier cellular networks
[12]. The PPP has been used to model the locations of base
stations and user nodes [10]–[13].

For sub-6 GHz bands, relaying has been widely studied
using stochastic geometry [14], [15]. Reference [14] inves-
tigates a decode-and-forward (DF) cooperative network by
considering PPP distributed relay locations. Reference [15]
uses a PPP model for the location of relays to evaluate
the DF cognitive relay outage. For mmWave bands, on the
other hand, relaying has also been studied using stochastic
geometry, albeit not so widely. For example, amplify-and-
forward (AF) relays for one-way [9] and two-way [16] relaying
show significant improvement in coverage probability and
spectral efficiency for mmWave networks impaired by high
path loss and blockages.

However, to the best of our knowledge, the performance of
DF mmWave relays considering spatial randomness and small-
scale fading has not been investigated thus far. We thus believe
that this paper is the first work using stochastic geometry to
investigate a DF relay assisted mmWave network and to derive
the coverage probability in the presence of small-scale fading.
To this end, we consider Nakagami-m distributed channels
with different m-parameters for LOS and NLOS cases. The
effect of blockage from obstacles such as urban buildings is
considered in our analysis.



II. SYSTEM MODEL

A. Network Modeling

We consider a mmWave wireless network with a source (S),
a receiver (D) and a set of relays distributed in R2 according
to homogeneous PPP of density λ (Fig. 1). The distance
between the source and the receiver is fixed and denoted by L.
The S − D communication occurs either directly or through
opportunistic relaying from the available set of relays. We
denote a typical relay by R. The source transmits with power
PS and we assume equal transmit power of PR for all the
relays. Without loss of generality, the receiver is assumed to
be located at the origin.

The spatial distribution of the relays on R2-plane is denoted
by Φ = {x1, x2, x3, ...}, where xj is the location of j-th relay,
j ∈ {1, 2, ..., N} and N is a Poisson random variable. In our
analysis, we only consider the relay nodes which are within
the distance R from receiver, i.e., the nodes inside the circular
disc S. The nodes outside S are ignored because of very high
path loss and increased blockage probability associated with
large distances. Therefore, S is essentially equivalent to entire
R2 [16]. In addition, for notational convenience, we remove
the subscript j and just use x to denote the location of typical
relay node, R, and x is interchangeably used as (r, θ) in polar
coordinate system.

B. Blockage Modeling

Blockages occur when a mmWave signals cannot penetrate
certain obstacles such as buildings [17], causing a link to
be in either LOS or NLOS condition. Here we use the LOS
probability function pL(d) [18], where each link of length d
has a LOS probability pL(d) = e−βd and NLOS probability
1− pL(d). The constant β depends on the size and density of
blocking obstacles [18].

C. Directional Beamforming Modeling

We assume that all the nodes (source, relay and receiver) are
capable of directional beamforming. We model the directivity
similar to in [10], where the directional gain within the half
power beamwidth (φ) is Gmax and is Gmin in all other
directions. Mathematically, the gain may be represented as

G(θ) =

{
Gmax if |θ|≤ φ

2

Gmin otherwise.

In our analysis, we consider the perfect beam alignment
between the communicating nodes, i.e., S − R or R − D,
which provides the effective antenna gain, Geq = G2

max in
a given link and derive coverage probability. The analysis of
beam misalignment is out of the scope of this paper and is
considered for future work.

D. Small Scale Fading

We model the small scale fading by Nakagami distribution
and consider different fading parameters of NL and NN for
LOS and NLOS links, respectively. When the small scale
fading is denoted with hl, l ∈ {L,N}, the fading power |hl|2
follows a normalized Gamma distribution. In our analysis,
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Fig. 1: Geometrical locations of source (S), receiver (D), and a typical
relay (R).

we consider positive integer values for NL and NN and use
large NL value to approximate LOS scenario where the fading
variation is low and small value for NN to realize fast variation
in the NLOS links [13].

III. PERFORMANCE ANALYSIS

In this section, we analyze the coverage probability for the
proposed system model of mmWave DF relay network. Since
we assume the system to operate in either direct mode or in
relaying mode, we derive the coverage probabilities for each
of these cases.

A. Direct Mode

In this case, the source and receiver can communicate with
each other without the help of a relay. When the transmission
distance is short and if the S-D link is in LOS, it is possible
to achieve the required SNR or data rate using the direct
link. This has additional benefit of using only one time
slot compared to two time slots required in relay assisted
transmission.

1) Coverage Probability of Direct Link: Coverage proba-
bility is defined as the probability that the received SNR is
above some predefined threshold γth.

