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Abstract— The downlink performance of two-tier (macro/pico)1

multi-antenna cellular heterogeneous networks employing space2

division multiple access (SDMA) technique with zero-forcing3

precoding is analyzed in this paper. The number of users4

simultaneously served with SDMA by a base-station (BS) depends5

on the number of active users in its cell, with the maximum6

served users limited to Lmax. To protect the pico users from7

severe macro-interference, part of the antennas at each macro8

BS is proposed to be utilized toward interference nulling to9

pico users. The partitioning of macro antenna resources to10

serve macro-users and to null interference to pico users for11

optimal performance is investigated in this paper. Biased-nearest-12

distance-based user association scheme is proposed, where the13

bias value accounts for the natural bias due to the differences14

in multi-antenna transmission schemes across tiers, as well as15

the artificial bias for load balancing. The signal-to-interference-16

ratio coverage probability, rate distribution, and average rate of17

a typical user are then derived. Our results demonstrate that18

the proposed interference nulling scheme has strong potential19

for improving performance if the macro antennas partitioning is20

carefully done. The optimal L∗
max for both macro and pico-tier,21

which maximize the average data rate, is also investigated and it22

is found to outperform both single-user beamforming and full-23

SDMA. Finally, the impact of imperfect channel state information24

due to limited feedback is analyzed.
25

Index Terms— Heterogeneous networks (HetNets), interference26

nulling, limited feedback, Poisson point process (PPP), space27

division multiple access (SDMA), stochastic geometry.28

I. INTRODUCTION29

NETWORK densification (dense deployment of base-30

stations (BSs)) and multi-antenna techniques are31

well-known for their tremendous potential to increase spectral32

efficiency of wireless networks. In a conventional macro only33

cellular network, where the locations of high-power macro BSs34

are strictly planned, adding more BSs can be very challenging35

for dense urban areas due to extremely high site acquisition36

cost. Thus, the cost-effective way of network densification37

is to deploy a diverse set of low-power BSs within the areas38

covered by macro cellular infrastructure [1]. The resulting39
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network of mixed types of BSs is known as heterogeneous 40

network (HetNet). If the BSs are equipped with multiple 41

antennas, the additional degrees of freedom (DoF) in the 42

spatial dimension can be utilized in a number of ways, for 43

example, to improve the spectral efficiency, and to enhance the 44

link reliability. The diversity and spatial multiplexing gains 45

have been extensively studied in general for point-to-point 46

links without interference. Some examples of diversity tech- 47

niques are space-time coding [2], [3] and coherent processing 48

known as beamforming [4]. The spatial multiplexing which 49

utilizes the multiple antennas to transmit independent data 50

streams simultaneously over spatial sub-channels, has been 51

explored in [5]. Space division multiple access (SDMA) 52

which allows multiple users to be served simultaneously on 53

the same time-frequency resource has also been analyzed 54

[6], [7]. However, in interference-prone cellular networks, 55

for example, a dense deployed HetNet, where complex 56

interference scenarios may arise due to power disparities 57

between the BSs, the effectiveness of spatial multiplexing may 58

diminish [8]. Nevertheless, if the available spatial DoF are 59

intelligently utilized to suppress/mitigate interference as well 60

as to harvest diversity and multiplexing gain, the performance 61

of cellular networks can be improved. In this paper, we 62

develop a tractable framework to analyze the downlink 63

performance of zero-forcing (ZF) precoding based joint 64

SDMA and inter-tier interference-nulling scheme in HetNets. 65

A. Related Work and Contributions of the Paper 66

Although multiple antenna in wireless communications is 67

a mature technology, its incorporation into cellular networks, 68

traditional single tier, as well as HetNets, has received much 69

momentum both in academic research and standardization 70

efforts only recently with the introduction of massive-MIMO 71

concept [9]–[12]. By utilizing the stochastic geometry frame- 72

work which enables systematic modeling of interference, 73

several studies on the modeling and analysis of downlink 74

single-tier multi-antenna cellular networks have been reported 75

in the literature. For example, error probability analysis by 76

using the equivalent-in-distribution approach in [13], coverage 77

and rate analyses using the Gil-Pelaez inversion theorem 78

in [14], and a unified approach to error probability, outage 79

and rate analyses for different multi-antenna configurations 80

with retransmissions in [15]. Apart from single-tier networks, 81

stochastic geometric modeling of downlink multi-antenna Het- 82

Nets have been significantly explored as well. Reference [16] 83

compared the signal-to-interference-and-noise ratio (SINR) 84

coverage of SU-BF with that of ZF SDMA for a two-tier multi- 85

antenna HetNet by considering a single fixed-radius circular 86
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macro cell with multiple femto cells of fixed radii, distributed87

according to a Poisson point process (PPP) within the macro88

cell. However, since BS-user association and macro-tier inter-89

ference are ignored, the insights in [16] may not be accurate90

for practical HetNets. The coverage probability and average91

link spectral efficiency of ZF precoding in multi-antenna Het-92

Net, spatially averaged over a given cell of known radius and93

guard region are derived in [17]. Unlike the spatial averaging94

over a given cell in [17], system-wide spatial averaging is con-95

sidered in [18] and the upper bounds on coverage probability96

of ZF SDMA and SU-BF are derived. The ordering results97

for the coverage probability and rate per user performance98

of SDMA, SU-BF and single-antenna transmission are also99

derived in [18] by using tools from stochastic orders. While100

the analysis in [18] is based on maximum instantaneous SINR101

based BS-user association, association rules intended to maxi-102

mize the average receive SINR (and thus, the SINR coverage),103

and biased association for optimal rate coverage are proposed104

for multi-antenna HetNets in [19]. Closed form expressions105

for the signal-to-interference ratio (SIR) of ZF SDMA and106

SU-BF are derived in [20] for user association based on107

the received power of the reference signal transmitted from108

a single-antenna with total power. In all of these downlink109

multi-antenna HetNet analyses [16]–[20], each cell of a tier is110

assumed to be spatially multiplexing to the same number of111

users, say L, and it can be any arbitrary integer in the interval112

[1, Ki ], where Ki is the number of antennas at a BS of the113

i th tier. This assumption, however, is not suitable for cellular114

networks because the number of users, which depends on user115

distribution, is generally different from one cell to another. An116

open-loop SDMA with each antenna serving an independent117

data stream to its user with the limiting requirement that the118

number of users in each cell must be at least equal to the119

number of transmit antennas is analyzed in [21] for single-tier120

cellular networks with ZF and MMSE receivers. In this paper,121

we consider user-distribution dependent SDMA scheme, i.e.,122

the number of users simultaneously served with SDMA in each123

cell depends on the total number of users in that cell. If the124

number of users in a cell is less than the maximum number of125

users served per resource block (RB), say Lmax, all the users126

are simultaneously served; otherwise only Lmax users chosen127

randomly are served.128

One of the key challenges in downlink cellular HetNets129

is inter-tier interference management. Due to large transmit130

power disparities between macro and small-cell nodes such as131

picos and femtos, and proactive user offloading from macro to132

small cells, interference management between the macro and133

pico/femto tiers is very important because the performance of134

small-cell cell-edge users could be severely degraded. While135

almost blank subframes (ABSF) [22], [23] and frequency-136

domain resource partitioning [24], [25] can be used, inter-137

tier interference can be more efficiently managed without138

compromising time/frequency resources by using multiple139

antennas. Inter-tier interference mitigation by using multiple140

receive antennas at the user devices is analyzed in [26]. In this141

paper, we analyze ZF-precoding based interference-nulling142

method by using BS antennas to suppress the interference143

from the macro tier to small-cell users. Compared to other144

potential techniques such as joint transmission [27] and trans- 145

mission point selection [28], which require both user data 146

and channel state information (CSI) to be shared between 147

the coordinating BSs, interference nulling requires only CSI 148

to be shared. Joint transmission with local precoding, which 149

requires no CSI exchange between the coordinating BSs, is 150

studied in [12]. However, it stills requires user data sharing, 151

which could be very challenging due to backhaul overhead. 152

In [29], interference nulling to U offloadedpico users by each 153

macro BS is analyzed, where the optimal U for maximum 154

rate coverage is also investigated. However, unlike [29] which 155

considers a single served user per RB in each cell, we consider 156

a user-distribution dependent SDMA scheme. SU-BF with 157

interference nulling to a fixed number of neighboring-cells 158

users at each BS of any tier for general multi-tier HetNets 159

is analyzed in [30], without specifying how these users are 160

selected. SU-BF with interference nulling in single-tier cellular 161

networks is studied in [31] and [32]. Although SU-BF with 162

interference nulling has been relatively well analyzed, to 163

the best of our knowledge, this paper is the first work to 164

analyze a user-distribution dependent SDMA scheme with 165

inter-tier interference nulling in cellular HetNets. The main 166

contributions of this paper are summarized as follows. 167

1) We develop a tractable framework to analyze a user- 168

distribution dependent SDMA scheme in a two-tier 169

(macro/pico) multi-antenna HetNet with ZF precoding, 170

in which the number of users simultaneously served 171

by a BS in an RB depends on the number of active 172

users in its cell. The framework also allows the analysis 173

of SU-BF and full-SDMA by setting the limit on the 174

number of users served per RB to one, and the total 175

number of transmit antennas, respectively. 176

2) To suppress the detrimental macro-to-pico interference, 177

interference-nulling precoding, jointly with user- 178

distribution dependent SDMA, is proposed. That is, 179

the precoding matrix at each macro BS is designed 180

to null interference to a set of activepico users while 181

spatially multiplexing the macro-users in the cell. In the 182

proposed interference-nulling scheme, the candidatepico 183

users for interference nulling from a macro BS, say b, 184

are the ones which have b as their nearest interfering 185

macro BS. 186

3) Considering the complexity of BS-user association in 187

multi-antenna HetNets, a simple biased-nearest-distance 188

based association rule is introduced, in which the bias 189

value accounts for the natural bias required for SINR 190

maximization in multi-antenna HetNets, as well as the 191

artificial bias for load balancing. 192

4) By considering interference limited scenario, we derive 193

analytical expressions for the SIR and rate distributions, 194

as well as the average rate of a typical user. We then 195

perform comprehensive analysis to investigate the 196

optimal association bias, and the inherent trade-off 197

between interference cancellation, signal power boosting 198

and spatial multiplexing. The following useful network 199

design insights are obtained from these analyses: 200

a) By optimizing the maximum number of users 201

simultaneously served per RB, SDMA can achieve 202
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significantly higher average data rate than both203

SU-BF and full SDMA.204

b) If the number of users in a typical cell is less than205

the maximum number of users served per RB, say206

Lmax , the optimal number of antennas towards207

spatial multiplexing and signal power boosting of208

local users is found to be Lmax .Thus, rather than209

allocating additional antennas to these users, the210

average data rate can be significantly increased if211

the surplus antennas are used towards interference212

nulling topico users.213

c) The optimal number of antennas towards214

interference nulling topico users increases with the215

increase in pico cell density, as well as association216

bias.217

5) Finally, the impact of the CSI quantization error due218

to limited feedback on interference nulling is also219

investigated.220

The paper is organized as follows. The system model and the221

proposed multi-antenna technique are presented in Section II.222

Section III derives the SIR distribution. The rate coverage and223

the average rate are derived in Section IV. In Section V, the224

impact of limited feedback is analyzed. The numerical results225

are presented in Section VI, and the concluding remarks in226

Section VII.227

II. SYSTEM MODEL228

We consider the downlink of a two-tier multi-antenna229

HetNet comprising macro and pico BSs spatially distributed on230

R
2 plane as independent homogeneous PPPs �m with density231

λm and �p with density λp , respectively. The macro BSs are232

equipped with Km transmit antennas, and the pico BSs with233

K p antennas. Similarly, users are assumed to be distributed234

according to an independent PPP �u with density λu , and each235

has a single receive antenna. The two network tiers share the236

same spectrum with the universal frequency reuse.237

The transmission scheme is SDMA with ZF precoding238

applied at each BS to serve multiple users simultaneously in239

each RB. We assume only one RB per time slot. As the BSs240

and users are independently distributed on the R
2 plane, the241

number of users varies across cells. Thus, in our proposed242

SDMA scheme, a typical active macro cell with Nm ≥ 1243

users serves Mm = min(Nm , L M
max) users simultaneously in244

a given time slot, where L M
max is the maximum number of245

users it can serve. If Nm > L M
max, the BS choses L M

max users246

for service randomly, else, all Nm users are served. Similarly,247

Mp = min(Np , L P
max) users are simultaneously served by a248

typical active pico cell in a given time slot, which has Np ≥ 1249

users, and L P
max is the maximum number the pico cell can250

serve. The macro and pico BSs transmit to each of their users251

with power Pm and Pp , respectively.252

A. User Association253

According to the user association rule introduced in [19]254

for average SINR maximization, a typical user at the origin255

is associated with the nearest pico BS if Pp
√

�pτp X−α
p ≥256

Pm
√

�mτm X−α
m , and otherwise, is associated with the nearest257

macro BS, where Xm = min
xm∈�m

‖xm‖ and X p = min
xm∈�p

‖x p‖ 258

are the distances from the origin to the nearest macro and pico 259

BSs, respectively. If associated with the macro tier, �m is the 260

average desired channel gain from the nearest macro BS, and 261

τp is the average interference channel gain from the nearest 262

pico BS. Similarly, �p and τm are the corresponding values, 263

if associated with the pico tier. These channel gains depend on 264

the number of users served with SDMA. This association rule 265

is thus not suitable for our proposed SDMA scheme, where the 266

number of users served with SDMA in each cell is a function 267

of the number of users in that cell. The number of users, on the 268

other hand, is determined by the association rule. The above 269

rule however can be equivalently expressed as follows: a user 270

is associated with the pico tier only if 271

Xm ≥
(

Pm

Pp

) 1
α
(

1

�

) 1
α

X p, (1) 272

where � =
√

�pτp
�mτm

. If we compare (1) with the popular 273

received power based association in HetNets [24], [33], � can 274

be interpreted as the natural bias required for average SINR 275

maximization in multi-antenna HetNets due to the differences 276

in transmission schemes. This coverage maximization bias, 277

however, may not always achieve optimum load balancing 278

for maximum rate. Thus, by further introducing an artificial 279

bias B for load balancing, the resultant condition for pico 280

tier association becomes Xm ≥ ρX p , which can be perceived 281

as biased nearest distance association with bias value ρ = 282

( Pm
Pp

1
η )

1
α , where η = B�. We investigate the optimal value of 283

η for the average data rate in Section VI, which determines 284

the optimal ρ. 285

As Xm and X p follow Rayleigh distributions with mean 286

(2
√

λm)−1 and (2
√

λp)
−1, respectively [34], the probability 287

that a typical user at the origin is associated with the pico tier 288

is 289

A p = P(Xm ≥ ρX p) = λp

λp + λmρ2 , (2) 290

and the probability that this user is associated with the macro 291

tier is Am = 1 − A p . These tier association probabilities are 292

also valid for any randomly selected user. Thus, the total 293

set of users in the network, �u can be divided into two 294

disjoint subsets: �m
u and �

p
u , the set of macro- and pico-users, 295

respectively. Am and A p can be interpreted as the average 296

fraction of users belonging to �m
u and �

p
u , respectively. As 297

we are interested in the number of users in a typical cell, 298

rather than the actual locations of the users, �m
u and �

p
u can 299

be equivalently modeled as independent PPPs with density 300

Amλu and A pλu , respectively. Since each macro-user is always 301

associated with the nearest macro BS and each pico-userr 302

with the nearest pico BS, the network can be viewed as 303

a superposition of two independent Voronoi tessellations of 304

the macro and pico tiers. Let the number of users in a 305

randomly chosen macro and pico cell be denoted by Um 306

and Up , respectively. Their approximate1 probability mass 307

1The PDF of the normalized Poisson-Voronoi cell area is approximated as
Gamma(3.5, 3.5) [35] while deriving the PMFs.
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function (PMFs) are given by [24, Lemma 2]308

P(Ul = n) = 3.53.5
(3.5 + n)(Alλu/λl)
n


(3.5)n!(Alλu/λl + 3.5)n+3.5
, n ≥ 0,309

∀l ∈ {m, p}. (3)310

A BS without any user associated does not transmit at311

all and is inactive. The PMFs of the number of users in a312

randomly chosen active cell of the macro and pico tiers are313

given by314

P(Nl = n) = P(Ul = n)1(n ≥ 1)

pl
, ∀l ∈ {m, p}, (4)315

where pm and pp are the probabilities that a typical BS of the316

macro and pico tiers, respectively, is active, and are given by317

pl = 1 − P(Ul = 0) = 1 −
(

1 + 3.5−1 Alλu

λl

)−3.5

,318

∀l ∈ {m, p}. (5)319

Let the sets of active macro and active pico BSs be denoted320

by �m and �p , respectively. �m and �p are thinned versions321

of the original PPPs �m and �p , respectively, and hence are322

independent PPPs with densities pmλm and ppλp , respectively.323

By using the PMFs in (4), the PMFs of the number of users324

simultaneously served by a typical active BS of macro and pico325

tiers in a given time slot for Ll
max > 1 can be obtained as326

P(Ml = n) =

⎧
⎪⎪⎨

⎪⎪⎩

P(Nl = n), 1 ≤ n < Ll
max

1 −
Ll

max−1∑

k=1

P(Nl = k), n = Ll
max,

‘327

∀l ∈ {m, p}. (6)328

For the special case of Ll
max = 1, P(Ml = 1) = 1,∀l ∈ {m, p}.329

B. Interference Nulling330

We assume Km to be typically much larger than K p . By331

using the interference nulling strategy, the additional spatial332

DoF of macro BSs can be utilized to suppress the strong macro333

interference topico users. Thus, we propose that each served334

pico-user requests its nearest active macro BS to perform335

interference nulling. However, as nulling costs macro BSs336

their available DoF for their own users, we assume that each337

macro BS can handle at most Km − Tmin requests only. This338

limit ensures that each macro BS has at least Tmin ≥ L M
max339

antennas dedicated for serving its own users. Hence, if Qm340

requests are received by a typical active macro BS, it will341

perform interference nulling to O = min(Qm, Km − Tmin)pico342

users. For Qm > (Km − Tmin), the BS will randomly choose343

Km − Tminpico users.344

The number of interference-nulling requests Qm received by345

a typical active macro BS is equal to the number of servedpico346

users within a typical Voronoi cell ϒ of the tessellation formed347

by �m . Although the number ofpico users served by a typical348

active pico BS cannot exceed L p
max, Qm is unbounded because349

the number of active pico BSs within ϒ is Poisson distributed350

with mean ppλp/(pmλm). To derive the PMF of Qm , we first 351

derive E[Mp] = A pϑpλu/(ppλp), where 352

ϑp = L p
max ppλp

A pλu
− 3.53.5


(3.5)

