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Abstract: The authors study the transmit power allocation (PA) problem for a network of two multi-antenna terminals (one of
which is a massive multiple-input and multiple-output (MIMO) terminal) and a two-way, amplify-and-forward relay. The relay
is limited to a single antenna. Using perfect channel state information, the terminals employ beamforming with maximum-
ratio-transmission and maximum-ratio-combining for transmission and reception, respectively. The authors investigate two
practical problems, namely; (i) maximising the sum rate subject to a total power constraint (ii) maximising the sum rate when
one of the terminals must exceed a target signal-to-noise ratio (SNR). For the first case, the authors derive the closed-form
optimal PA and for the second, the authors derive a sub-optimal PA. In both cases, the resulting sum rates are a function of
instantaneous channel gains. Thus by averaging over the Nakagami-m distribution and exploiting the weak law of large
numbers, the authors derive the closed-form ergodic sum rates. Finally, the simulation results validate the theoretical
analysis and show the sum-rate improvements over uniform PA. For example, to achieve 4 bit/s/Hz, a uniform allocation
needs 1 dB more than the authors’ optimal allocation. When one of the SNRs must exceed a target value, the gap
between the authors’ sub-optimal PA and random PA increases to 2 dB.
1 Introduction

Two-way (TW) relaying is a powerful communication protocol to
improve the spectral efficiency of wireless networks [1].
Well-known relaying protocols are amplify-and-forward [2–4],
decode-and-forward [5], and compress-and-forward [6]. The
analogue network coding (ANC) TW relay channel [7–13]
requires only two time slots to enable a full bidirectional data
exchange. Thus, it overcomes the half-duplex spectral loss inherent
in one-way relays [1].

Power allocation (PA) can improve the total data rate or the outage
performance of ANC TW relaying, while keeping the total power
constant. PA techniques have thus been investigated widely; for
example, for Rayleigh fading channels, various PA schemes are
developed in [14–19]. One possible PA method is to balance the
instantaneous signal-to-noise ratios (SNRs) [14–16]. In [17], a
power provisioning strategy is formulated to minimise the total
energy with individual outage constraints. In [18], the resource
(i.e. time and power) allocation problem for the protocol with
perfect receiver-side channel knowledge is studied from an outage
perspective. Xu et al. [19] proves that the two optimal PA
schemes in the sense of minimising the outage probability and
maximising the achievable sum rate are equivalent to each other.
However, this result is limited for single antenna nodes. The case
of relay power optimisation with no power control at the sources is
studied under Nakagami-m fading in [20–23]. For one-way
decode-and-forward scheme, the problem of joint optimisation of
power (at source and relay nodes) and relay location over
Nakagami-m fading channels is investigated in [23]. The problem
of joint optimal PA among all terminals and relay location for the
ANC protocol over Nakagami-m fading channels has been
investigated in [24]. In [15], a PA for minimising outage
probability is proposed under the assumption of high SNR.

In a non-regenerative TW multiple-input and multiple-output
(MIMO) relay system, two fast algorithms for optimising the
source covariance matrices and the relay transformation matrix
have been proposed in [25]. Based on a space-division scheme, an
algorithm has been proposed to maximise the sum rate of a MIMO
TW relay channels (TWRC) in [26]. Yang et al. [27] have
proposed a new eigen-direction alignment precoding technique to
enlarge the achievable rate region compared to the existing
schemes for a MIMO TWRC. Exploiting generalised singular
value decomposition-based precoding and successive interference
cancellation decoding for a separated MIMO TWRC, the
achievable rate region has been obtained in [28].

In this paper, we consider a TW relay system exploiting ANC with
multiple antenna terminals (users) where one terminal is a massive
MIMO terminal. Using perfect CSI, the terminals employ
beamforming [15] with maximum-ratio-transmission (MRT) and
maximum-ratio-combining (MRC) for transmission and reception,
respectively. We investigate two practical problems, namely; (i)
maximising the sum rate subject to a total power constraint (ii)
maximising the sum rate subject to additional constraints on target
user SNRs. For these two optimisation problems, we derive
closed-form, analytical solutions. By exploiting the weak-law of
large numbers, we then derive closed-form expressions for the
achievable ergodic sum rate over independent but not necessarily
identically distributed Nakagami-m fading channels. Moreover, we
show that the derived ergodic sum rate expressions match well
with the simulation results. Finally, our results highlight the
influence of the proposed PA strategies on the achievable sum rate.