Lemma 1. The coverage probability of the direct link (S-D)
is given by

Pc,SD(γth) = pL(L)PSD,L(γth) + (1− pL(L))PSD,N(γth),
(1)

where PSD,L(γth) and PSD,N(γth) are the conditional cover-
age probabilities given that the links are in LOS and NLOS
conditions, respectively, and are given by

PSD,L(γth) =

NL∑
n=1

(−1)n+1

(
NL
n

)
exp

(
− naLLαL

)
, (2)

and

PSD,N(γth) =

NN∑
n=1

(−1)n+1

(
NN
n

)
exp

(
− naNLαN

)
, (3)



where, aL = ηLγthN0

PSΨ , aN = ηNγthN0

PSΨ , αL and αN are
the path loss exponents for LOS and NLOS links, respec-
tively, N0 is the noise power, and ηL = NL(NL! )

− 1
NL and

ηN = NN (NN ! )
− 1
NN . PS is the transmit power of S and

Ψ , Geqµ
2/(4π)2, where µ is the wavelength of the operating

frequency.

Proof. The proof is given in Appendix A. �

B. Relaying Mode

When the direct communication in S−D link is not possible
due to excessive path loss or blockage, a relay can assist the
transmission from source to the destination. The DF relaying
protocol is used and no decoding error is assumed to occur if
the receiver SNR is greater than the threshold γth. We assume
the half duplex relay operation so that it will take two time
slots for the information transmission from S to D. The source
S can successfully transmit to any candidate relays at which
the received SNR is greater than the threshold γth.

With path-loss, blockage and random fading, only some
relays in Φ will be able to meet the required SNR threshold in
the S-R link and thus, can retransmit the successfully decoded
message to the receiver D in the second time slot. We define
these relays as a set of potential of relays. Since the received
SNR at a relay highly depends on it’s distance from source
and it’s probability of being in LOS and NLOS condition,
the potential relays will not be distributed uniformly in the
R2-plane. It is therefore critical to know the distribution of
potential relays before deriving the coverage probability at
receiver with the deployment of relays.

1) Distribution of Set of Potential Relays: Let Φ̂ denotes
the set of potential relays, i.e.,

Φ̂ = {x ∈ Φ,SNRs,x ≥ γth}.

Since the SNRs at candidate relays are independent, the set
Φ̂ is formed by independent thinning of the original process
Φ, i.e., by selecting a point x of process Φ with probability
p = P(SNRs,x ≥ γth) independently of the other points in
the process. The density of the thinned point process can be
written as [19]:

λ̂(x) = λP(SNRs,x ≥ γth). (4)

The final expression for λ̂(x) is given in (5) on the top of
next page, where ρ(x) is the distance of an arbitrary relay
R located at x, from the source node. Since we consider the
relays to be distributed in a disc of radius R centered at D
(origin), the average number of potential relays in S can be
obtained as

Λ̂(S) =

∫
S
λ̂(x)dx =

∫ R
0

∫ 2π

0

λ̂(r, θ)rdθdr (6)

where we use (r, θ) to represent the location x in polar
coordinate system. The analysis of above coverage probabil-
ity involves the Euclidean distance from randomly located
relays to the source and destination. Since the path loss
is dependent on the distance, we use polar coordinate to

represent the location of relay. We set the coordinate axis to
be oriented along the line joining source and destination so
that ρ(x) = ‖x − ls‖=

√
r2 − 2rL cos θ + L2 = ρ(r, θ). The

final expression for Λ̂(S) is given in (7) at the top of the next
page.

The set of potential relays Φ̂ is the inhomogeneous PPP of
density λ̂(x). This set can be further divided into two inde-
pendent processes of densities pL(r)λ̂(x) and (1−pL(r))λ̂(x)
to represent the LOS and NLOS sets, respectively, from the
receiver (D). We denote the LOS process by Φ̂L and NLOS
process by Φ̂N.

2) Coverage Probability with Relays: It is defined as the
probability that the received SNR at receiver D from the
selected relay is above a predefined threshold γth. To derive
this probability, we first need to determine which relay will
be selected. A relay is selected to provide smallest path loss
at the receiver in R-D link. This means the selected relay can
only be either the nearest node in Φ̂L or nearest one in Φ̂N.
To derive the coverage probability, we need to know whether
a relay from Φ̂L or Φ̂N is selected, and for that, distribution
of distance of the nearest relays in Φ̂L and Φ̂N from receiver
is required.