L p
max−1∑

k=1

353

×
[

(3.5 + n)

n!
(A pλu/λp)n−1(L p

max − k)

(A pλu/λp + 3.5)n+3.5

]
. (7) 354

Note that for L p
max = 1, ϑp = ppλp

Apλu
. Next, let us denote the set 355

ofpico users requesting interference nulling by �
p
u . Because 356

we are only interested in the number of such users in a typical 357

Voronoi cell ϒ , and not their actual locations, and we know 358

that E[Qm ] = A pϑpλu/(pmλm), �
p
u can be assumed to be 359

a PPP with density A pϑpλu . The PMF of Qm can then be 360

obtained as 361

P(Qm = n) =
3.53.5
(3.5 + n)

(
Apϑpλu

pmλm

)n


(3.5)n!
(

Apϑpλu
pmλm

+ 3.5
)n+3.5

, n ≥ 0. (8) 362

Due to the limited resources as discussed earlier, not all 363

interference-nulling requests received by an active macro 364

BS are satisfied. Let χ denotes the set ofpico users whose 365

interference-nulling requests to their corresponding nearest 366

active macro BSs are satisfied. In the following lemma, we 367

derive the probability that a randomly chosen pico-user in 368

service belongs to χ . 369

Lemma 1: The probability ϕ that the interference-nulling 370

request made by a randomly chosen pico-user to its nearest 371

active macro BS is fulfilled is given by 372

ϕ = (Km − Tmin)pmλm

A pϑpλu

(

1 −
(

1 + 3.5−1 A pϑpλu

pmλm

)−3.5
)

373

− 3.53.5


(3.5)

Km−Tmin∑

n=1


(3.5+n)
(

Apϑpλu
pmλm

)n−1
(Km −Tmin−n)

n!
(

Apϑpλu
pmλm

+3.5
)n+3.5 . 374

(9) 375

Proof: Let Q′
m denotes the number of other requests 376

received by the macro BS, which received nulling request from 377

a randomly chosen pico-user. Then, conditioned on Q′
m , ϕ = 1 378

if Q′
m +1 ≤ Km −Tmin; otherwise, ϕ = (Km −Tmin)/(Q′

m +1). 379

Thus, ϕ can be expressed as 380

ϕ =
Km−Tmin−1∑

n=0

P(Q′
m = n)+

∞∑

n=Km−Tmin

Km − Tmin

n + 1
P(Q′

m =n) 381

=
∞∑

n=1

Km − Tmin

n
P(Q′

m = n − 1) 382

−
Km−Tmin∑

n=1

(
Km − Tmin

n
− 1

)
P(Q′

m = n − 1). (10) 383

By using the fact that the conditional probability density 384

function (PDF) f
′
Y (y) of the area of a Voronoi cell given that 385

a randomly chosen user belongs to it is equal to cy fY (y), 386

where fY (y) is the unconditional PDF and c is a constant such 387

that
∫ ∞

o f
′
Y (y)dy = 1 [22], the PMF of Q′

m can be derived 388
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as P(Q′
m = n) = (n + 1)P(Qm = n + 1)/E[Qm], n ≥ 0.389

Theorem 1 is then obtained by substituting the PMF of390

Q′
m in (10), and then using

∑∞
n=1 P(Qm = n) =391

1 − P(Qm = 0).392

C. Channel Model and Precoding Matrices393

Assuming standard power law path-loss with exponent α,394

linear precoding and frequency-flat fading, the received signal395

zm at a typical user u located at the origin if u ∈ �m
u is given396

by397

zm = √
Pm D

− α
2

m h∗
bm ,1Wbm sbm398

+
∑

q∈{m,p}

√
Pq

∑

xq∈�q\bm

||xq ||− α
2 g∗

xq ,1Wxq sxq + nm ,399

(11)400

where bm is the serving macro BS at a distance Dm ,401

which is serving M ′
m other users simultaneously; hbm ,1 ∼402

CN (0Km×1, IKm ) and gxq ,1 ∼ CN (0Kq×1, IKq ) are the desired403

and interference complex Gaussian channel vectors from the404

tagged BS bm and the interfering BS at xq , respectively, with405

independent and identically distributed (i.i.d.) unit variance406

components; nm ∼ CN (0, σ 2) is complex Gaussian noise407

with variance σ 2; sbm = [sbm,i ]1≤i≤M ′
m+1 ∈ C

(M ′
m+1)×1 is408

the complex-valued signal vector transmitted from bm to its409

M ′
m + 1 served users with the symbol sbm ,1 intended for410

u and Wbm = [wbm ,i ]1≤i≤(M ′
m+1) ∈ C

Km×(M ′
m+1) is the411

corresponding ZF precoding matrix.412

Let the channel vectors from the tagged BS bm to its413

M ′
m users other than u be represented by [ hbm,i ]2≤i≤M ′

m+1,414

and the interference channel vector from the tagged BS to415

O = min(Qm , Km − Tmin)pico users chosen for interfer-416

ence nulling by F = [ fi ]1≤i≤O ∈ C
Km×O . Under the417

perfect CSI assumption, the ZF precoding matrix Wbm =418

[wbm,i ]1≤i≤(M ′
m+1) is designed such that |h∗

bm, j wbm , j |2 is max-419

imized for each j = 1, 2, . . . , M ′
m + 1, while satisfying the420

orthogonality conditions h∗
bm, j wbm ,i = 0 for ∀i �= j and421

f∗i wbm, j = 0,∀i = 1, 2, . . . , O,∀ j = 1, 2, . . . , M ′
m + 1. It422

can be achieved by choosing wbm ,i in the direction of the pro-423

jection of hbm ,i on Null
([ hbm , j ]1≤ j≤(M ′

m+1), j �=i, [ fi ]1≤i≤O
)
.424

The nullspace is Km − M ′
m − O dimensional and thus,425

the desired channel power gain βbm = |h∗
bm ,1wbm ,1|2 ∼426

Gamma(�m, 1), where �m = Km − M ′
m − O [36]. Given427

that an interfering macro BS at xm is serving Mm users428

simultaneously, Wxm = [wxm,i ]1≤i≤Mm ∈ C
Km×Mm , which429

is designed independent of gxm ,1. Assuming that the pre-430

coding matrix has linearly independent unit norm columns,431

g∗
xm,1wxm,1, g∗

xm ,1wxm,2, . . . , g∗
xm ,1wxm ,Mm are i.i.d. complex432

Gaussian random variables (RVs), and their squared norms are433

i.i.d. exponential RVs. Thus, the interference channel power434

gain ζxm = ||g∗
xm ,1Wxm ||2 ∼ Gamma(Mm , 1), as it is a sum of435

Mm i.i.d. exponential RVs [18].436

A feasible choice of the precoding matrix Wbm =437

[wbm,i ]1≤i≤(M ′
m+1) is the pseudo inverse2 of H̃

∗
bm

, i.e.,438

Wbm = H̃bm (H̃
∗
bm

H̃bm )−1 with normalized columns, where439

2Pseudo inversion of the channel matrix is an easy choice of ZF
precoding [7].

H̃bm = [h̃bm ,i ]1≤i≤(M ′
m+1) ∈ C

Km×(M ′
m+1), h̃bm ,i = (IKm − 440

F(F∗F)−1F∗)hbm,i being the projection of hbm,i on the 441

nullspace of F = [ fi ]1≤i≤O [31], [36]. 442

Similarly, the received signal z p at u when u ∈ �
p
u is 443

z p = √
Pp D

− α
2

p h∗
bp,1Wbp sbp + ξ 444

+
∑

q∈{m,p}

√
Pq

∑

xq∈�q\{vm ,bp}
||xq ||− α

2 g∗
xq ,1Wxq sxq + n p, 445

(12) 446

where 447

ξ =
{

0, if u ∈ χ√
Pm V

− α
2

m g∗
vm ,1Wvm svm , if u /∈ χ; (13) 448

bp is the serving pico BS at a distance Dp , which is serving 449

M ′
p other users simultaneously; n p ∼ CN (0, σ 2) is complex 450

Gaussian noise, vm is the nearest active macro BS to u at 451

a distance Vm , which receives an interference-nulling request 452

from u. The ZF precoding matrix Wbp = [wbp,i ]1≤i≤(M ′
p+1) 453

is given by Hbp(H
∗
bp

Hbp )
−1 with normalized columns, where 454

Hbp = [hbp,i ]1≤i≤(M ′
p+1) ∈ C

K p×(M ′
p+1) is the channel matrix 455

from the tagged BS bp to its M ′
p + 1 servedpico users. 456

The desired channel power gain βbp = ||h∗
bp,1Wbp ||2 = 457

|h∗
bp,1wbp,1|2 ∼ Gamma(�p, 1), where �p = Km − M ′

p , and 458

the interference channel power gain ζx p = ||g∗
x p,1Wx p ||2 ∼ 459

Gamma(Mp, 1) given that the interfering pico BS at x p is 460

serving Mp users simultaneously. 461

D. Distance to the Serving BS and the BS Receiving 462

Interference Nulling Request 463

The distance Dl to the serving BS from a typical user 464

u ∈ �l
u is a RV, and the corresponding PDFs for each 465

l ∈ {m, p} are derived in the following lemma. 466

Lemma 2: The PDF fDm (r) of the distance Dm between 467

the serving macro BS and a typical user u when u ∈ �m
u is 468

given by 469

fDm (r) = 2πλm

Am
r exp(−π(λm + λp/ρ

2)r2), (14) 470

and the PDF fDp (r) of the distance Dp between the serving 471

pico BS and a typical user u when u ∈ �
p
u is given by 472

fDp (r) = 2πλp

A p
r exp(−π(λmρ2 + λp)r

2). (15) 473

Proof: Given that u ∈ �m
u , Dm is the distance to 474

the nearest macro BS from u. The cumulative distribution 475

function (CDF) FDm (r) = P(Dm ≤ r) is thus given by 476

FDm (r) = P(Xm ≤ r |u ∈ �m
u ) = P(Xm ≤ r, u ∈ �m

m)

P(u ∈ �m
u )

477

= 1

Am

∫ r

0
P

(
X p >

y

ρ

)
fXm (y)dy. (16) 478

The PDF fDm (r) in (14) is obtained by differentiating (16) 479

with respect to r and then applying the probability distributions 480

of Rayleigh RVs Xm and X p . The PDF fDp (r) is similarly 481

derived. 482
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Another quantity of interest is the distance Vm between a483

typical pico-user in service and its nearest active macro BS484

to which it requests interference nulling.485

Lemma 3: The conditional PDF of the distance Vm between486

a typical user u ∈ �
p
u and the macro BS to which it request487

interference nulling, given that its distance to the serving pico488

BS is Dp = r , is given by489

fVm |Dp(r1|r) = 2πpmλmr1 exp
(
−πpmλm(r2

1 − ρ2r2)
)

,490

r1 > ρr. (17)491

Proof: Given that u ∈ �
p
u , Vm is the distance to the nearest492

active macro BS. The conditional complementary cumulative493

distribution function (CCDF) of Vm is thus given by494

F̄Vm |Dp(r1|r) = P(X ′
m ≥ r1|u ∈ �

p
u , Dp = r)495

= P(X ′
m ≥ r1|Xm > ρr), (18)496

where X ′
m = min

xm∈�m
‖xm‖ is the distance from the origin to497

the nearest active macro BS. The condition Xm > ρr implies498

that no points of �m are within a circle of radius ρr . Thus, no499

points of �m as well are within ρr because �m is the thinned500

version of �m . Thus, given that no active macro BS is closer501

than ρr , the probability of no active macro BS closer than502

r1 is equal to the probability that no points of �m are within503

an annulus centered at the origin with inner radius ρr and504

outer radius r1. The conditional CCDF F̄Vm |Dp(r1|r) is thus505

given by506

F̄Vm |Dp(r1|r) = exp
(
−πpmλm(r2

1 − ρ2r2)
)
. (19)507

The conditional PDF of Vm in (17) is obtained by differenti-508

ating (19) with respect to r1.509

III. SIR COVERAGE ANALYSIS510

We consider interference-limited scenario, and thus derive511

the SIR coverage probability in this section. The SIR coverage,512

i.e., the probability that the SIR of a typical user is greater than513

a given threshold γ is defined as P(γ ) = P(SIR > γ ), where514

SIR = ∑
l∈{m,p} 1(u ∈ �l

u) SIRl . From (11) and (12) and the515

discussion that follows, the SIR of a typical user u at the origin516

when it belongs to �l
u can be expressed as517

SIRl = Plβbl D−α
l

Ibl ,m + Ibl ,p
, ∀l ∈ {m, p}, (20)518

where Ibl ,m and Ibl ,p are the interference powers from the519

macro and pico tiers, respectively when u ∈ �l
u , l ∈ {m, p},520

and are given by521

Ibp,p = Pp

∑

x p∈�p\bp

ζx p ||x p||−α
522

Ibp,m =

⎧
⎪⎪⎨

⎪⎪⎩

Pm

∑

xm∈�m\vm

ζxm ||xm||−α if u ∈ χ

Pm

∑

xm∈�m

ζxm ||xm||−α if u /∈ χ,
523

Ibm ,p = Pp

∑

x p∈�p

ζx p ||x p||−α
524

Ibm ,m = Pm

∑

xm∈�m\bm

ζxm ||xm||−α. (21)525

By using the law of total probability, the SIR coverage 526

probability of a typical user u is 527

P(γ ) = Pm(γ )Am + Pp(γ )A p, (22) 528

where Al = P(u ∈ �l
u), l ∈ {m, p} is the tier association 529

probability, and Pm(γ ) = P(SIRm > γ |u ∈ �m
u ), and 530

Pp(γ ) = P(SIRp > γ |u ∈ �
p
u ) are the conditional coverage 531

probabilities of the user u when associated with the macro 532

and pico tiers, respectively. To evaluate (22), we first derive the 533

Laplace transform (LT) of the total interference power received 534

by u. 535

Lemma 4: The LT LIbp
(s) of the total interference power 536

Ibp = Ibp,m + Ibp,p received by u when u ∈ �
p
u conditional 537

on Dp = r and Vm = r1 is given by 538

LIbp
(s) =

(
ϕL1

Ibp ,m
(s) + (1 − ϕ)L2

Ibp ,m
(s)

)
LIbp ,p (s), (23) 539

where LIbp ,p (s) is the LT of Ibp,p; L1
Ibp ,m

(s) = LIbp ,m (s|u ∈ 540

χ), and L2
Ibp ,m

(s) = LIbp ,m (s|u /∈ χ) are the LTs of Ibp,m 541

conditional on u ∈ χ and u /∈ χ , respectively. These LTs are 542

given by (24)-(26), as shown at the top of the next page, where 543

2 F1(a, b, c, z) is the Gauss Hypergeometric function [37]. 544

Proof: The LT LIbp ,q (s) = E [e−s Ibp ,q ], ∀q ∈ {m, p} can 545

be derived as 546

LIbp ,q (s) = E�̂q

∏

xl∈�̂q

Eζxq

[
exp(−s Pqζxq ||xq ||−α)

]
, (28) 547

where �̂p = �p\bp , and �̂m = �m\vm if u ∈ χ , else 548

�̂m = �m . By performing the expectation over the distribution 549

of ζxq ∼ Gamma(Mq , 1) conditioned on Mq , and then apply- 550

ing the probability generating functional of PPP with density 551

pqλq [34], and finally taking the expectation over the PMF 552

of Mq , we have 553

LIbp ,q (s) = exp

{
− πpqλq� 2

p,q

( Lq
max∑

i=1

P(Mq = i) 554

× 2 F1

[
i,− 2

α
,
α − 2

α
,− Pq

�α
p,q

s
]

− 1

)}
, (29) 555

where �p,q is the lower bound on the distance to the closest 556

interferer from u in the tier q ∈ {m, p}. Thus, �p,p = r , and 557

�p,m = r1 if u ∈ χ ; otherwise, �p,m = ρr . 558

Similarly, the LT of Ibm = Ibm ,m + Ibm ,p conditional on 559

Dm = r can be derived as LIbm
(s) = LIbm ,m (s)LIbm ,p (s), where 560

LIbm ,q (s), q ∈ {m, p} is given by (27) shown at the top of the 561

next page, with �m,m = r and �m,p = r/ρ. 562

Having derived the LTs, we now evaluate Pl(γ ) = 563

P
(
Plβbl D−α

l > γ Ibl |u ∈ �l
u

)
, ∀l ∈ {m, p}. Conditional on 564

Dl = r , Vm = r1 and �l = n, we have 565

Pl(γ |r, r1,�l = n) =
n−1∑

l=0

(−s)l

l!
dl

dsl

(
LIbl

(s)
) ∣
∣
∣
∣s= γ rα

Pl

, (30) 566

which follows from the distribution Gamma(n, 1) of βbl for a 567

given �l = n, and the differentiation property of LT. Since the 568

LTs in (24)-(27) are composite functions, (30) requires evalu- 569

ating lth derivatives of composite functions. These derivatives 570
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L1
Ibp ,m

(s) = exp

{
− πpmλmr2

1

( Lm
max∑

i=1

P(Mm = i) 2 F1

[
i,− 2

α
,
α − 2

α
,− Pms

rα
1

]
− 1

)}
(24)

L2
Ibp ,m

(s) = exp

{
− πpmλmρ2r2

( Lm
max∑

i=1

P(Mm = i) 2 F1

[
i,− 2

α
,
α − 2

α
,− Pms

ραrα

]
− 1

)}
(25)

LIbp ,p (s) = exp

{
− πppλpr2

( L p
max∑

i=1

P(Mp = i) 2 F1

[
i,− 2

α
,
α − 2

α
,− Pps

rα

]
− 1

)}
(26)

LIbm ,q (s) = exp

{
− πpqλq� 2

m,q

( Lq
max∑

i=1

P(Mq = i) 2 F1

[
i,− 2

α
,
α − 2

α
,− Pq

�α
m,q

s
]

− 1

)}
(27)

are computed by using Faà di Bruno’s formula expressed in571

terms of integer partition, which is introduced in the following572

section.573

A. Integer Partition and Faà di Bruno’s Formula574

Integer partition is a partition of a positive integer n as a575

sum of positive integers. The set of all possible partitions of576

n is represented by �n with the number of partitions denoted577

by P(n). The integer 4, for example, can be partitioned as578

�4 = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1}}. Thus, P(4) = 5.579

Let ωn
i denotes the number of elements in the i th partition580

pn
i of n. Also, let μn

i j denotes the number of positive integer581

j ∈ {1, 2, . . . , n} in that partition, and an
ik denotes the kth582

element (k ∈ {1, 2, . . . , ωn
i }). Example: for the second partition583

of integer 4 in �4, i.e., p4
2 = {3, 1}, we have ω4

2 = 2,584

μ4
21 = 1, μ4

22 = 0, μ4
23 = 1, μ4

24 = 0, a4
21 = 3, a4

22 = 1.585

For any partition pn
i , we have the properties

∑n
j=1 jμn

i j = n586

and
∑n

j=1 μn
i j = ωn

i .587

Faà di Bruno’s formula for the lth derivative of the com-588

posite function y(t (s)) in terms of integer partition can be589

expressed as590

y(l)
s (t (s)) =

P(l)∑

o=1

cl
o y

(ωl
o)

t (s) (t (s))
l∏

q=1

(
t(q)
s (s)

)μl
oq

, (31)591

where592

cl
o = l!

∏ωl
o

k=1 al
ok!

∏l
q=1 μl

oq !
,593

and y(k)
t (s)(t (s)) is the kth derivative of the function y(t (s))594

with respect to t (s). Note that the integer partition version595

has much lesser number of summations as compared to the set596

partition version used in [21]. The complexity of the numerical597

computation is thus significantly reduced.598

Theorem 1: The SIR coverage probability of a typical pico-599

user u is given by600

Pp(γ ) = ϕT1(γ ) + (1 − ϕ)T2(γ ), (32)601

where T1(γ ) = P(SIRp > γ |u ∈ �
p
u , u ∈ χ) and T2(γ ) =602

P(SIRp > γ |u ∈ �
p
u , u /∈ χ) are the conditional coverage603

probabilities of a typical pico-user u when u /∈ χ and u ∈ χ ,604

respectively. These conditional probabilities can be computed605

by using (33) and (34), as shown at the top of the next page, 606

where δ = Pm/Pp, and the function �l
q(ς, κ, ε) is defined as 607

�l
q(ς, κ, ε) =

Ll
max∑

i=1

(
(i)q(− 2

α )q

(α−2
α )q

P(Ml = i) 608

× 2 F1

[
i + q,− 2

α
+ q,

α − 2

α
+ q,−ςκαε

])
, 609

(35) 610

where (a)q is a Pochhammer symbol. 611

Proof: The proof is given in Appendix A. 612

Remark 1: The number of other users served by the BS 613

which is serving the typical user u ∈ �l
u is given by M ′

l = 614

min(U ′
l , Ll

max − 1), where U ′
l is the number of other users in 615

the Voronoi cell to which the user u belongs. The PMF of U ′
l 616

can be derived as P(U
′
l = n) = (n + 1)P(Ul = n + 1)/E[Ul ]. 617

The PMF of M ′
l for Ll

max > 1 is thus given by 618

P(M ′
l = n) =

⎧
⎪⎪⎨

⎪⎪⎩

P(U ′
l = n), 0 ≤ n < Ll

max − 1

1 −
Ll

max−2∑

k=1

P(U ′
l = k), n = Ll

max − 1,
619

∀l ∈ {m, p}. (36) 620

For Ll
max = 1, P(M ′

l = 0) = 1,∀l ∈ {m, p}. 621

Corollary 1: The coverage probability of a typical macro- 622

user Pm(γ ) is given by (37), as shown at the top of the next 623

page, where the PMF of �m conditional on M ′
m = k for 624

Tmin < Km is given by 625

P(�m = n|M ′
m = k) 626

=

⎧
⎪⎪⎨

⎪⎪⎩

1 −
Km−Tmin−1∑

v=0

P(Qm = v), n = Tmin − k

P(Qm = Km − k − n), Tmin − k + 1 ≤ n ≤ Km − k.

(38) 627

For the special case of Tmin = Km which implies no interfer- 628

ence nulling, �m = Km − M ′
m , thus P(�m = Km − k|M ′

m = 629

k) = 1. 630

Proof: Pm(γ ) is derived in the same way as T2(γ ). 631

However, since �m = Km − M ′
m − min(Qm , Km − Tmin) is 632

a function of the two RVs M ′
m and Qm , deconditioning with 633

respect to �m is achieved in two steps, first averaging over the 634
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T1(γ ) = 2 pmλm
λp

A p

∫ 1
ρ

θ=0

[ L p
max−1∑

k=0

P(M
′
p = k)

K p−k−1∑

l=0

γ l

l! θαl+1
P(l)∑

o=1

cl
o(−1)ω

l
o

(
pmλm �m

0 (δ, θ, γ ) + ppλpθ
2 �

p
0 (1, 1, γ )

+(1 − pm)λmρ2θ2+(1− pp)λpθ
2
)−(ωl

o+2)

(ωl

o+2)

l∏

q=1

(
pmλmδq �m

q (δ, θ, γ )+ ppλp

θαq−2 �
p
q (1, 1, γ )

)μl
oq
]

dθ (33)

T2(γ ) = λp

A p

L p
max−1∑

k=0

P(M
′
p = k)

K p−k−1∑

l=0

γ l

l!
P(l)∑

o=1

cl
o(−1)ω

l
o
(ωl

o + 1)

l∏

q=1

(
pmλmδq

ραq−2 �m
q

(
δ,

1

ρ
, γ

)
+ ppλp �

p
q (1, 1, γ )

)μl
oq

×
(

ppλp �
p
0 (1, 1, γ ) + (1 − pm)λmρ2 + (1 − pp)λp + pmλmρ2 �m

0

(
δ,

1

ρ
, γ

))−(ωl
o+1)

(34)

Pm(γ ) = λm

Am

Lm
max−1∑

k=0

P(M ′
m = k)

Km−k∑

n=Tmin−k

P(�m = n|M ′
m = k)

n−1∑

l=0

γ l

l!
P(l)∑

o=1

cl
o(−1)ω

l
o
(ωl

o + 1)

(
(1 − pm)λm + (1 − pp)

λp

ρ2

+pmλm�m
0 (1, 1, γ )+ ppλp

ρ2 �
p
0

(
1

δ
, ρ, γ

))−(ωl
o+1) l∏

q=1

(
pmλm�m

q (1, 1, γ )+ ppλp
ραq−2

δq
�

p
q

(1

δ
, ρ, γ

))μl
oq

(37)

conditional PMF of �m for the given M ′
m , and then averaging635

over the PMF of M ′
m .636

Remark 2: For the special case of Lm
max = L p

max = 1,637

Pp(γ ) = Pp(γ |M ′
p = 0)638

= ϕT1(γ |M ′
p = 0) + (1 − ϕ)T2(γ |M ′

p = 0), (39)639

Pm(γ ) = Pm(γ |M ′
m = 0), (40)640

where for each l ∈ {m, p},641

�l
q(ς, κ, ε) = �q(ς, κ, ε) = (1)q(− 2

α )q

(α−2
α )q

642

× 2 F1

(
1 + q,− 2

α
+ q,

α − 2

α
+ q,−ςκαε

)
.643

(41)644

IV. RATE ANALYSIS645

In this section, we analyze the achievable downlink rate of646

a typical user. We derive the CCDF of downlink rate, also647

defined as the rate coverage, and the average rate of a typical648

user.649

Assuming adaptive transmission scheme such that the650

Shannon limit is achieved, and treating the interference as651

noise, the data rate of a typical user u is given by652

R =
∑

l∈{m,p}
Sl W log2(1 + SIRl)1(u ∈ �l

u), (42)653

where Sl is the fraction of resources received by u when654

u ∈ �l
u . For each l ∈ {m, p}, given that U ′

l is the number655

of other users in the cell to which the user u belongs, the total656

users in the tagged cell are U ′
l +1. We assume one RB per time657

slot with total bandwidth W , and at most Ll
max users served658

simultaneously in each RB through spatial multiplexing. Thus,659

if the total number of users in the tagged cell is less than660

Ll
max (i.e., U ′

l + 1 < Ll
max), each user can utilize the entire661

bandwidth W without sharing; thus, Sl = 1. However, if U ′
l +1 662

is no less than Ll
max (i.e., U ′

l + 1 ≥ Ll
max), we assume that 663

the time-frequency resources are shared equally among the 664

total users; thus, Sl = Ll
max/(U

′
l + 1). Hence, the fraction of 665

resources received by u ∈ �l
u can be expressed as 666

Sl = min

(
Ll

max

U
′
l + 1

, 1

)

. 667

Theorem 2: The CCDF of the downlink rate of a typical 668

user u, R (υ) = P(R > υ) can be expressed as R (υ) = 669

AmRm(υ) + A pRp, where Al = P(u ∈ �l
u) and Rl(υ) = 670

P(Sl W log2(1 + SIRl) > υ) is the rate distribution of u ∈ �l
u . 671

Rl(υ) for each l ∈ {m, p} is given by (43), as shown at the 672

top of the next page, where Pl(γ |M ′
l = k) is the conditional 673

SIR coverage probability of u ∈ �l
u for given M ′

l = k. 674

Proof: From (42), 675

P(R > υ) =
∑

l∈{m,p}
P(u ∈ �l

u) P(Sl W log2(1 + SIRl) > υ)
︸ ︷︷ ︸

Rl (υ)

676

where 677

Rl(υ) = P(W log2(1 + SIRl) > υ, U ′
l ≤ Ll

max − 2) 678

+P

( Ll
max

U
′
l + 1

W log2(1 + SIRl) > υ, U ′
l ≥ Ll

max − 1
)

679

=
Ll

max−2∑

k=0

P(SIRl > 2υ/W − 1|U ′
l = k)P(U ′

l = k) 680

+
∑

k≥Ll
max−1

P(SIRl > 2
υ
W

(k+1)

Ll
max − 1|U ′

l = k)P(U ′
l = k). 681

(44) 682

The conditional SIR coverage probabilities in (44) can be 683

conditioned on the given value of M ′
l by using M ′

l = 684

min(U ′
l , Ll

max − 1). 685
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Rl(υ) =
Ll

max−2∑

k=0

Pl

(
2υ/W − 1

∣
∣M ′

l = k
)

P(U ′
l = k) +

∑

k≥Ll
max−1

Pl

(
2

υ
W

(k+1)

Ll
max − 1

∣
∣
∣M ′

l = Ll
max − 1

)
P(U ′

l = k) (43)

R̄l = W

ln 2

∫ ∞

0

1

1 + y

[ Ll
max−2∑

k=0

Pl
(
y
∣
∣M ′

l = k
)
P(U ′

l = k) + Ol Pl

(
y
∣
∣
∣M ′

l = Ll
max − 1

) ]
dy (46)

Ol = Ll
maxλl

Alλu

(
1 −

(
1 + 3.5−1 Alλu/λl

)−3.5)
− 3.53.5


(3.5)

Ll
max−1∑

k=1


(3.5 + k)
(

Al λu
λl

)k−1
Ll

max

k!( Alλu
λl

+ 3.5)3.5+k
(47)

For the special case of Ll
max = 1, the rate distribution of686

u ∈ �l
u further simplifies to687

Rl(υ) =
∑

k≥0

Pl

(
2

υ
W (k+1) − 1

)
P(U ′

l = k). (45)688

After the rate coverage, we next derive the average data rate689

of any randomly chosen user.690

Theorem 3: The average rate R̄ = E[R] of a typical user u691

is given by R̄ = Am R̄m + A p R̄p, where R̄l = E[Sl W log2(1 +692

SIRl)] is the average rate of u ∈ �l
u , l ∈ {m, p}. R̄l is given by693

(46), as shown at the top of this page, where Ol is computed694

according to (47), shown at the top of this page.695

Proof: From (42),696

E[R] =
∑

l∈{m,p}
P(u ∈ �l

u) E[Sl W log2(1 + SIRl)]︸ ︷︷ ︸
R̄l

,697

where698

R̄l = W
Ll

max−2∑

k=0

E
[
log2(1 + SIRl)|U ′

l = k
]
P(U ′

l = k)699

+W
∑

k≥Ll
max−1

Ll
max

k+1
E
[
log2(1+SIRl)|U ′

l = k
]
P(U ′

l =k).700

(48)701

The computation of E[log2(1 + SIRl)] requires integrating702

log2(1 + SIRl) with respect to the PDF of SIRl . However, the703

integral can be transformed into 1/(ln 2)
∫ ∞

0 Pl(y)(1+y)−1 dy704

by applying integration by parts, along with the fact that705

PDF is the negative differentiation of CCDF. Also, we have706

M ′
l = min(U ′

l , Ll
max −1). Equation (48) thus can be simplified707

to (46), where708

Ol =
∑

k≥Ll
max−1

Ll
max

k + 1
P(U ′

l = k)709

=
∞∑

k=1

Ll
max

k
P(U ′

l = k − 1) −
Ll

max−1∑

k=1

Ll
max

k
P(U ′

l = k − 1).710

Equation (47) is obtained by substituting P(U
′
l = k) =711

(k + 1)P(Ul = k + 1)/E[Ul], k ≥ 0 and further simplifying712

by using
∑∞

k=1 P(Ul = k) = 1 − P(Ul = 0).713

For the special case of Ll
max = 1, the average data rate of 714

u ∈ �l
u simplifies to 715

R̄l = Ol
W

ln 2

∫ ∞

0

Pl (y)

1 + y
dy. (49) 716

V. IMPACT OF LIMITED FEEDBACK ON 717

INTERFERENCE NULLING 718

The results so far have been derived based on the perfect 719

CSI assumption. However, in practical systems, the CSI is 720

never perfectly accurate. In frequency division duplex systems, 721

the downlink CSI is fed back by the users to serving BSs. Due 722

to the limited feedback, the BSs receive quantized CSI. In 723

this section, we analyze the impact of the quantization error 724

due to limited feedback on the performance of interference 725

nulling. As the focus is on interference-nulling performance, 726

we consider Lm
max = L p

max = 1. 727

The feedback model is similar to the one used in 728

[31] and [32]. The quantized channel direction informa- 729

tion (CDI) is fed back by using a quantization codebook of 730

2B unit norm vectors, where B is the number of feedback 731

bits. The codebook is known at both the transmitter and the 732

receiver. Each user feeds back the index of the codeword 733

closest to its channel direction, measured by the inner product. 734

For example, a typical user, when it belongs to the macro tier, 735

uses the codebook Cm = {cm, j : j = 1, 2, . . . , 2Bm } of size 736

2Bm to quantize the channel direction h̃bm,1 = hbm ,1
||hbm ,1|| from 737

its serving maco BS bm . The quantized channel direction is 738

ĥbm ,1 = arg max
cm, j ∈Cm

∣
∣
∣h̃

∗
bm,1cm, j

∣
∣
∣ . 739

Similarly, the typical user, when it belongs to the pico tier, 740

uses the codebook Cp = {cp, j : j = 1, 2, . . . , 2Bp} of size 2Bp 741

to quantize the channel direction from its serving pico BS bp, 742

and the codebook Cm = {cm, j : j = 1, 2, . . . , 2Bm } to quantize 743

the channel direction from its nearest active macro BS vm . 744

Otherpico users which request vm for interference nulling, 745

as well as the user served by vm , also employ codebooks 746

of size 2Bm , but the codebooks differ from user to user 747

to avoid the possibility of receiving the same quantization 748

vector index from different users. The codebooks are generated 749

by using random vector quantization [38], [39], where each 750

vector cm, j of Cm and cp, j of Cp are independently chosen 751

from the isotropic distribution on the Km− dimensional and 752
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T1,L F(γ ) = 2 pmλm
λp

A p

∫ 1
ρ

θ=0

K p−1∑

l=0

(
γ

κp

)l

θαl+1
l∑

v=0

(δκI )
l−v

v!(1 + δκI γ /κpθα)l−v+1

P(v)∑

o=1

cv
o(−1)ω

v
o 
(ωv

o + 2)

×
(

pmλm�0

(
δ, θ,

γ

κp

)
+ ppλpθ2�0

(
1, 1,

γ

κp

)
+ (1 − pm)λmρ2θ2 + (1 − pp)λpθ

2
)−(ωv

o+2)

×
l∏

q=1

(
pmλmδq�q

(
δ, θ,

γ

κp

)
+ ppλp

θαq−2 �q

(
1, 1,

γ

κp

))μv
oq

dθ (53)