Lemma 2. The complimentary cumulative distribution func-
tion (CCDF) of the distance from receiver to the nearest LOS
relay is given by

F̄rL(z) = exp

(
−
∫ z

r=0

∫ 2π

θ=0

pL(r)λ̂(x)rdθdr

)
. (8)

Proof. The distribution of the distance to the nearest LOS
relay from receiver (at origin) can be derived if we know the
probability that no LOS relays are available in B(0, z), where
B(0, z) is the ball centered at 0 and radius z. This is the void
probability for a PPP, and can be written as

F̄rL(z) = P(rL > z)

= P{no LOS relays in B(0, z)}
= exp (−ΛL([0, z))) (9)

where ΛL([0, z)) is the mean number of LOS relays in B(0, z),
which can be derived as

ΛL([0, z)) =

∫ z

r=0

∫ 2π

θ=0

pL(r)λ̂(x)rdθdr (10)

Substituting (10) in (9), we get the desired distribution (8). �

Now, using frL(z) = −dF̄rL(z)

dz
, the probability density

function (PDF) of rL is given by

frL(z) = zpL(z)λ̂(z, θ)e−λ
∫ z
r=0

∫ 2π
θ=0

pL(z)λ̂(x)rdθdr (11)

Similarly, we can derive the CCDF of the distance of nearest
NLOS relay from the receiver as

F̄rN (z) = exp

(
−
∫ z

r=0

∫ 2π

θ=0

(1− pL(r))λ̂(x)rdθdr

)
, (12)



λ̂(x) = λ

{
pL(ρ(x))

NL∑
n=1

(−1)n+1

(
NL
n

)
exp

(
− naL(ρ(x))αL

)
+ (1− pL(ρ(x)))

NN∑
n=1

(−1)n+1

(
NN
n

)
exp

(
− naN (ρ(x))αN

)}
(5)

Λ̂(S) = λ

{
NL∑
n=1

(−1)n+1

(
NL
n

)∫ R
r=0

∫ 2π

θ=0

pL(ρ(r, θ)) exp
(
− naL(ρ(r, θ))αL

)
rdθdr

+

NN∑
n=1

(−1)n+1

(
NN
n

)∫ R
r=0

∫ 2π

θ=0

(1− pL(ρ(r, θ))) exp
(
− naN (ρ(r, θ))αN

)
rdθdr

}
(7)

and the corresponding PDF as

frN (z) = z(1− pL(z))λ̂(z, θ)e−
∫ z
r=0

∫ 2π
θ=0

(1−pL(z))λ̂(x)rdθdr.
(13)

Now we derive the probability AL that a LOS relay will
be selected to serve. The selection is based on maximizing
the average received power from the candidate relay node or
equivalently minimizing the path loss from relay to receiver.

Lemma 3. The probability that a LOS relay will be selected
is given by

AL =

∫ ∞
0

F̄rN (z
αL
αN )frL(z)dz (14)

where F̄rN (z) is the CCDF of the distance of nearest NLOS
relay from receiver and is given in (12).

Proof. The proof is given in Appendix B. �

The probability that a NLOS relay will be used to serve,
AN , is given by

AN = 1−AL

Lemma 4. Given that a LOS relay is selected to serve, the
PDF of its distance from the receiver is

grL(z) =
frL(z)

AL
exp

−
∫ z

αL
αN

r=0

∫ 2π

θ=0

(1− pL(r))λ̂(x)rdθdr

 ,

(15)
where z > 0. Given a NLOS relay is selected to serve, the

PDF of its distance from the receiver is

grN (z) =
frN (z)

AN
exp

−
∫ z

αN
αL

r=0

∫ 2π

θ=0

pL(r)λ̂(x)rdθdr

 , (16)

where z > 0.

Proof. The proof follows similar to in [13] and is omitted. �

Theorem 1. The total SNR coverage probability at the re-
ceiver using the selected relay is given by

Pcov,R(γth) = ALPc,L(γth) +ANPc,N(γth), (17)

where Pc,l(γth), l ∈ {L,N} is the conditional coverage
probability given that a relay from Φ̂l is selected, which is
given by

Pc,L(γth) ≈
NL∑
k=1

(−1)k+1

(
NL
k

)
×
∫ 2π

θ=0

∫ ∞
z=0

e−kaLz
αL
grL(z)zdzdθ, (18)

and

Pc,N(γth) ≈
NN∑
k=1

(−1)k+1

(
NN
k

)
×
∫ 2π

θ=0

∫ ∞
z=0

e−kaNz
αN
grN (z)zdzdθ, (19)

where αL and αN are the path loss exponents for LOS and
NLOS links, respectively, and aL and aN are same as in
Lemma 1.

Proof. Next we derive the conditional coverage probability
when a relay from LOS relays is selected. Since the relay is
selected from Φ̂L which is closest to receiver, coverage can
be written as

Pc,L(γth) = P

(
PRΨ|hx,ld |2r

−αL
L

N0
> γth

)

= 1− E

[
P
(
|hx,ld |2<

γthN0r
αL
L

PRΨ

)]
where rL is the distance between the closest LOS relay and
the receiver. Now, using the similar approximation as in (21),
we can write

Pc,L(γth) ≈ E

[
NL∑
k=1

(−1)k+1

(
NL
k

)
e−kaLr

αL
L

]

=

NL∑
k=1

(−1)k+1

(
NL
k

)
×
∫ 2π

θ=0

∫ ∞
z=0

e−kaLz
αL
gL(z)zdθdz, (20)
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Fig. 2: Expected number of potential relays vs SNR threshold, L=300
m.

where aL = ηLγthN0

PRΨ . Similarly we can derive the expression
for Pc,N(γth). �

IV. SIMULATION AND ANALYTICAL RESULTS

Here we validate our analysis with Monte Carlo simula-
tions by averaging over 105 independent realizations. We set
αL = 2, αN = 3.3, NL = 3, NN = 2. The analytical results
(curves) and the simulations (markers) match closely, verifying
the correctness of our analysis.