K p− dimensional unit spheres, respectively. Since the precod-753

ing vectors are now based on quantized CDIs, for the typical754

user u ∈ �m
u served by the macro BS bm , the desired channel755

power gain β̂bm ∼ Gamma(�m, κm), where �m = Km −756

min(Qm , Km −Tmin) and κm = 1−2Bm Beta(2Bm , Km
Km−1 ) [31].757

However, as the precoding vector of the interfering BS at758

xq ∈ �q\bm , q ∈ {m, p} is independent of the channel to759

the typical user u, the interference channel power gain ζ̂xq is760

still distributed as Gamma(1, 1), i.e., Exp[1]. Similarly, for761

the typical user u ∈ �
p
u served by the pico BS bp, the762

desired channel power gain β̂bp ∼ Gamma(�p, κp), where763

�p = K p and κp = 1−2BpBeta(2Bp,
K p

K p−1 ). The interference764

channel power gain from each interfering BS other than vm765

is distributed as Exp[1]. If vm does not apply interference766

nulling, the interference channel power gain from vm , ζ̂vm767

is also distributed as Exp[1]. However, if vm applies nulling,768

unlike the perfect CDI case, where the interference from vm769

is completely nulled, there will be residual interference due to770

the quantization error. The interference channel power gain in771

this case is approximated as an exponential RV with mean772

κI = 2− Bm
Km −1 [31]. Thus, ζ̂vm ∼ Exp[1/κI ], if u ∈ χ ;773

otherwise ζ̂vm ∼ Exp[1]. The SIR of the typical user u can be774

expressed as775

SIRl = Pl β̂bl D−α
l

Îbl ,m + Îbl ,p
, ∀l ∈ {m, p}, (50)776

where777

Îbl ,m = Pm

∑

xm∈�m\bl

ζ̂xm ||xm||−α,778

Îbl ,p = Pp

∑

x p∈�p\bl

ζ̂x p ||x p||−α. (51)779

Corollary 2: With limited feedback, the coverage probabil-780

ity of a typical pico-user u in the interference-limited scenario781

is given by782

Pp,L F (γ ) = T1,L F (γ )ϕ + T2,L F (γ )(1 − ϕ), (52)783

where T1,L F (γ ) is the coverage probability of u ∈ χ with784

limited feedback, and is given by (53) shown at the top of this785

page and T2,L F (γ ) = T2
(
γ /κp

)
is the coverage probability786

of u /∈ χ , expressed in terms of the corresponding probability787

for the perfect CSI, T2(·). Similarly, the coverage probability788

of a typical macro-user u with limited feedback is given by789

Pm,L F (γ ) = Pm (γ /κm).790

Proof: Due to the limited feedback, even when a typical 791

pico-user u belongs to χ , it receives residual interference 792

Y = Pm ζ̂m V −α
m from its nearest active macro BS, where 793

ζ̂m ∼ Exp[1/κI ]. Thus, the LT of total macro tier interference 794

when u ∈ χ is given by 795

L Îbp ,m
(s|u ∈ χ) = L1

Ibp ,m
(s)E[e−sY ] 796

= L1
Ibp ,m

(s)(1 + s PmκI r−α
1 )−1, 797

where L1
Ibp ,m

(s) is the LT of the total macro tier interference 798

for the perfect CSI in (24). The LT of the total pico tier 799

interference L Îbp ,p
(s) is equal to LIbp ,p in (26). Since β̂bp ∼ 800

Gamma(K p, κp), T1,L F(γ ) can then be derived in the same 801

way as T1(γ ) in Theorem 1 with γ replaced by γ /κp . For 802

T2,L F (γ ) and Pm,L F (γ ), since the LTs of interference powers 803

are the same as those of the perfect CSI case, T2,L F (γ ) 804

is given by (34) with γ replaced by γ /κp , and similarly 805

Pm,L F (γ ) by (37) with γ replaced by γ /κm . 806

Note that T2,L F(γ ) and Pm,L F (γ ) reduce to T2(γ ) and 807

Pm(γ ), respectively, if κm = κp = 1. Similarly, if κp = 1 and 808

κI = 0, by using 00 = 1, T1,L F (γ ) also reduces to T1(γ ). 809

After deriving the coverage probabilities for limited feedback, 810

the rate coverage and average rate can be obtained by using 811

Theorem 2 and Theorem 3, respectively, with Pl (·) replaced 812

by Pl,L F (·). 813

VI. SIMULATION AND NUMERICAL RESULTS 814

In this section, we validate our analytical results via Monte 815

Carlo simulations on a square window of 20 × 20 Km2 and 816

present numerical analysis to provide insights into impor- 817

tant design parameters. Unless otherwise stated, we set 818

δ = Pm
Pp

= 100, λm = 1BS/Km2 and W = 1 MHz. 819

The average data rate (Theorem 3) for perfect CSI, and 820

the data rate distribution (Theorem 2) for both the perfect 821

CSI and limited feedback scenarios are validated via Monte 822

Carlo simulations for different system configurations in 823

Figure 1.a and Figure 1.b, respectively. The analytical and 824

simulation results match with each other quite well in these 825

figures. The PPP based assumptions of the thinned processes 826

�m
u , �

p
u and �

p
u obtained from the parent process �u 827

hardly impact the probability distributions of the number 828

of users of corresponding sets in a typical cell. The small 829

gaps between the simulations and analytical curves are thus 830

mostly due to the approximation of cell area distribution by 831

Gamma. Note that the validation of Theorem 3 for perfect 832

CSI naturally validates the conditional SIR distributions 833
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Fig. 1. (a) Validation of the average user data rate (Theorem 3) with
perfect CSI for different values of λp , η and (Km , Lm

max, Tmin, K p , L p
max);

(b) Validation of the rate coverage probability (Theorem 2) for both the perfect
CSI and limited feedback scenarios: Km = 12, K p = 4, Lm

max = L p
max = 1,

Tmin = 2, λu = 10λm , α = 3.5, η = 15dB.

derived in Theorem 1 and Corollary 1, and the validation of834

Theorem 2 for limited feedback validates the SIR distribution835

in Corollary 2. In Figure 1.a, the average data rate decreases836

with an increase in user density λu because of the increase in837

interference and the decrease in users’ share of resources. The838

interference power increases with an increase in user density839

because not just more BSs become active, but the average840

channel power gain from each interfering BS also increases841

until the number of users associated with the BS exceeds Ll
max.842

In Figure 2, we analyze the impact of interference nulling843

on the SIR coverage probability, where Tmin = Km implies no844

interference nulling employed. While the overall SIR coverage845

of a typical user is plotted in Figure 2.a, the coverage proba-846

bility conditioned that the user belongs to pico tier and always847

gets the interference from its nearest active macro BS nulled,848

T1(γ ) is compared against that its no-nulling counterpart,849

T2(γ ) in Figure 2.b. Figure 2.a reveals that with properly850

chosen Tmin, the SIR coverage can be significantly improved851

with interference nulling. For example, if the required SIR852

level for a typical user to be under coverage is 0 dB, the853

average fraction of users under coverage improves from 61%854

to 70% with interference nulling for the λu = 6λm , η = 15 dB855

case. In both Figure 2.a and Figure 2.b, the performance856

Fig. 2. Impact of interference nulling on the SIR coverage probability:
Km = 14, Lm

max = 4, K p = 6, L p
max = 4, λp = 6λm , α = 3.5.

gain decreases with an increasing threshold. At smaller val- 857

ues of thresholds, as interference nulling improves the SIRs 858

of poor cell-edge pico-user lacking coverage due to strong 859

interference from their corresponding nearest active macro 860

BSs, the coverage probability of thepico users significantly 861

improves. On the other hand, we know that the SIR of a 862

typical macro-user degrades due to interference nulling as 863

it costs the user its available DoF. At lower values of SIR 864

thresholds, the degradation in SIR is, however, not significant 865

enough to impact its coverage probability. Thus, the overall 866

gain in coverage probability is high at smaller threshold levels. 867

However, at larger threshold values, the users under coverage 868

are basically those in the cell interior. Thus, interference 869

nulling may not significantly improve the already high SIR 870

of cell-interiorpico users, resulting in minimal improvement in 871

pico coverage probability. The SIR degradation of macro-users 872

due to interference nulling, which do not have any significance 873

on macro coverage probability at lower thresholds eventually 874

causes the coverage probability to degrade after certain level. 875

This degradation further reduces the overall gain in coverage 876

probability. 877

In Figure 2.a, the performance gain in the overall coverage 878

probability for λu = 10λm , η = 20 dB is relatively low 879

compared to the λu = 6λm , η = 15 dB case. However, in 880

Figure 2.b, given that the nulling is performed for each pico- 881
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Fig. 3. Effect of pico cell density λp on the optimal choices of Tmin and
η: λu = 6λm , Km = 12, Lm

max = 4, K p = 4, L p
max = 4, α = 4.

user, both cases have similar gains in pico coverage probability882

due to nulling. Thus, the reason for the lower performance gain883

for higher user density λu and higher bias η is the lack of884

sufficient resources for interference nulling. For the λu = 6λm885

and η = 15 dB case, with Tmin = 6, interference to 83% of886

thepico users from their corresponding nearest active macro887

BSs are nulled. The fraction of interference nulledpico users888

reduces to 53% for λu = 10λm and η = 20 dB, with optimal889

Tmin of 7.890

Next, we investigate the optimal value of η to maximize891

the average user data rate. η controls the number of users892

offloaded from the macro to the pico tier to obtain a balanced893

distribution of the user load across tiers so that the radio894

resources are better utilized in each tier. Meanwhile, since895

Tmin determines the spatial DoF available for serving the896

macro-users, as well as the number of interference-nulledpico897

users, Tmin must be tuned according to user offloading. The898

joint tuning of Tmin and η for optimal average data rate is899

investigated in Figure 3. The optimal pair (η, Tmin) is found900

to be (10 dB, 8) and (11 dB, 6) for pico density λp = 4λm and901

λp = 6λm , respectively. For the given user density, the optimal902

Tmin decreases with the increase in pico density because the903

number of interference-nulling requests received by a typical904

active macro BS increases with the increase in pico density.905

Thus, the allocated interference-nulling resources (Km −Tmin)906

must be increased.907

The variation in the average rate with Tmin for the given908

value of η is plotted in Figure 4. The average rate of the macro-909

users increases with an increasing Tmin due to the increase910

in the spatial DoF available at each macro BS for serving911

its own users. In contrast, the average pico rate decreases912

with an increasing Tmin due to the decrease in the number913

of interference nulledpico users. The net result is the initial914

increase in the average rate with an increasing Tmin and the915

subsequent decrease beyond a certain value of Tmin. The916

optimal Tmin shifts towards the lower values as the value of917

η increases. For example, the optimal Tmin of 7 for η = 3 dB918

decreases to 6 for η = 11 dB and to 5 for η = 16 dB. With an919

increasing η, more users are offloaded to the pico tier. Thus,920

allocating more antenna resources for interference nulling is921

desirable.922

Fig. 4. Average rate vs. Tmin for different values of η: λu = 6λm , λp = 6λm ,
Km = 12, Lm

max = 4, K p = 4, L p
max = 4, α = 4.

Fig. 5. Effect of interference nulling on cell-edge data rate: λp = 6λm ,
Km = 12, Lm

max = 4, K p = 4, L p
max = 4, α = 4.

In Figure 5, the rate coverage corresponding to the optimal 923

pair (η, Tmin) which maximized the average rate in Figure 3 for 924

λp = 4λm and λp = 6λm is plotted. Let the 5th percentile rate 925

R95, which corresponds to the 5th percentile of the users with 926

rate less than R95 (i.e., R (R95) = 0.95), be considered as the 927

cell-edge data rate. For λp = 4λm and η = 10 dB, Tmin = 8, 928

which maximized the average rate is found to improve the 929

cell-edge rate from 7.2 ×104 bits/sec to 1.12 ×105 bits/sec as 930

compared to that without interference nulling. Similarly, for 931

λp = 6λm , the cell-edge rate improves from 9.6×104 bits/sec 932

to 1.68 × 105 bits/sec if interference nulling with Tmin = 6 is 933

employed corresponding to η = 11 dB. 934

In Figure 6, the average data rate is assessed for different 935

values of Lm
max and L p

max with and without interference nulling. 936

The curve corresponding to the interference nulling employed 937

is plotted by computing the average rate with optimum Tmin 938

for each corresponding value of Lm
max and L p

max. As Figure 6 939

reveals, the average data rate can be significantly improved by 940

selecting a proper value of Lm
max compared to either SU-BF 941

or full-SDMA, and similarly a proper value of L p
max. For the 942

case with no interference nulling employed, in which all the 943

antennas at each macro BS are used for serving its own users, 944

the variation of Lm
max has little or no impact on the average 945



IEE
E P

ro
of

DHUNGANA AND TELLAMBURA: PERFORMANCE ANALYSIS OF SDMA WITH INTER-TIER INTERFERENCE NULLING IN HetNets 13

Fig. 6. Average rate vs. Lm
max for different values of L p

max with optimum
Tmin and no interference nulling: λp = 6λm , λu = 6λm , Km = 12, K p = 4,
η = 12 dB, α = 4.

rate from Lm
max = 7 to Lm

max = 12. This result can be observed946

for each given value of L p
max because beyond Lm

max = 7, the947

number of users simultaneously served by a macro BS in each948

time slot is limited by the number of users in that cell, rather949

than Lm
max. This explanation is further corroborated by the950

fact that with interference nulling employed, the optimal Tmin951

beyond Lm
max = 7 is found to be the corresponding Lm

max itself,952

which is the minimum possible value of Tmin. Since beyond953

Lm
max = 7, the number of macro-users in a cell is typically954

less than Lm
max, allocating more antenna resources than Lm

max955

would be wasting resources as those surplus resources can956

be utilized for performance improvement through interference957

nulling. For each possible value of L p
max, the optimal pair958

(Lm
max, Tmin) which maximizes the average rate is found to959

be (6, 7) . The average rate slightly degrades for L p
max = 4 as960

compared to L p
max = 3 (not shown in the figure). Thus, the961

optimal values of Lm
max, Tmin, and L p

max for the given system962

configuration are 6, 7, and 3, respectively.963

After numerically analyzing the proposed SDMA scheme964

with interference nulling for the perfect CSI, we now inves-965

tigate the impact of limited feedback on the performance.966

As explained in Section V, each macro-user feeds back Bm967

CSI bits to its home BS. In contrast, each pico-user feeds968

back Bp CSI bits to its home BS and Bm CSI bits to its969

nearest active macro BS if the BS is performing interference970

nulling to the user. In Figure 7, the impact of the number971

of feedback bits Bm and Bp on the rate coverage with and972

without interference nulling is investigated. As the number of973

feedback bits increases, the performance approaches that of the974

perfect CSI. Clearly, the impact of limited feedback bits Bm on975

the performance is higher for the interference-nulling scenario976

than that without nulling. Bm > 16, which is more than suffi-977

cient for the non-coordination case, appears to be insufficient978

for interference nulling case to reap the full benefits of nulling.979

Nevertheless, nulling does improve performance even with980

limited feedback as compared to the non-coordination case.981

With no interference nulling employed, the feedback bits Bm982

are only required for signal power boosting to the single user983

being served in the cell and such processing is found to be less984

sensitive to CSI errors as compared to interference nulling. If985

Fig. 7. Impact of number of feedback bits on the rate coverage performance:
λp = 6λm , λu = 10λm , Km = 12, K p = 4, Lm

max = L p
max = 1, η = 15 dB,

α = 3.5.

we observe the rate coverage curve against Bp for the non- 986

coordination case, Bp > 20 is near perfect. However, we can 987

observe a performance gap for interference nulling case even 988

beyond Bp = 20 because of the limitation in Bm , which is 989

considered to be 40 in this case. 990

VII. CONCLUSION 991

We analyzed the downlink performance of multi-antenna 992

HetNets with SDMA, in which the ZF precoding matrix at 993

macro BS also considered interference nulling to certainpico 994

users. Further, the number of users served with SDMA in 995

each cell was a function of user distribution. Our results 996

showed that the SIR and rate coverage of victimpico users 997

(those suffering strong interference from macro BS) can be 998

significantly improved with the proposed interference nulling 999

scheme if Tmin is carefully chosen. The optimal choice of 1000

Tmin for maximum data rate was found to be coupled with 1001

association bias. The optimal values of Lm
max and L p

max which 1002

maximize the average data rate was also investigated and were 1003

found to outperform both SU-BF and full-SDMA. The impact 1004

of CSI quantization error on the performance of interference 1005

nulling due to limited feedback was also analyzed. It was 1006

observed that interference nulling is highly sensitive to CSI 1007

errors as the residual interference due to CSI imperfection 1008

significantly degrades the performance. However, depending 1009

on the degree of CSI imperfection, the performance may still 1010

be better than that without interference nulling. 1011

APPENDIX 1012

A. Proof of Theorem 1 1013

By substituting (23) into (30), followed by �p = K p − 1014

M ′
p , and then averaging over the joint PDF of Dp and Vm , 1015

expressed as fVm |Dp(r1) fDp (r), and the PMF of M ′
p , we 1016

get (32), where 1017

T1(γ ) =
∫ ∞

r=0

∫ ∞

r1=ρr

L p
max−1∑

k=0

P(M ′
p = k)

K p−k−1∑

l=0

(−s)l

l! 1018

× dl

dsl

(
L1

Ibp ,m
(s)LIbp ,p (s)

)∣∣
∣
∣s= γ rα

Pp
fVm |Dp(r1|r) fDp(r) dr1 dr, 1019

(54) 1020
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and T2(γ ) is given by a similar expression with L1
Ibp ,m

(s)1021

replaced by L2
Ibp ,m

(s). However, since the LT in T2(γ ) is not a1022

function of r1, averaging over the PDF of Dp only is required.1023

We thus derive T1(γ ) first, as T2(γ ) then follows immediately.1024

Let y(s) = e−πs , and t (s) = pmλmr2
1 �m

0

(
1, 1, Pm

rα
1

s
)

+1025

ppλpr2 �
p
0

(
1, 1,

Pp
rα s

)
. The LT in (53) can be expressed as1026

L1
Ibp ,m

(s)LIbp ,p (s) = eπ
(

pmλmr2
1 +ppλpr2

)
y(t (s)), the lth deriva-1027

tive of which can be evaluated by applying Faà di Bruno’s1028

formula (31). While computing the lth derivative, we use1029

y
(ωl

o)
t (s) (t (s)) = (−π)ω

l
o exp(−π t (s));1030

dq

dsq
�l

0

(
1, 1,

Pl

�α
l

s

)
=

(
− Pl

�α
l

)q

�l
q

(
1, 1,

Pl

�α
l

s

)
,1031

(55)1032

which follows from the property of the Gauss Hyperge-1033

ometric function; and the properties of integer partition1034 ∑l
q=1 qμl

oq = l and
∑l

q=1 μl
oq = ωl

o. The final expression1035

for T1(γ ) in (33) is then obtained by changing the order of1036

integration, followed by substituting r
r1

→ θ , r1 → r1, then1037

integrating with respect to r1.1038
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Performance Analysis of SDMA with Inter-tier
Interference Nulling in HetNets

Yamuna Dhungana, Student Member, IEEE, and Chintha Tellambura, Fellow, IEEE

Abstract— The downlink performance of two-tier (macro/pico)1

multi-antenna cellular heterogeneous networks employing space2

division multiple access (SDMA) technique with zero-forcing3

precoding is analyzed in this paper. The number of users4

simultaneously served with SDMA by a base-station (BS) depends5

on the number of active users in its cell, with the maximum6

served users limited to Lmax. To protect the pico users from7

severe macro-interference, part of the antennas at each macro8

BS is proposed to be utilized toward interference nulling to9

pico users. The partitioning of macro antenna resources to10

serve macro-users and to null interference to pico users for11

optimal performance is investigated in this paper. Biased-nearest-12

distance-based user association scheme is proposed, where the13

bias value accounts for the natural bias due to the differences14

in multi-antenna transmission schemes across tiers, as well as15

the artificial bias for load balancing. The signal-to-interference-16

ratio coverage probability, rate distribution, and average rate of17

a typical user are then derived. Our results demonstrate that18

the proposed interference nulling scheme has strong potential19

for improving performance if the macro antennas partitioning is20

carefully done. The optimal L∗
max for both macro and pico-tier,21

which maximize the average data rate, is also investigated and it22

is found to outperform both single-user beamforming and full-23

SDMA. Finally, the impact of imperfect channel state information24

due to limited feedback is analyzed.
25

Index Terms— Heterogeneous networks (HetNets), interference26

nulling, limited feedback, Poisson point process (PPP), space27

division multiple access (SDMA), stochastic geometry.28

I. INTRODUCTION29

NETWORK densification (dense deployment of base-30

stations (BSs)) and multi-antenna techniques are31

well-known for their tremendous potential to increase spectral32

efficiency of wireless networks. In a conventional macro only33

cellular network, where the locations of high-power macro BSs34

are strictly planned, adding more BSs can be very challenging35

for dense urban areas due to extremely high site acquisition36

cost. Thus, the cost-effective way of network densification37

is to deploy a diverse set of low-power BSs within the areas38

covered by macro cellular infrastructure [1]. The resulting39
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network of mixed types of BSs is known as heterogeneous 40

network (HetNet). If the BSs are equipped with multiple 41

antennas, the additional degrees of freedom (DoF) in the 42

spatial dimension can be utilized in a number of ways, for 43

example, to improve the spectral efficiency, and to enhance the 44

link reliability. The diversity and spatial multiplexing gains 45

have been extensively studied in general for point-to-point 46

links without interference. Some examples of diversity tech- 47

niques are space-time coding [2], [3] and coherent processing 48

known as beamforming [4]. The spatial multiplexing which 49

utilizes the multiple antennas to transmit independent data 50

streams simultaneously over spatial sub-channels, has been 51

explored in [5]. Space division multiple access (SDMA) 52

which allows multiple users to be served simultaneously on 53

the same time-frequency resource has also been analyzed 54

[6], [7]. However, in interference-prone cellular networks, 55

for example, a dense deployed HetNet, where complex 56

interference scenarios may arise due to power disparities 57

between the BSs, the effectiveness of spatial multiplexing may 58

diminish [8]. Nevertheless, if the available spatial DoF are 59

intelligently utilized to suppress/mitigate interference as well 60

as to harvest diversity and multiplexing gain, the performance 61

of cellular networks can be improved. In this paper, we 62

develop a tractable framework to analyze the downlink 63

performance of zero-forcing (ZF) precoding based joint 64

SDMA and inter-tier interference-nulling scheme in HetNets. 65

A. Related Work and Contributions of the Paper 66

Although multiple antenna in wireless communications is 67

a mature technology, its incorporation into cellular networks, 68

traditional single tier, as well as HetNets, has received much 69

momentum both in academic research and standardization 70

efforts only recently with the introduction of massive-MIMO 71

concept [9]–[12]. By utilizing the stochastic geometry frame- 72

work which enables systematic modeling of interference, 73

several studies on the modeling and analysis of downlink 74

single-tier multi-antenna cellular networks have been reported 75

in the literature. For example, error probability analysis by 76

using the equivalent-in-distribution approach in [13], coverage 77

and rate analyses using the Gil-Pelaez inversion theorem 78

in [14], and a unified approach to error probability, outage 79

and rate analyses for different multi-antenna configurations 80

with retransmissions in [15]. Apart from single-tier networks, 81

stochastic geometric modeling of downlink multi-antenna Het- 82

Nets have been significantly explored as well. Reference [16] 83

compared the signal-to-interference-and-noise ratio (SINR) 84

coverage of SU-BF with that of ZF SDMA for a two-tier multi- 85

antenna HetNet by considering a single fixed-radius circular 86

1536-1276 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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macro cell with multiple femto cells of fixed radii, distributed87

according to a Poisson point process (PPP) within the macro88

cell. However, since BS-user association and macro-tier inter-89

ference are ignored, the insights in [16] may not be accurate90

for practical HetNets. The coverage probability and average91

link spectral efficiency of ZF precoding in multi-antenna Het-92

Net, spatially averaged over a given cell of known radius and93

guard region are derived in [17]. Unlike the spatial averaging94

over a given cell in [17], system-wide spatial averaging is con-95

sidered in [18] and the upper bounds on coverage probability96

of ZF SDMA and SU-BF are derived. The ordering results97

for the coverage probability and rate per user performance98

of SDMA, SU-BF and single-antenna transmission are also99

derived in [18] by using tools from stochastic orders. While100

the analysis in [18] is based on maximum instantaneous SINR101

based BS-user association, association rules intended to maxi-102

mize the average receive SINR (and thus, the SINR coverage),103

and biased association for optimal rate coverage are proposed104

for multi-antenna HetNets in [19]. Closed form expressions105

for the signal-to-interference ratio (SIR) of ZF SDMA and106

SU-BF are derived in [20] for user association based on107

the received power of the reference signal transmitted from108

a single-antenna with total power. In all of these downlink109

multi-antenna HetNet analyses [16]–[20], each cell of a tier is110

assumed to be spatially multiplexing to the same number of111

users, say L, and it can be any arbitrary integer in the interval112

[1, Ki ], where Ki is the number of antennas at a BS of the113

i th tier. This assumption, however, is not suitable for cellular114

networks because the number of users, which depends on user115

distribution, is generally different from one cell to another. An116

open-loop SDMA with each antenna serving an independent117

data stream to its user with the limiting requirement that the118

number of users in each cell must be at least equal to the119

number of transmit antennas is analyzed in [21] for single-tier120

cellular networks with ZF and MMSE receivers. In this paper,121

we consider user-distribution dependent SDMA scheme, i.e.,122

the number of users simultaneously served with SDMA in each123

cell depends on the total number of users in that cell. If the124

number of users in a cell is less than the maximum number of125

users served per resource block (RB), say Lmax, all the users126

are simultaneously served; otherwise only Lmax users chosen127

randomly are served.128

One of the key challenges in downlink cellular HetNets129

is inter-tier interference management. Due to large transmit130

power disparities between macro and small-cell nodes such as131

picos and femtos, and proactive user offloading from macro to132

small cells, interference management between the macro and133

pico/femto tiers is very important because the performance of134

small-cell cell-edge users could be severely degraded. While135

almost blank subframes (ABSF) [22], [23] and frequency-136

domain resource partitioning [24], [25] can be used, inter-137

tier interference can be more efficiently managed without138

compromising time/frequency resources by using multiple139

antennas. Inter-tier interference mitigation by using multiple140

receive antennas at the user devices is analyzed in [26]. In this141

paper, we analyze ZF-precoding based interference-nulling142

method by using BS antennas to suppress the interference143

from the macro tier to small-cell users. Compared to other144

potential techniques such as joint transmission [27] and trans- 145

mission point selection [28], which require both user data 146

and channel state information (CSI) to be shared between 147

the coordinating BSs, interference nulling requires only CSI 148

to be shared. Joint transmission with local precoding, which 149

requires no CSI exchange between the coordinating BSs, is 150

studied in [12]. However, it stills requires user data sharing, 151

which could be very challenging due to backhaul overhead. 152

In [29], interference nulling to U offloadedpico users by each 153

macro BS is analyzed, where the optimal U for maximum 154

rate coverage is also investigated. However, unlike [29] which 155

considers a single served user per RB in each cell, we consider 156

a user-distribution dependent SDMA scheme. SU-BF with 157

interference nulling to a fixed number of neighboring-cells 158

users at each BS of any tier for general multi-tier HetNets 159

is analyzed in [30], without specifying how these users are 160

selected. SU-BF with interference nulling in single-tier cellular 161

networks is studied in [31] and [32]. Although SU-BF with 162

interference nulling has been relatively well analyzed, to 163

the best of our knowledge, this paper is the first work to 164

analyze a user-distribution dependent SDMA scheme with 165

inter-tier interference nulling in cellular HetNets. The main 166

contributions of this paper are summarized as follows. 167

1) We develop a tractable framework to analyze a user- 168

distribution dependent SDMA scheme in a two-tier 169

(macro/pico) multi-antenna HetNet with ZF precoding, 170

in which the number of users simultaneously served 171

by a BS in an RB depends on the number of active 172

users in its cell. The framework also allows the analysis 173

of SU-BF and full-SDMA by setting the limit on the 174

number of users served per RB to one, and the total 175

number of transmit antennas, respectively. 176

2) To suppress the detrimental macro-to-pico interference, 177

interference-nulling precoding, jointly with user- 178

distribution dependent SDMA, is proposed. That is, 179

the precoding matrix at each macro BS is designed 180

to null interference to a set of activepico users while 181

spatially multiplexing the macro-users in the cell. In the 182

proposed interference-nulling scheme, the candidatepico 183

users for interference nulling from a macro BS, say b, 184

are the ones which have b as their nearest interfering 185

macro BS. 186

3) Considering the complexity of BS-user association in 187

multi-antenna HetNets, a simple biased-nearest-distance 188

based association rule is introduced, in which the bias 189

value accounts for the natural bias required for SINR 190

maximization in multi-antenna HetNets, as well as the 191

artificial bias for load balancing. 192

4) By considering interference limited scenario, we derive 193

analytical expressions for the SIR and rate distributions, 194

as well as the average rate of a typical user. We then 195

perform comprehensive analysis to investigate the 196

optimal association bias, and the inherent trade-off 197

between interference cancellation, signal power boosting 198

and spatial multiplexing. The following useful network 199

design insights are obtained from these analyses: 200

a) By optimizing the maximum number of users 201

simultaneously served per RB, SDMA can achieve 202
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significantly higher average data rate than both203

SU-BF and full SDMA.204

b) If the number of users in a typical cell is less than205

the maximum number of users served per RB, say206

Lmax , the optimal number of antennas towards207

spatial multiplexing and signal power boosting of208

local users is found to be Lmax .Thus, rather than209

allocating additional antennas to these users, the210

average data rate can be significantly increased if211

the surplus antennas are used towards interference212

nulling topico users.213

c) The optimal number of antennas towards214

interference nulling topico users increases with the215

increase in pico cell density, as well as association216

bias.217

5) Finally, the impact of the CSI quantization error due218

to limited feedback on interference nulling is also219

investigated.220

The paper is organized as follows. The system model and the221

proposed multi-antenna technique are presented in Section II.222

Section III derives the SIR distribution. The rate coverage and223

the average rate are derived in Section IV. In Section V, the224

impact of limited feedback is analyzed. The numerical results225

are presented in Section VI, and the concluding remarks in226

Section VII.227

II. SYSTEM MODEL228

We consider the downlink of a two-tier multi-antenna229

HetNet comprising macro and pico BSs spatially distributed on230

R
2 plane as independent homogeneous PPPs �m with density231

λm and �p with density λp , respectively. The macro BSs are232

equipped with Km transmit antennas, and the pico BSs with233

K p antennas. Similarly, users are assumed to be distributed234

according to an independent PPP �u with density λu , and each235

has a single receive antenna. The two network tiers share the236

same spectrum with the universal frequency reuse.237

The transmission scheme is SDMA with ZF precoding238

applied at each BS to serve multiple users simultaneously in239

each RB. We assume only one RB per time slot. As the BSs240

and users are independently distributed on the R
2 plane, the241

number of users varies across cells. Thus, in our proposed242

SDMA scheme, a typical active macro cell with Nm ≥ 1243

users serves Mm = min(Nm , L M
max) users simultaneously in244

a given time slot, where L M
max is the maximum number of245

users it can serve. If Nm > L M
max, the BS choses L M

max users246

for service randomly, else, all Nm users are served. Similarly,247

Mp = min(Np , L P
max) users are simultaneously served by a248

typical active pico cell in a given time slot, which has Np ≥ 1249

users, and L P
max is the maximum number the pico cell can250

serve. The macro and pico BSs transmit to each of their users251

with power Pm and Pp , respectively.252

A. User Association253

According to the user association rule introduced in [19]254

for average SINR maximization, a typical user at the origin255

is associated with the nearest pico BS if Pp
√

�pτp X−α
p ≥256

Pm
√

�mτm X−α
m , and otherwise, is associated with the nearest257

macro BS, where Xm = min
xm∈�m

‖xm‖ and X p = min
xm∈�p

‖x p‖ 258

are the distances from the origin to the nearest macro and pico 259

BSs, respectively. If associated with the macro tier, �m is the 260

average desired channel gain from the nearest macro BS, and 261

τp is the average interference channel gain from the nearest 262

pico BS. Similarly, �p and τm are the corresponding values, 263

if associated with the pico tier. These channel gains depend on 264

the number of users served with SDMA. This association rule 265

is thus not suitable for our proposed SDMA scheme, where the 266

number of users served with SDMA in each cell is a function 267

of the number of users in that cell. The number of users, on the 268

other hand, is determined by the association rule. The above 269

rule however can be equivalently expressed as follows: a user 270

is associated with the pico tier only if 271

Xm ≥
(

Pm

Pp

) 1
α
(

1

�

) 1
α

X p, (1) 272

where � =
√

�pτp
�mτm

. If we compare (1) with the popular 273

received power based association in HetNets [24], [33], � can 274

be interpreted as the natural bias required for average SINR 275

maximization in multi-antenna HetNets due to the differences 276

in transmission schemes. This coverage maximization bias, 277

however, may not always achieve optimum load balancing 278

for maximum rate. Thus, by further introducing an artificial 279

bias B for load balancing, the resultant condition for pico 280

tier association becomes Xm ≥ ρX p , which can be perceived 281

as biased nearest distance association with bias value ρ = 282

( Pm
Pp

1
η )

1
α , where η = B�. We investigate the optimal value of 283

η for the average data rate in Section VI, which determines 284

the optimal ρ. 285

As Xm and X p follow Rayleigh distributions with mean 286

(2
√

λm)−1 and (2
√

λp)
−1, respectively [34], the probability 287

that a typical user at the origin is associated with the pico tier 288

is 289

A p = P(Xm ≥ ρX p) = λp

λp + λmρ2 , (2) 290

and the probability that this user is associated with the macro 291

tier is Am = 1 − A p . These tier association probabilities are 292

also valid for any randomly selected user. Thus, the total 293

set of users in the network, �u can be divided into two 294

disjoint subsets: �m
u and �

p
u , the set of macro- and pico-users, 295

respectively. Am and A p can be interpreted as the average 296

fraction of users belonging to �m
u and �

p
u , respectively. As 297

we are interested in the number of users in a typical cell, 298

rather than the actual locations of the users, �m
u and �

p
u can 299

be equivalently modeled as independent PPPs with density 300

Amλu and A pλu , respectively. Since each macro-user is always 301

associated with the nearest macro BS and each pico-userr 302

with the nearest pico BS, the network can be viewed as 303

a superposition of two independent Voronoi tessellations of 304

the macro and pico tiers. Let the number of users in a 305

randomly chosen macro and pico cell be denoted by Um 306

and Up , respectively. Their approximate1 probability mass 307

1The PDF of the normalized Poisson-Voronoi cell area is approximated as
Gamma(3.5, 3.5) [35] while deriving the PMFs.
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function (PMFs) are given by [24, Lemma 2]308

P(Ul = n) = 3.53.5
(3.5 + n)(Alλu/λl)
n


(3.5)n!(Alλu/λl + 3.5)n+3.5
, n ≥ 0,309

∀l ∈ {m, p}. (3)310

A BS without any user associated does not transmit at311

all and is inactive. The PMFs of the number of users in a312

randomly chosen active cell of the macro and pico tiers are313

given by314

P(Nl = n) = P(Ul = n)1(n ≥ 1)

pl
, ∀l ∈ {m, p}, (4)315

where pm and pp are the probabilities that a typical BS of the316

macro and pico tiers, respectively, is active, and are given by317

pl = 1 − P(Ul = 0) = 1 −
(

1 + 3.5−1 Alλu

λl

)−3.5

,318

∀l ∈ {m, p}. (5)319

Let the sets of active macro and active pico BSs be denoted320

by �m and �p , respectively. �m and �p are thinned versions321

of the original PPPs �m and �p , respectively, and hence are322

independent PPPs with densities pmλm and ppλp , respectively.323

By using the PMFs in (4), the PMFs of the number of users324

simultaneously served by a typical active BS of macro and pico325

tiers in a given time slot for Ll
max > 1 can be obtained as326

P(Ml = n) =

⎧
⎪⎪⎨

⎪⎪⎩

P(Nl = n), 1 ≤ n < Ll
max

1 −
Ll

max−1∑

k=1

P(Nl = k), n = Ll
max,

‘327

∀l ∈ {m, p}. (6)328

For the special case of Ll
max = 1, P(Ml = 1) = 1,∀l ∈ {m, p}.329

B. Interference Nulling330

We assume Km to be typically much larger than K p . By331

using the interference nulling strategy, the additional spatial332

DoF of macro BSs can be utilized to suppress the strong macro333

interference topico users. Thus, we propose that each served334

pico-user requests its nearest active macro BS to perform335

interference nulling. However, as nulling costs macro BSs336

their available DoF for their own users, we assume that each337

macro BS can handle at most Km − Tmin requests only. This338

limit ensures that each macro BS has at least Tmin ≥ L M
max339

antennas dedicated for serving its own users. Hence, if Qm340

requests are received by a typical active macro BS, it will341

perform interference nulling to O = min(Qm, Km − Tmin)pico342

users. For Qm > (Km − Tmin), the BS will randomly choose343

Km − Tminpico users.344

The number of interference-nulling requests Qm received by345

a typical active macro BS is equal to the number of servedpico346

users within a typical Voronoi cell ϒ of the tessellation formed347

by �m . Although the number ofpico users served by a typical348

active pico BS cannot exceed L p
max, Qm is unbounded because349

the number of active pico BSs within ϒ is Poisson distributed350

with mean ppλp/(pmλm). To derive the PMF of Qm , we first 351

derive E[Mp] = A pϑpλu/(ppλp), where 352

ϑp = L p
max ppλp

A pλu
− 3.53.5


(3.5)