Fig. 2 plots the average number of potential relays in (7)
which meet the required SNR threshold for different relay
densities. As expected, when the required SNR threshold
increases, the potential relay density decreases. This is because
only the relays which are closer to S and fall in LOS region
can achieve the required SNR threshold. For example, for a
moderate relay density of 100 relays/km2, seven nodes can act
as potential relays at a SNR threshold of 20 dB.

Fig. 3 plots and compares the SNR coverage probability
without relaying in (1) and with relay in (17) when S-D
distance L is set to 300 meters. Note that coverage probability
improves significantly with relays. Since the LOS probability
of the direct link is very small for this distance, the direct link
coverage probability remains close to 5% for practical range
of SNR thresholds in 0-20 dB. Also we observe significant
coverage improvement with increasing relay density. For ex-
ample, when the density increases from 100 to 200 relays/km2,
coverage increases from 20% to nearly 45% for γth = 10 dB.

To study the effect of S-D distance, in Fig. 4, we compare
th coverage probability for L = 200, 300 meters at a fixed
relay density of 200/km2. As expected, coverage probability
is higher for the shorter distance for whole range of SNR
thresholds. Also the coverage improves significantly when
decreasing L, i.e., from 40% to 80% if γth is set to 10 dB
when decreasing L from 300 meters to 200 meters. Also, the
coverage from direct link is significantly less than that with
relays being deployed in both the cases.

We plot the coverage probability of the direct link and that
with relays along the S-D separation distance (L) in Fig. 5.
Coverage probability decreases with distance because both
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Fig. 3: Coverage probability vs SNR thresholds – L=300 m.
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blockage probability and path loss increase with distance.
When S-D distance is 200 meters, coverage probability in-
creases from about 15% to about 70% and 80% for SNR
thresholds of 10 dB and 20 dB, respectively. Also, relays
achieve significantly higher coverage probability than that for
the direct link for the entire range of link lengths, and the
only instance that direct link coverage exceeds that with relay
is when S-D distance is 50 meters for an SNR threshold of
10 dB. The link distance leads to high LOS probability.

V. CONCLUSION

In this paper, we analyzed coverage probability of a DF
mmWave relay. We considered blockage, directional antenna,
and directional gain. We first derived the potential relay set
which follows inhomogeneous PPP, and from this set selected
a relay which provides minimum path loss to the receiver.
Our analysis shows that significant coverage improvements can
be achieved by deploying mmWave relays compared to that
without relaying.

APPENDIX A
DERIVATION OF EQUATION (2):

Equation (1) is obtained using the law of total probability,
where pL(L) and 1 − pL(L) represent the LOS and NLOS
probabilities of a link of length L. We next derive the
conditional coverage probability PSD,L in (2).

PSD,L(γth) = P
(

SNRSD,L > γth

)
= P

(
|hL|2L−αLPSΨs

N0
> γth

)

= 1− Pr

(
|hL|2<

γthN0L
αL

PSΨs

)
(a)
≈ 1−

(
1− exp

(
− ηLγthN0L

αL

PSΨS

))NL
(b)
=

NL∑
n=1

(−1)n+1

(
NL
n

)
exp

(
− naLLαL

)
(21)

where (a) is using upper bound for normalized gamma ran-
dom variable [13], (b) is obtained from binomial expansion,
and αL is the path loss exponent for LOS link. We define
aL ,

ηLγthN0

PSΨS
, where ηL = NL(NL! )

− 1
NL , N0 is the noise

power, PS is the transmit power of S and ΨS , Geqµ
2/(4π)2

is a constant that includes the directional gain and reference
path loss at a 1 m distance, where µ is the wavelength of the
operating frequency. PSD,N in (3) can be derived similarly.

APPENDIX B
PROOF OF LEMMA 2:

We define

AL , P(PsΨsr
−αL
L > PsΨsr

−αN
N )

= P

(
rN > r

(
αL
αN

)
L

)

=

∫ ∞
0

P

(
rN > r

(
αL
αN

)
L |rL

)
frL(z)dz

=

∫ ∞
0

F̄rN

(
r

(
αL
αN

)
L

)
frL(z)dz (22)

where F̄rN (z) is given in (12).
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