L p
max−1∑

k=1

353

×
[

(3.5 + n)

n!
(A pλu/λp)n−1(L p

max − k)

(A pλu/λp + 3.5)n+3.5

]
. (7) 354

Note that for L p
max = 1, ϑp = ppλp

Apλu
. Next, let us denote the set 355

ofpico users requesting interference nulling by �
p
u . Because 356

we are only interested in the number of such users in a typical 357

Voronoi cell ϒ , and not their actual locations, and we know 358

that E[Qm ] = A pϑpλu/(pmλm), �
p
u can be assumed to be 359

a PPP with density A pϑpλu . The PMF of Qm can then be 360

obtained as 361

P(Qm = n) =
3.53.5
(3.5 + n)

(
Apϑpλu

pmλm

)n


(3.5)n!
(

Apϑpλu
pmλm

+ 3.5
)n+3.5

, n ≥ 0. (8) 362

Due to the limited resources as discussed earlier, not all 363

interference-nulling requests received by an active macro 364

BS are satisfied. Let χ denotes the set ofpico users whose 365

interference-nulling requests to their corresponding nearest 366

active macro BSs are satisfied. In the following lemma, we 367

derive the probability that a randomly chosen pico-user in 368

service belongs to χ . 369

Lemma 1: The probability ϕ that the interference-nulling 370

request made by a randomly chosen pico-user to its nearest 371

active macro BS is fulfilled is given by 372

ϕ = (Km − Tmin)pmλm

A pϑpλu

(

1 −
(

1 + 3.5−1 A pϑpλu

pmλm

)−3.5
)

373

− 3.53.5


(3.5)

Km−Tmin∑

n=1


(3.5+n)
(

Apϑpλu
pmλm

)n−1
(Km −Tmin−n)

n!
(

Apϑpλu
pmλm

+3.5
)n+3.5 . 374

(9) 375

Proof: Let Q′
m denotes the number of other requests 376

received by the macro BS, which received nulling request from 377

a randomly chosen pico-user. Then, conditioned on Q′
m , ϕ = 1 378

if Q′
m +1 ≤ Km −Tmin; otherwise, ϕ = (Km −Tmin)/(Q′

m +1). 379

Thus, ϕ can be expressed as 380

ϕ =
Km−Tmin−1∑

n=0

P(Q′
m = n)+

∞∑

n=Km−Tmin

Km − Tmin

n + 1
P(Q′

m =n) 381

=
∞∑

n=1

Km − Tmin

n
P(Q′

m = n − 1) 382

−
Km−Tmin∑

n=1

(
Km − Tmin

n
− 1

)
P(Q′

m = n − 1). (10) 383

By using the fact that the conditional probability density 384

function (PDF) f
′
Y (y) of the area of a Voronoi cell given that 385

a randomly chosen user belongs to it is equal to cy fY (y), 386

where fY (y) is the unconditional PDF and c is a constant such 387

that
∫ ∞

o f
′
Y (y)dy = 1 [22], the PMF of Q′

m can be derived 388
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as P(Q′
m = n) = (n + 1)P(Qm = n + 1)/E[Qm], n ≥ 0.389

Theorem 1 is then obtained by substituting the PMF of390

Q′
m in (10), and then using

∑∞
n=1 P(Qm = n) =391

1 − P(Qm = 0).392

C. Channel Model and Precoding Matrices393

Assuming standard power law path-loss with exponent α,394

linear precoding and frequency-flat fading, the received signal395

zm at a typical user u located at the origin if u ∈ �m
u is given396

by397

zm = √
Pm D

− α
2

m h∗
bm ,1Wbm sbm398

+
∑

q∈{m,p}

√
Pq

∑

xq∈�q\bm

||xq ||− α
2 g∗

xq ,1Wxq sxq + nm ,399

(11)400

where bm is the serving macro BS at a distance Dm ,401

which is serving M ′
m other users simultaneously; hbm ,1 ∼402

CN (0Km×1, IKm ) and gxq ,1 ∼ CN (0Kq×1, IKq ) are the desired403

and interference complex Gaussian channel vectors from the404

tagged BS bm and the interfering BS at xq , respectively, with405

independent and identically distributed (i.i.d.) unit variance406

components; nm ∼ CN (0, σ 2) is complex Gaussian noise407

with variance σ 2; sbm = [sbm,i ]1≤i≤M ′
m+1 ∈ C

(M ′
m+1)×1 is408

the complex-valued signal vector transmitted from bm to its409

M ′
m + 1 served users with the symbol sbm ,1 intended for410

u and Wbm = [wbm ,i ]1≤i≤(M ′
m+1) ∈ C

Km×(M ′
m+1) is the411

corresponding ZF precoding matrix.412

Let the channel vectors from the tagged BS bm to its413

M ′
m users other than u be represented by [ hbm,i ]2≤i≤M ′

m+1,414

and the interference channel vector from the tagged BS to415

O = min(Qm , Km − Tmin)pico users chosen for interfer-416

ence nulling by F = [ fi ]1≤i≤O ∈ C
Km×O . Under the417

perfect CSI assumption, the ZF precoding matrix Wbm =418

[wbm,i ]1≤i≤(M ′
m+1) is designed such that |h∗

bm, j wbm , j |2 is max-419

imized for each j = 1, 2, . . . , M ′
m + 1, while satisfying the420

orthogonality conditions h∗
bm, j wbm ,i = 0 for ∀i �= j and421

f∗i wbm, j = 0,∀i = 1, 2, . . . , O,∀ j = 1, 2, . . . , M ′
m + 1. It422

can be achieved by choosing wbm ,i in the direction of the pro-423

jection of hbm ,i on Null
([ hbm , j ]1≤ j≤(M ′

m+1), j �=i, [ fi ]1≤i≤O
)
.424

The nullspace is Km − M ′
m − O dimensional and thus,425

the desired channel power gain βbm = |h∗
bm ,1wbm ,1|2 ∼426

Gamma(�m, 1), where �m = Km − M ′
m − O [36]. Given427

that an interfering macro BS at xm is serving Mm users428

simultaneously, Wxm = [wxm,i ]1≤i≤Mm ∈ C
Km×Mm , which429

is designed independent of gxm ,1. Assuming that the pre-430

coding matrix has linearly independent unit norm columns,431

g∗
xm,1wxm,1, g∗

xm ,1wxm,2, . . . , g∗
xm ,1wxm ,Mm are i.i.d. complex432

Gaussian random variables (RVs), and their squared norms are433

i.i.d. exponential RVs. Thus, the interference channel power434

gain ζxm = ||g∗
xm ,1Wxm ||2 ∼ Gamma(Mm , 1), as it is a sum of435

Mm i.i.d. exponential RVs [18].436

A feasible choice of the precoding matrix Wbm =437

[wbm,i ]1≤i≤(M ′
m+1) is the pseudo inverse2 of H̃

∗
bm

, i.e.,438

Wbm = H̃bm (H̃
∗
bm

H̃bm )−1 with normalized columns, where439

2Pseudo inversion of the channel matrix is an easy choice of ZF
precoding [7].

H̃bm = [h̃bm ,i ]1≤i≤(M ′
m+1) ∈ C

Km×(M ′
m+1), h̃bm ,i = (IKm − 440

F(F∗F)−1F∗)hbm,i being the projection of hbm,i on the 441

nullspace of F = [ fi ]1≤i≤O [31], [36]. 442

Similarly, the received signal z p at u when u ∈ �
p
u is 443

z p = √
Pp D

− α
2

p h∗
bp,1Wbp sbp + ξ 444

+
∑

q∈{m,p}

√
Pq

∑

xq∈�q\{vm ,bp}
||xq ||− α

2 g∗
xq ,1Wxq sxq + n p, 445

(12) 446

where 447

ξ =
{

0, if u ∈ χ√
Pm V

− α
2

m g∗
vm ,1Wvm svm , if u /∈ χ; (13) 448

bp is the serving pico BS at a distance Dp , which is serving 449

M ′
p other users simultaneously; n p ∼ CN (0, σ 2) is complex 450

Gaussian noise, vm is the nearest active macro BS to u at 451

a distance Vm , which receives an interference-nulling request 452

from u. The ZF precoding matrix Wbp = [wbp,i ]1≤i≤(M ′
p+1) 453

is given by Hbp(H
∗
bp

Hbp )
−1 with normalized columns, where 454

Hbp = [hbp,i ]1≤i≤(M ′
p+1) ∈ C

K p×(M ′
p+1) is the channel matrix 455

from the tagged BS bp to its M ′
p + 1 servedpico users. 456

The desired channel power gain βbp = ||h∗
bp,1Wbp ||2 = 457

|h∗
bp,1wbp,1|2 ∼ Gamma(�p, 1), where �p = Km − M ′

p , and 458

the interference channel power gain ζx p = ||g∗
x p,1Wx p ||2 ∼ 459

Gamma(Mp, 1) given that the interfering pico BS at x p is 460

serving Mp users simultaneously. 461

D. Distance to the Serving BS and the BS Receiving 462

Interference Nulling Request 463

The distance Dl to the serving BS from a typical user 464

u ∈ �l
u is a RV, and the corresponding PDFs for each 465

l ∈ {m, p} are derived in the following lemma. 466

Lemma 2: The PDF fDm (r) of the distance Dm between 467

the serving macro BS and a typical user u when u ∈ �m
u is 468

given by 469

fDm (r) = 2πλm

Am
r exp(−π(λm + λp/ρ

2)r2), (14) 470

and the PDF fDp (r) of the distance Dp between the serving 471

pico BS and a typical user u when u ∈ �
p
u is given by 472

fDp (r) = 2πλp

A p
r exp(−π(λmρ2 + λp)r

2). (15) 473

Proof: Given that u ∈ �m
u , Dm is the distance to 474

the nearest macro BS from u. The cumulative distribution 475

function (CDF) FDm (r) = P(Dm ≤ r) is thus given by 476

FDm (r) = P(Xm ≤ r |u ∈ �m
u ) = P(Xm ≤ r, u ∈ �m

m)

P(u ∈ �m
u )

477

= 1

Am

∫ r

0
P

(
X p >

y

ρ

)
fXm (y)dy. (16) 478

The PDF fDm (r) in (14) is obtained by differentiating (16) 479

with respect to r and then applying the probability distributions 480

of Rayleigh RVs Xm and X p . The PDF fDp (r) is similarly 481

derived. 482
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Another quantity of interest is the distance Vm between a483

typical pico-user in service and its nearest active macro BS484

to which it requests interference nulling.485

Lemma 3: The conditional PDF of the distance Vm between486

a typical user u ∈ �
p
u and the macro BS to which it request487

interference nulling, given that its distance to the serving pico488

BS is Dp = r , is given by489

fVm |Dp(r1|r) = 2πpmλmr1 exp
(
−πpmλm(r2

1 − ρ2r2)
)

,490

r1 > ρr. (17)491

Proof: Given that u ∈ �
p
u , Vm is the distance to the nearest492

active macro BS. The conditional complementary cumulative493

distribution function (CCDF) of Vm is thus given by494

F̄Vm |Dp(r1|r) = P(X ′
m ≥ r1|u ∈ �

p
u , Dp = r)495

= P(X ′
m ≥ r1|Xm > ρr), (18)496

where X ′
m = min

xm∈�m
‖xm‖ is the distance from the origin to497

the nearest active macro BS. The condition Xm > ρr implies498

that no points of �m are within a circle of radius ρr . Thus, no499

points of �m as well are within ρr because �m is the thinned500

version of �m . Thus, given that no active macro BS is closer501

than ρr , the probability of no active macro BS closer than502

r1 is equal to the probability that no points of �m are within503

an annulus centered at the origin with inner radius ρr and504

outer radius r1. The conditional CCDF F̄Vm |Dp(r1|r) is thus505

given by506

F̄Vm |Dp(r1|r) = exp
(
−πpmλm(r2

1 − ρ2r2)
)
. (19)507

The conditional PDF of Vm in (17) is obtained by differenti-508

ating (19) with respect to r1.509

III. SIR COVERAGE ANALYSIS510

We consider interference-limited scenario, and thus derive511

the SIR coverage probability in this section. The SIR coverage,512

i.e., the probability that the SIR of a typical user is greater than513

a given threshold γ is defined as P(γ ) = P(SIR > γ ), where514

SIR = ∑
l∈{m,p} 1(u ∈ �l

u) SIRl . From (11) and (12) and the515

discussion that follows, the SIR of a typical user u at the origin516

when it belongs to �l
u can be expressed as517

SIRl = Plβbl D−α
l

Ibl ,m + Ibl ,p
, ∀l ∈ {m, p}, (20)518

where Ibl ,m and Ibl ,p are the interference powers from the519

macro and pico tiers, respectively when u ∈ �l
u , l ∈ {m, p},520

and are given by521

Ibp,p = Pp

∑

x p∈�p\bp

ζx p ||x p||−α
522

Ibp,m =

⎧
⎪⎪⎨

⎪⎪⎩

Pm

∑

xm∈�m\vm

ζxm ||xm||−α if u ∈ χ

Pm

∑

xm∈�m

ζxm ||xm||−α if u /∈ χ,
523

Ibm ,p = Pp

∑

x p∈�p

ζx p ||x p||−α
524

Ibm ,m = Pm

∑

xm∈�m\bm

ζxm ||xm||−α. (21)525

By using the law of total probability, the SIR coverage 526

probability of a typical user u is 527

P(γ ) = Pm(γ )Am + Pp(γ )A p, (22) 528

where Al = P(u ∈ �l
u), l ∈ {m, p} is the tier association 529

probability, and Pm(γ ) = P(SIRm > γ |u ∈ �m
u ), and 530

Pp(γ ) = P(SIRp > γ |u ∈ �
p
u ) are the conditional coverage 531

probabilities of the user u when associated with the macro 532

and pico tiers, respectively. To evaluate (22), we first derive the 533

Laplace transform (LT) of the total interference power received 534

by u. 535

Lemma 4: The LT LIbp
(s) of the total interference power 536

Ibp = Ibp,m + Ibp,p received by u when u ∈ �
p
u conditional 537

on Dp = r and Vm = r1 is given by 538

LIbp
(s) =

(
ϕL1

Ibp ,m
(s) + (1 − ϕ)L2

Ibp ,m
(s)

)
LIbp ,p (s), (23) 539

where LIbp ,p (s) is the LT of Ibp,p; L1
Ibp ,m

(s) = LIbp ,m (s|u ∈ 540

χ), and L2
Ibp ,m

(s) = LIbp ,m (s|u /∈ χ) are the LTs of Ibp,m 541

conditional on u ∈ χ and u /∈ χ , respectively. These LTs are 542

given by (24)-(26), as shown at the top of the next page, where 543

2 F1(a, b, c, z) is the Gauss Hypergeometric function [37]. 544

Proof: The LT LIbp ,q (s) = E [e−s Ibp ,q ], ∀q ∈ {m, p} can 545

be derived as 546

LIbp ,q (s) = E�̂q

∏

xl∈�̂q

Eζxq

[
exp(−s Pqζxq ||xq ||−α)

]
, (28) 547

where �̂p = �p\bp , and �̂m = �m\vm if u ∈ χ , else 548

�̂m = �m . By performing the expectation over the distribution 549

of ζxq ∼ Gamma(Mq , 1) conditioned on Mq , and then apply- 550

ing the probability generating functional of PPP with density 551

pqλq [34], and finally taking the expectation over the PMF 552

of Mq , we have 553

LIbp ,q (s) = exp

{
− πpqλq� 2

p,q

( Lq
max∑

i=1

P(Mq = i) 554

× 2 F1

[
i,− 2

α
,
α − 2

α
,− Pq

�α
p,q

s
]

− 1

)}
, (29) 555

where �p,q is the lower bound on the distance to the closest 556

interferer from u in the tier q ∈ {m, p}. Thus, �p,p = r , and 557

�p,m = r1 if u ∈ χ ; otherwise, �p,m = ρr . 558

Similarly, the LT of Ibm = Ibm ,m + Ibm ,p conditional on 559

Dm = r can be derived as LIbm
(s) = LIbm ,m (s)LIbm ,p (s), where 560

LIbm ,q (s), q ∈ {m, p} is given by (27) shown at the top of the 561

next page, with �m,m = r and �m,p = r/ρ. 562

Having derived the LTs, we now evaluate Pl(γ ) = 563

P
(
Plβbl D−α

l > γ Ibl |u ∈ �l
u

)
, ∀l ∈ {m, p}. Conditional on 564

Dl = r , Vm = r1 and �l = n, we have 565

Pl(γ |r, r1,�l = n) =
n−1∑

l=0

(−s)l

l!
dl

dsl

(
LIbl

(s)
) ∣
∣
∣
∣s= γ rα

Pl

, (30) 566

which follows from the distribution Gamma(n, 1) of βbl for a 567

given �l = n, and the differentiation property of LT. Since the 568

LTs in (24)-(27) are composite functions, (30) requires evalu- 569

ating lth derivatives of composite functions. These derivatives 570
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L1
Ibp ,m

(s) = exp

{
− πpmλmr2

1

( Lm
max∑

i=1

P(Mm = i) 2 F1

[
i,− 2

α
,
α − 2

α
,− Pms

rα
1

]
− 1

)}
(24)

L2
Ibp ,m

(s) = exp

{
− πpmλmρ2r2

( Lm
max∑

i=1

P(Mm = i) 2 F1

[
i,− 2

α
,
α − 2

α
,− Pms

ραrα

]
− 1

)}
(25)

LIbp ,p (s) = exp

{
− πppλpr2

( L p
max∑

i=1

P(Mp = i) 2 F1

[
i,− 2

α
,
α − 2

α
,− Pps

rα

]
− 1

)}
(26)

LIbm ,q (s) = exp

{
− πpqλq� 2

m,q

( Lq
max∑

i=1

P(Mq = i) 2 F1

[
i,− 2

α
,
α − 2

α
,− Pq

�α
m,q

s
]

− 1

)}
(27)

are computed by using Faà di Bruno’s formula expressed in571

terms of integer partition, which is introduced in the following572

section.573

A. Integer Partition and Faà di Bruno’s Formula574

Integer partition is a partition of a positive integer n as a575

sum of positive integers. The set of all possible partitions of576

n is represented by �n with the number of partitions denoted577

by P(n). The integer 4, for example, can be partitioned as578

�4 = {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1}}. Thus, P(4) = 5.579

Let ωn
i denotes the number of elements in the i th partition580

pn
i of n. Also, let μn

i j denotes the number of positive integer581

j ∈ {1, 2, . . . , n} in that partition, and an
ik denotes the kth582

element (k ∈ {1, 2, . . . , ωn
i }). Example: for the second partition583

of integer 4 in �4, i.e., p4
2 = {3, 1}, we have ω4

2 = 2,584

μ4
21 = 1, μ4

22 = 0, μ4
23 = 1, μ4

24 = 0, a4
21 = 3, a4

22 = 1.585

For any partition pn
i , we have the properties

∑n
j=1 jμn

i j = n586

and
∑n

j=1 μn
i j = ωn

i .587

Faà di Bruno’s formula for the lth derivative of the com-588

posite function y(t (s)) in terms of integer partition can be589

expressed as590

y(l)
s (t (s)) =

P(l)∑

o=1

cl
o y

(ωl
o)

t (s) (t (s))
l∏

q=1

(
t(q)
s (s)

)μl
oq

, (31)591

where592

cl
o = l!

∏ωl
o

k=1 al
ok!

∏l
q=1 μl

oq !
,593

and y(k)
t (s)(t (s)) is the kth derivative of the function y(t (s))594

with respect to t (s). Note that the integer partition version595

has much lesser number of summations as compared to the set596

partition version used in [21]. The complexity of the numerical597

computation is thus significantly reduced.598

Theorem 1: The SIR coverage probability of a typical pico-599

user u is given by600

Pp(γ ) = ϕT1(γ ) + (1 − ϕ)T2(γ ), (32)601

where T1(γ ) = P(SIRp > γ |u ∈ �
p
u , u ∈ χ) and T2(γ ) =602

P(SIRp > γ |u ∈ �
p
u , u /∈ χ) are the conditional coverage603

probabilities of a typical pico-user u when u /∈ χ and u ∈ χ ,604

respectively. These conditional probabilities can be computed605

by using (33) and (34), as shown at the top of the next page, 606

where δ = Pm/Pp, and the function �l
q(ς, κ, ε) is defined as 607

�l
q(ς, κ, ε) =

Ll
max∑

i=1

(
(i)q(− 2

α )q

(α−2
α )q

P(Ml = i) 608

× 2 F1

[
i + q,− 2

α
+ q,

α − 2

α
+ q,−ςκαε

])
, 609

(35) 610

where (a)q is a Pochhammer symbol. 611

Proof: The proof is given in Appendix A. 612

Remark 1: The number of other users served by the BS 613

which is serving the typical user u ∈ �l
u is given by M ′

l = 614

min(U ′
l , Ll

max − 1), where U ′
l is the number of other users in 615

the Voronoi cell to which the user u belongs. The PMF of U ′
l 616

can be derived as P(U
′
l = n) = (n + 1)P(Ul = n + 1)/E[Ul ]. 617

The PMF of M ′
l for Ll

max > 1 is thus given by 618

P(M ′
l = n) =

⎧
⎪⎪⎨

⎪⎪⎩

P(U ′
l = n), 0 ≤ n < Ll

max − 1

1 −
Ll

max−2∑

k=1

P(U ′
l = k), n = Ll

max − 1,
619

∀l ∈ {m, p}. (36) 620

For Ll
max = 1, P(M ′

l = 0) = 1,∀l ∈ {m, p}. 621

Corollary 1: The coverage probability of a typical macro- 622

user Pm(γ ) is given by (37), as shown at the top of the next 623

page, where the PMF of �m conditional on M ′
m = k for 624

Tmin < Km is given by 625

P(�m = n|M ′
m = k) 626

=

⎧
⎪⎪⎨

⎪⎪⎩

1 −
Km−Tmin−1∑

v=0

P(Qm = v), n = Tmin − k

P(Qm = Km − k − n), Tmin − k + 1 ≤ n ≤ Km − k.

(38) 627

For the special case of Tmin = Km which implies no interfer- 628

ence nulling, �m = Km − M ′
m , thus P(�m = Km − k|M ′

m = 629

k) = 1. 630

Proof: Pm(γ ) is derived in the same way as T2(γ ). 631

However, since �m = Km − M ′
m − min(Qm , Km − Tmin) is 632

a function of the two RVs M ′
m and Qm , deconditioning with 633

respect to �m is achieved in two steps, first averaging over the 634
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T1(γ ) = 2 pmλm
λp

A p

∫ 1
ρ

θ=0

[ L p
max−1∑

k=0

P(M
′
p = k)

K p−k−1∑

l=0

γ l

l! θαl+1
P(l)∑

o=1

cl
o(−1)ω

l
o

(
pmλm �m

0 (δ, θ, γ ) + ppλpθ
2 �

p
0 (1, 1, γ )

+(1 − pm)λmρ2θ2+(1− pp)λpθ
2
)−(ωl

o+2)

(ωl

o+2)

l∏

q=1

(
pmλmδq �m

q (δ, θ, γ )+ ppλp

θαq−2 �
p
q (1, 1, γ )

)μl
oq
]

dθ (33)

T2(γ ) = λp

A p

L p
max−1∑

k=0

P(M
′
p = k)

K p−k−1∑

l=0

γ l

l!
P(l)∑

o=1

cl
o(−1)ω

l
o
(ωl

o + 1)

l∏

q=1

(
pmλmδq

ραq−2 �m
q

(
δ,

1

ρ
, γ

)
+ ppλp �

p
q (1, 1, γ )

)μl
oq

×
(

ppλp �
p
0 (1, 1, γ ) + (1 − pm)λmρ2 + (1 − pp)λp + pmλmρ2 �m

0

(
δ,

1

ρ
, γ

))−(ωl
o+1)

(34)

Pm(γ ) = λm

Am

Lm
max−1∑

k=0

P(M ′
m = k)

Km−k∑

n=Tmin−k

P(�m = n|M ′
m = k)

n−1∑

l=0

γ l

l!
P(l)∑

o=1

cl
o(−1)ω

l
o
(ωl

o + 1)

(
(1 − pm)λm + (1 − pp)

λp

ρ2

+pmλm�m
0 (1, 1, γ )+ ppλp

ρ2 �
p
0

(
1

δ
, ρ, γ

))−(ωl
o+1) l∏

q=1

(
pmλm�m

q (1, 1, γ )+ ppλp
ραq−2

δq
�

p
q

(1

δ
, ρ, γ

))μl
oq

(37)

conditional PMF of �m for the given M ′
m , and then averaging635

over the PMF of M ′
m .636

Remark 2: For the special case of Lm
max = L p

max = 1,637

Pp(γ ) = Pp(γ |M ′
p = 0)638

= ϕT1(γ |M ′
p = 0) + (1 − ϕ)T2(γ |M ′

p = 0), (39)639

Pm(γ ) = Pm(γ |M ′
m = 0), (40)640

where for each l ∈ {m, p},641

�l
q(ς, κ, ε) = �q(ς, κ, ε) = (1)q(− 2

α )q

(α−2
α )q

642

× 2 F1

(
1 + q,− 2

α
+ q,

α − 2

α
+ q,−ςκαε

)
.643

(41)644

IV. RATE ANALYSIS645

In this section, we analyze the achievable downlink rate of646

a typical user. We derive the CCDF of downlink rate, also647

defined as the rate coverage, and the average rate of a typical648

user.649

Assuming adaptive transmission scheme such that the650

Shannon limit is achieved, and treating the interference as651

noise, the data rate of a typical user u is given by652

R =
∑

l∈{m,p}
Sl W log2(1 + SIRl)1(u ∈ �l

u), (42)653

where Sl is the fraction of resources received by u when654

u ∈ �l
u . For each l ∈ {m, p}, given that U ′

l is the number655

of other users in the cell to which the user u belongs, the total656

users in the tagged cell are U ′
l +1. We assume one RB per time657

slot with total bandwidth W , and at most Ll
max users served658

simultaneously in each RB through spatial multiplexing. Thus,659

if the total number of users in the tagged cell is less than660

Ll
max (i.e., U ′

l + 1 < Ll
max), each user can utilize the entire661

bandwidth W without sharing; thus, Sl = 1. However, if U ′
l +1 662

is no less than Ll
max (i.e., U ′

l + 1 ≥ Ll
max), we assume that 663

the time-frequency resources are shared equally among the 664

total users; thus, Sl = Ll
max/(U

′
l + 1). Hence, the fraction of 665

resources received by u ∈ �l
u can be expressed as 666

Sl = min

(
Ll

max

U
′
l + 1

, 1

)

. 667

Theorem 2: The CCDF of the downlink rate of a typical 668

user u, R (υ) = P(R > υ) can be expressed as R (υ) = 669

AmRm(υ) + A pRp, where Al = P(u ∈ �l
u) and Rl(υ) = 670

P(Sl W log2(1 + SIRl) > υ) is the rate distribution of u ∈ �l
u . 671

Rl(υ) for each l ∈ {m, p} is given by (43), as shown at the 672

top of the next page, where Pl(γ |M ′
l = k) is the conditional 673

SIR coverage probability of u ∈ �l
u for given M ′

l = k. 674

Proof: From (42), 675

P(R > υ) =
∑

l∈{m,p}
P(u ∈ �l

u) P(Sl W log2(1 + SIRl) > υ)
︸ ︷︷ ︸

Rl (υ)

676

where 677

Rl(υ) = P(W log2(1 + SIRl) > υ, U ′
l ≤ Ll

max − 2) 678

+P

( Ll
max

U
′
l + 1

W log2(1 + SIRl) > υ, U ′
l ≥ Ll

max − 1
)

679

=
Ll

max−2∑

k=0

P(SIRl > 2υ/W − 1|U ′
l = k)P(U ′

l = k) 680

+
∑

k≥Ll
max−1

P(SIRl > 2
υ
W

(k+1)

Ll
max − 1|U ′

l = k)P(U ′
l = k). 681

(44) 682

The conditional SIR coverage probabilities in (44) can be 683

conditioned on the given value of M ′
l by using M ′

l = 684

min(U ′
l , Ll

max − 1). 685
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Rl(υ) =
Ll

max−2∑

k=0

Pl

(
2υ/W − 1

∣
∣M ′

l = k
)

P(U ′
l = k) +

∑

k≥Ll
max−1

Pl

(
2

υ
W

(k+1)

Ll
max − 1

∣
∣
∣M ′

l = Ll
max − 1

)
P(U ′

l = k) (43)

R̄l = W

ln 2

∫ ∞

0

1

1 + y

[ Ll
max−2∑

k=0

Pl
(
y
∣
∣M ′

l = k
)
P(U ′

l = k) + Ol Pl

(
y
∣
∣
∣M ′

l = Ll
max − 1

) ]
dy (46)

Ol = Ll
maxλl

Alλu

(
1 −

(
1 + 3.5−1 Alλu/λl

)−3.5)
− 3.53.5


(3.5)

Ll
max−1∑

k=1


(3.5 + k)
(

Al λu
λl

)k−1
Ll

max

k!( Alλu
λl

+ 3.5)3.5+k
(47)

For the special case of Ll
max = 1, the rate distribution of686

u ∈ �l
u further simplifies to687

Rl(υ) =
∑

k≥0

Pl

(
2

υ
W (k+1) − 1

)
P(U ′

l = k). (45)688

After the rate coverage, we next derive the average data rate689

of any randomly chosen user.690

Theorem 3: The average rate R̄ = E[R] of a typical user u691

is given by R̄ = Am R̄m + A p R̄p, where R̄l = E[Sl W log2(1 +692

SIRl)] is the average rate of u ∈ �l
u , l ∈ {m, p}. R̄l is given by693

(46), as shown at the top of this page, where Ol is computed694

according to (47), shown at the top of this page.695

Proof: From (42),696

E[R] =
∑

l∈{m,p}
P(u ∈ �l

u) E[Sl W log2(1 + SIRl)]︸ ︷︷ ︸
R̄l

,697

where698

R̄l = W
Ll

max−2∑

k=0

E
[
log2(1 + SIRl)|U ′

l = k
]
P(U ′

l = k)699

+W
∑

k≥Ll
max−1

Ll
max

k+1
E
[
log2(1+SIRl)|U ′

l = k
]
P(U ′

l =k).700

(48)701

The computation of E[log2(1 + SIRl)] requires integrating702

log2(1 + SIRl) with respect to the PDF of SIRl . However, the703

integral can be transformed into 1/(ln 2)
∫ ∞

0 Pl(y)(1+y)−1 dy704

by applying integration by parts, along with the fact that705

PDF is the negative differentiation of CCDF. Also, we have706

M ′
l = min(U ′

l , Ll
max −1). Equation (48) thus can be simplified707

to (46), where708

Ol =
∑

k≥Ll
max−1

Ll
max

k + 1
P(U ′

l = k)709

=
∞∑

k=1

Ll
max

k
P(U ′

l = k − 1) −
Ll

max−1∑

k=1

Ll
max

k
P(U ′

l = k − 1).710

Equation (47) is obtained by substituting P(U
′
l = k) =711

(k + 1)P(Ul = k + 1)/E[Ul], k ≥ 0 and further simplifying712

by using
∑∞

k=1 P(Ul = k) = 1 − P(Ul = 0).713

For the special case of Ll
max = 1, the average data rate of 714

u ∈ �l
u simplifies to 715

R̄l = Ol
W

ln 2

∫ ∞

0

Pl (y)

1 + y
dy. (49) 716

V. IMPACT OF LIMITED FEEDBACK ON 717

INTERFERENCE NULLING 718

The results so far have been derived based on the perfect 719

CSI assumption. However, in practical systems, the CSI is 720

never perfectly accurate. In frequency division duplex systems, 721

the downlink CSI is fed back by the users to serving BSs. Due 722

to the limited feedback, the BSs receive quantized CSI. In 723

this section, we analyze the impact of the quantization error 724

due to limited feedback on the performance of interference 725

nulling. As the focus is on interference-nulling performance, 726

we consider Lm
max = L p

max = 1. 727

The feedback model is similar to the one used in 728

[31] and [32]. The quantized channel direction informa- 729

tion (CDI) is fed back by using a quantization codebook of 730

2B unit norm vectors, where B is the number of feedback 731

bits. The codebook is known at both the transmitter and the 732

receiver. Each user feeds back the index of the codeword 733

closest to its channel direction, measured by the inner product. 734

For example, a typical user, when it belongs to the macro tier, 735

uses the codebook Cm = {cm, j : j = 1, 2, . . . , 2Bm } of size 736

2Bm to quantize the channel direction h̃bm,1 = hbm ,1
||hbm ,1|| from 737

its serving maco BS bm . The quantized channel direction is 738

ĥbm ,1 = arg max
cm, j ∈Cm

∣
∣
∣h̃

∗
bm,1cm, j

∣
∣
∣ . 739

Similarly, the typical user, when it belongs to the pico tier, 740

uses the codebook Cp = {cp, j : j = 1, 2, . . . , 2Bp} of size 2Bp 741

to quantize the channel direction from its serving pico BS bp, 742

and the codebook Cm = {cm, j : j = 1, 2, . . . , 2Bm } to quantize 743

the channel direction from its nearest active macro BS vm . 744

Otherpico users which request vm for interference nulling, 745

as well as the user served by vm , also employ codebooks 746

of size 2Bm , but the codebooks differ from user to user 747

to avoid the possibility of receiving the same quantization 748

vector index from different users. The codebooks are generated 749

by using random vector quantization [38], [39], where each 750

vector cm, j of Cm and cp, j of Cp are independently chosen 751

from the isotropic distribution on the Km− dimensional and 752
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T1,L F(γ ) = 2 pmλm
λp

A p

∫ 1
ρ

θ=0

K p−1∑

l=0

(
γ

κp

)l

θαl+1
l∑

v=0

(δκI )
l−v

v!(1 + δκI γ /κpθα)l−v+1

P(v)∑

o=1

cv
o(−1)ω

v
o 
(ωv

o + 2)

×
(

pmλm�0

(
δ, θ,

γ

κp

)
+ ppλpθ2�0

(
1, 1,

γ

κp

)
+ (1 − pm)λmρ2θ2 + (1 − pp)λpθ

2
)−(ωv

o+2)

×
l∏

q=1

(
pmλmδq�q

(
δ, θ,

γ

κp

)
+ ppλp

θαq−2 �q

(
1, 1,

γ

κp

))μv
oq

dθ (53)

K p− dimensional unit spheres, respectively. Since the precod-753

ing vectors are now based on quantized CDIs, for the typical754

user u ∈ �m
u served by the macro BS bm , the desired channel755

power gain β̂bm ∼ Gamma(�m, κm), where �m = Km −756

min(Qm , Km −Tmin) and κm = 1−2Bm Beta(2Bm , Km
Km−1 ) [31].757

However, as the precoding vector of the interfering BS at758

xq ∈ �q\bm , q ∈ {m, p} is independent of the channel to759

the typical user u, the interference channel power gain ζ̂xq is760

still distributed as Gamma(1, 1), i.e., Exp[1]. Similarly, for761

the typical user u ∈ �
p
u served by the pico BS bp, the762

desired channel power gain β̂bp ∼ Gamma(�p, κp), where763

�p = K p and κp = 1−2BpBeta(2Bp,
K p

K p−1 ). The interference764

channel power gain from each interfering BS other than vm765

is distributed as Exp[1]. If vm does not apply interference766

nulling, the interference channel power gain from vm , ζ̂vm767

is also distributed as Exp[1]. However, if vm applies nulling,768

unlike the perfect CDI case, where the interference from vm769

is completely nulled, there will be residual interference due to770

the quantization error. The interference channel power gain in771

this case is approximated as an exponential RV with mean772

κI = 2− Bm
Km −1 [31]. Thus, ζ̂vm ∼ Exp[1/κI ], if u ∈ χ ;773

otherwise ζ̂vm ∼ Exp[1]. The SIR of the typical user u can be774

expressed as775

SIRl = Pl β̂bl D−α
l

Îbl ,m + Îbl ,p
, ∀l ∈ {m, p}, (50)776

where777

Îbl ,m = Pm

∑

xm∈�m\bl

ζ̂xm ||xm||−α,778

Îbl ,p = Pp

∑

x p∈�p\bl

ζ̂x p ||x p||−α. (51)779

Corollary 2: With limited feedback, the coverage probabil-780

ity of a typical pico-user u in the interference-limited scenario781

is given by782

Pp,L F (γ ) = T1,L F (γ )ϕ + T2,L F (γ )(1 − ϕ), (52)783

where T1,L F (γ ) is the coverage probability of u ∈ χ with784

limited feedback, and is given by (53) shown at the top of this785

page and T2,L F (γ ) = T2
(
γ /κp

)
is the coverage probability786

of u /∈ χ , expressed in terms of the corresponding probability787

for the perfect CSI, T2(·). Similarly, the coverage probability788

of a typical macro-user u with limited feedback is given by789

Pm,L F (γ ) = Pm (γ /κm).790

Proof: Due to the limited feedback, even when a typical 791

pico-user u belongs to χ , it receives residual interference 792

Y = Pm ζ̂m V −α
m from its nearest active macro BS, where 793

ζ̂m ∼ Exp[1/κI ]. Thus, the LT of total macro tier interference 794

when u ∈ χ is given by 795

L Îbp ,m
(s|u ∈ χ) = L1

Ibp ,m
(s)E[e−sY ] 796

= L1
Ibp ,m

(s)(1 + s PmκI r−α
1 )−1, 797

where L1
Ibp ,m

(s) is the LT of the total macro tier interference 798

for the perfect CSI in (24). The LT of the total pico tier 799

interference L Îbp ,p
(s) is equal to LIbp ,p in (26). Since β̂bp ∼ 800

Gamma(K p, κp), T1,L F(γ ) can then be derived in the same 801

way as T1(γ ) in Theorem 1 with γ replaced by γ /κp . For 802

T2,L F (γ ) and Pm,L F (γ ), since the LTs of interference powers 803

are the same as those of the perfect CSI case, T2,L F (γ ) 804

is given by (34) with γ replaced by γ /κp , and similarly 805

Pm,L F (γ ) by (37) with γ replaced by γ /κm . 806

Note that T2,L F(γ ) and Pm,L F (γ ) reduce to T2(γ ) and 807

Pm(γ ), respectively, if κm = κp = 1. Similarly, if κp = 1 and 808

κI = 0, by using 00 = 1, T1,L F (γ ) also reduces to T1(γ ). 809

After deriving the coverage probabilities for limited feedback, 810

the rate coverage and average rate can be obtained by using 811

Theorem 2 and Theorem 3, respectively, with Pl (·) replaced 812

by Pl,L F (·). 813

VI. SIMULATION AND NUMERICAL RESULTS 814

In this section, we validate our analytical results via Monte 815

Carlo simulations on a square window of 20 × 20 Km2 and 816

present numerical analysis to provide insights into impor- 817

tant design parameters. Unless otherwise stated, we set 818

δ = Pm
Pp

= 100, λm = 1BS/Km2 and W = 1 MHz. 819

The average data rate (Theorem 3) for perfect CSI, and 820

the data rate distribution (Theorem 2) for both the perfect 821

CSI and limited feedback scenarios are validated via Monte 822

Carlo simulations for different system configurations in 823

Figure 1.a and Figure 1.b, respectively. The analytical and 824

simulation results match with each other quite well in these 825

figures. The PPP based assumptions of the thinned processes 826

�m
u , �

p
u and �

p
u obtained from the parent process �u 827

hardly impact the probability distributions of the number 828

of users of corresponding sets in a typical cell. The small 829

gaps between the simulations and analytical curves are thus 830

mostly due to the approximation of cell area distribution by 831

Gamma. Note that the validation of Theorem 3 for perfect 832

CSI naturally validates the conditional SIR distributions 833
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Fig. 1. (a) Validation of the average user data rate (Theorem 3) with
perfect CSI for different values of λp , η and (Km , Lm

max, Tmin, K p , L p
max);

(b) Validation of the rate coverage probability (Theorem 2) for both the perfect
CSI and limited feedback scenarios: Km = 12, K p = 4, Lm

max = L p
max = 1,

Tmin = 2, λu = 10λm , α = 3.5, η = 15dB.

derived in Theorem 1 and Corollary 1, and the validation of834

Theorem 2 for limited feedback validates the SIR distribution835

in Corollary 2. In Figure 1.a, the average data rate decreases836

with an increase in user density λu because of the increase in837

interference and the decrease in users’ share of resources. The838

interference power increases with an increase in user density839

because not just more BSs become active, but the average840

channel power gain from each interfering BS also increases841

until the number of users associated with the BS exceeds Ll
max.842

In Figure 2, we analyze the impact of interference nulling843

on the SIR coverage probability, where Tmin = Km implies no844

interference nulling employed. While the overall SIR coverage845

of a typical user is plotted in Figure 2.a, the coverage proba-846

bility conditioned that the user belongs to pico tier and always847

gets the interference from its nearest active macro BS nulled,848

T1(γ ) is compared against that its no-nulling counterpart,849

T2(γ ) in Figure 2.b. Figure 2.a reveals that with properly850

chosen Tmin, the SIR coverage can be significantly improved851

with interference nulling. For example, if the required SIR852

level for a typical user to be under coverage is 0 dB, the853

average fraction of users under coverage improves from 61%854

to 70% with interference nulling for the λu = 6λm , η = 15 dB855

case. In both Figure 2.a and Figure 2.b, the performance856

Fig. 2. Impact of interference nulling on the SIR coverage probability:
Km = 14, Lm

max = 4, K p = 6, L p
max = 4, λp = 6λm , α = 3.5.

gain decreases with an increasing threshold. At smaller val- 857

ues of thresholds, as interference nulling improves the SIRs 858

of poor cell-edge pico-user lacking coverage due to strong 859

interference from their corresponding nearest active macro 860

BSs, the coverage probability of thepico users significantly 861

improves. On the other hand, we know that the SIR of a 862

typical macro-user degrades due to interference nulling as 863

it costs the user its available DoF. At lower values of SIR 864

thresholds, the degradation in SIR is, however, not significant 865

enough to impact its coverage probability. Thus, the overall 866

gain in coverage probability is high at smaller threshold levels. 867

However, at larger threshold values, the users under coverage 868

are basically those in the cell interior. Thus, interference 869

nulling may not significantly improve the already high SIR 870

of cell-interiorpico users, resulting in minimal improvement in 871

pico coverage probability. The SIR degradation of macro-users 872

due to interference nulling, which do not have any significance 873

on macro coverage probability at lower thresholds eventually 874

causes the coverage probability to degrade after certain level. 875

This degradation further reduces the overall gain in coverage 876

probability. 877

In Figure 2.a, the performance gain in the overall coverage 878

probability for λu = 10λm , η = 20 dB is relatively low 879

compared to the λu = 6λm , η = 15 dB case. However, in 880

Figure 2.b, given that the nulling is performed for each pico- 881
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Fig. 3. Effect of pico cell density λp on the optimal choices of Tmin and
η: λu = 6λm , Km = 12, Lm

max = 4, K p = 4, L p
max = 4, α = 4.

user, both cases have similar gains in pico coverage probability882

due to nulling. Thus, the reason for the lower performance gain883

for higher user density λu and higher bias η is the lack of884

sufficient resources for interference nulling. For the λu = 6λm885

and η = 15 dB case, with Tmin = 6, interference to 83% of886

thepico users from their corresponding nearest active macro887

BSs are nulled. The fraction of interference nulledpico users888

reduces to 53% for λu = 10λm and η = 20 dB, with optimal889

Tmin of 7.890

Next, we investigate the optimal value of η to maximize891

the average user data rate. η controls the number of users892

offloaded from the macro to the pico tier to obtain a balanced893

distribution of the user load across tiers so that the radio894

resources are better utilized in each tier. Meanwhile, since895

Tmin determines the spatial DoF available for serving the896

macro-users, as well as the number of interference-nulledpico897

users, Tmin must be tuned according to user offloading. The898

joint tuning of Tmin and η for optimal average data rate is899

investigated in Figure 3. The optimal pair (η, Tmin) is found900

to be (10 dB, 8) and (11 dB, 6) for pico density λp = 4λm and901

λp = 6λm , respectively. For the given user density, the optimal902

Tmin decreases with the increase in pico density because the903

number of interference-nulling requests received by a typical904

active macro BS increases with the increase in pico density.905

Thus, the allocated interference-nulling resources (Km −Tmin)906

must be increased.907

The variation in the average rate with Tmin for the given908

value of η is plotted in Figure 4. The average rate of the macro-909

users increases with an increasing Tmin due to the increase910

in the spatial DoF available at each macro BS for serving911

its own users. In contrast, the average pico rate decreases912

with an increasing Tmin due to the decrease in the number913

of interference nulledpico users. The net result is the initial914

increase in the average rate with an increasing Tmin and the915

subsequent decrease beyond a certain value of Tmin. The916

optimal Tmin shifts towards the lower values as the value of917

η increases. For example, the optimal Tmin of 7 for η = 3 dB918

decreases to 6 for η = 11 dB and to 5 for η = 16 dB. With an919

increasing η, more users are offloaded to the pico tier. Thus,920

allocating more antenna resources for interference nulling is921

desirable.922

Fig. 4. Average rate vs. Tmin for different values of η: λu = 6λm , λp = 6λm ,
Km = 12, Lm

max = 4, K p = 4, L p
max = 4, α = 4.

Fig. 5. Effect of interference nulling on cell-edge data rate: λp = 6λm ,
Km = 12, Lm

max = 4, K p = 4, L p
max = 4, α = 4.

In Figure 5, the rate coverage corresponding to the optimal 923

pair (η, Tmin) which maximized the average rate in Figure 3 for 924

λp = 4λm and λp = 6λm is plotted. Let the 5th percentile rate 925

R95, which corresponds to the 5th percentile of the users with 926

rate less than R95 (i.e., R (R95) = 0.95), be considered as the 927

cell-edge data rate. For λp = 4λm and η = 10 dB, Tmin = 8, 928

which maximized the average rate is found to improve the 929

cell-edge rate from 7.2 ×104 bits/sec to 1.12 ×105 bits/sec as 930

compared to that without interference nulling. Similarly, for 931

λp = 6λm , the cell-edge rate improves from 9.6×104 bits/sec 932

to 1.68 × 105 bits/sec if interference nulling with Tmin = 6 is 933

employed corresponding to η = 11 dB. 934

In Figure 6, the average data rate is assessed for different 935

values of Lm
max and L p

max with and without interference nulling. 936

The curve corresponding to the interference nulling employed 937

is plotted by computing the average rate with optimum Tmin 938

for each corresponding value of Lm
max and L p

max. As Figure 6 939

reveals, the average data rate can be significantly improved by 940

selecting a proper value of Lm
max compared to either SU-BF 941

or full-SDMA, and similarly a proper value of L p
max. For the 942

case with no interference nulling employed, in which all the 943

antennas at each macro BS are used for serving its own users, 944

the variation of Lm
max has little or no impact on the average 945
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Fig. 6. Average rate vs. Lm
max for different values of L p

max with optimum
Tmin and no interference nulling: λp = 6λm , λu = 6λm , Km = 12, K p = 4,
η = 12 dB, α = 4.

rate from Lm
max = 7 to Lm

max = 12. This result can be observed946

for each given value of L p
max because beyond Lm

max = 7, the947

number of users simultaneously served by a macro BS in each948

time slot is limited by the number of users in that cell, rather949

than Lm
max. This explanation is further corroborated by the950

fact that with interference nulling employed, the optimal Tmin951

beyond Lm
max = 7 is found to be the corresponding Lm

max itself,952

which is the minimum possible value of Tmin. Since beyond953

Lm
max = 7, the number of macro-users in a cell is typically954

less than Lm
max, allocating more antenna resources than Lm

max955

would be wasting resources as those surplus resources can956

be utilized for performance improvement through interference957

nulling. For each possible value of L p
max, the optimal pair958

(Lm
max, Tmin) which maximizes the average rate is found to959

be (6, 7) . The average rate slightly degrades for L p
max = 4 as960

compared to L p
max = 3 (not shown in the figure). Thus, the961

optimal values of Lm
max, Tmin, and L p

max for the given system962

configuration are 6, 7, and 3, respectively.963

After numerically analyzing the proposed SDMA scheme964

with interference nulling for the perfect CSI, we now inves-965

tigate the impact of limited feedback on the performance.966

As explained in Section V, each macro-user feeds back Bm967

CSI bits to its home BS. In contrast, each pico-user feeds968

back Bp CSI bits to its home BS and Bm CSI bits to its969

nearest active macro BS if the BS is performing interference970

nulling to the user. In Figure 7, the impact of the number971

of feedback bits Bm and Bp on the rate coverage with and972

without interference nulling is investigated. As the number of973

feedback bits increases, the performance approaches that of the974

perfect CSI. Clearly, the impact of limited feedback bits Bm on975

the performance is higher for the interference-nulling scenario976

than that without nulling. Bm > 16, which is more than suffi-977

cient for the non-coordination case, appears to be insufficient978

for interference nulling case to reap the full benefits of nulling.979

Nevertheless, nulling does improve performance even with980

limited feedback as compared to the non-coordination case.981

With no interference nulling employed, the feedback bits Bm982

are only required for signal power boosting to the single user983

being served in the cell and such processing is found to be less984

sensitive to CSI errors as compared to interference nulling. If985

Fig. 7. Impact of number of feedback bits on the rate coverage performance:
λp = 6λm , λu = 10λm , Km = 12, K p = 4, Lm

max = L p
max = 1, η = 15 dB,

α = 3.5.

we observe the rate coverage curve against Bp for the non- 986

coordination case, Bp > 20 is near perfect. However, we can 987

observe a performance gap for interference nulling case even 988

beyond Bp = 20 because of the limitation in Bm , which is 989

considered to be 40 in this case. 990

VII. CONCLUSION 991

We analyzed the downlink performance of multi-antenna 992

HetNets with SDMA, in which the ZF precoding matrix at 993

macro BS also considered interference nulling to certainpico 994

users. Further, the number of users served with SDMA in 995

each cell was a function of user distribution. Our results 996

showed that the SIR and rate coverage of victimpico users 997

(those suffering strong interference from macro BS) can be 998

significantly improved with the proposed interference nulling 999

scheme if Tmin is carefully chosen. The optimal choice of 1000

Tmin for maximum data rate was found to be coupled with 1001

association bias. The optimal values of Lm
max and L p

max which 1002

maximize the average data rate was also investigated and were 1003

found to outperform both SU-BF and full-SDMA. The impact 1004

of CSI quantization error on the performance of interference 1005

nulling due to limited feedback was also analyzed. It was 1006

observed that interference nulling is highly sensitive to CSI 1007

errors as the residual interference due to CSI imperfection 1008

significantly degrades the performance. However, depending 1009

on the degree of CSI imperfection, the performance may still 1010

be better than that without interference nulling. 1011

APPENDIX 1012

A. Proof of Theorem 1 1013

By substituting (23) into (30), followed by �p = K p − 1014

M ′
p , and then averaging over the joint PDF of Dp and Vm , 1015

expressed as fVm |Dp(r1) fDp (r), and the PMF of M ′
p , we 1016

get (32), where 1017

T1(γ ) =
∫ ∞

r=0

∫ ∞

r1=ρr

L p
max−1∑

k=0

P(M ′
p = k)

K p−k−1∑

l=0

(−s)l

l! 1018

× dl

dsl

(
L1

Ibp ,m
(s)LIbp ,p (s)

)∣∣
∣
∣s= γ rα

Pp
fVm |Dp(r1|r) fDp(r) dr1 dr, 1019

(54) 1020
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and T2(γ ) is given by a similar expression with L1
Ibp ,m

(s)1021

replaced by L2
Ibp ,m

(s). However, since the LT in T2(γ ) is not a1022

function of r1, averaging over the PDF of Dp only is required.1023

We thus derive T1(γ ) first, as T2(γ ) then follows immediately.1024

Let y(s) = e−πs , and t (s) = pmλmr2
1 �m

0

(
1, 1, Pm

rα
1

s
)

+1025

ppλpr2 �
p
0

(
1, 1,

Pp
rα s

)
. The LT in (53) can be expressed as1026

L1
Ibp ,m

(s)LIbp ,p (s) = eπ
(

pmλmr2
1 +ppλpr2

)
y(t (s)), the lth deriva-1027

tive of which can be evaluated by applying Faà di Bruno’s1028

formula (31). While computing the lth derivative, we use1029

y
(ωl

o)
t (s) (t (s)) = (−π)ω

l
o exp(−π t (s));1030

dq

dsq
�l

0

(
1, 1,

Pl

�α
l

s

)
=

(
− Pl

�α
l

)q

�l
q

(
1, 1,

Pl

�α
l

s

)
,1031

(55)1032

which follows from the property of the Gauss Hyperge-1033

ometric function; and the properties of integer partition1034 ∑l
q=1 qμl

oq = l and
∑l

q=1 μl
oq = ωl

o. The final expression1035

for T1(γ ) in (33) is then obtained by changing the order of1036

integration, followed by substituting r
r1

→ θ , r1 → r1, then1037

integrating with respect to r1.1038
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