Notations: In this paper, bold, lowercase letters are used to represent
vectors and bold, uppercase letters are used to denote matrices. X †

and XT denote the Hermitian and the transpose of X , respectively.
E(·) and || · || denote statistical expectation and the Euclidean
norm. Moreover, G(x, y) is the incomplete Gamma function. The
set of all positive integers is N.
2 System model

We consider a TW relay system including one single antenna relay R
and two multiple antenna terminals Ta and Tb with Na and Nb
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Fig. 1 System model of a TW relay network using multiple antennas
antennas, respectively, where Na ≫ Nb. This setup, for example, can
occur when a massive MIMO base station (Ta) is communicating
with a MIMO base station (Tb) using a mobile user (R) as relay.
Note that our setup is different from conventional MIMO TW
relay systems, where the relay has multiple antennas [26, 27]. Our
work, similar to [29–32] assumes a single antenna relay, but the
terminals are equipped with multiple antennas.

The channel coefficients ha and hb between Ta and Tb, and relay R
are assumed to be reciprocal and independent. Moreover, additive
white Gaussian noise (AWGN) with mean zero and variance s2

are assumed for each link. Let Pa, Pb and Pr denote the transmit
powers at the sources Ta, Tb and R, respectively. The system
model is shown in Fig. 1.

The bi-directional communication between the two terminals
takes two time slots for completion. In the first time slot, both
terminals transmit to the relay. In the second time slot, the relay
broadcasts the received composite signal to the two terminals. The
received signal at R in the first time slot can be expressed as

yr =
���
Pa

√
hTawaxa +

���
Pb

√
hTbwbxb + nr, (1)

where xa and xb are unit energy transmit signals at the terminals
and nr is AWGN. With MRT beamforming, the transmit weight

vectors are wl = h
†
l /‖hl‖

( )T
, ∀l [ {a, b}. The transmit signal

of the relay may be written as ŷr = Gyr where G =���������������������������������
Pr/(Pa‖ha‖2 + Pb‖hb‖2 + s2)

√
, where the gain G selected to

satisfy the relay power constraint. Finally, the received signals at
terminals Ta and Tb, are given by

yl = hlG
���
Pl

√ ‖hl‖xl +
���
Pc

√ ‖hc‖xc + nr

( )
+ nl , ∀l [ {a, b}

(2)

where c = {a, b}\{l} and nl denotes the AWGN vector at terminal l
After self-interference cancellation and MRC reception with weights

wT
l = h

†
l /‖hl‖

( )
, ∀l [ {a, b}, the received signals at both

terminals can be expressed as

ŷl = G
���
Pc

√ ‖hl‖‖hc‖xc + G‖hl‖nr + n̂l , ∀l [ {a, b} (3)

where n̂l = h
†
l nl/‖hl‖, ∀l [ {a, b}. Using (3), the SNRs at the two

terminals can be obtained as

gl =
PcPr

s2

‖hc‖2‖hl‖2
(Pl + Pr)‖hl‖2 + Pc‖hc‖2 + s2

[ ]
, ∀l [ {a, b}. (4)
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3 Problem statement and proposed method

3.1 Problem formulation

Restricting the total power consumed below a threshold can control
the total interference of this network on neighbouring networks.
Thus, the total power constraint has also been considered in [14,
33–35]. Therefore, we maximise the achievable sum rate of the
system subject to a total power constraint, which can be
formulated as

max
Pa ,Pb ,Pr

R

s.t Pa + Pb + Pr = Pt,
(P1)

where R = (1/2) log2 (1+ ga)+ (1/2) log2 (1+ gb). Since log (x) is
an increasing function, by combining the two log terms, we can
reformulate (P1) as

max
Pa ,Pb ,Pr

(1+ ga)(1+ gb)

s.t Pa + Pb + Pr = Pt.
(P2)

3.2 Optimal PA

In the following, we give the exact solution to (P2):

Theorem 1: For massive antenna users, the optimal PA of (P2) is

Pa =
Pt

2(
��
n

√ + 1)
, Pb =

Pt

��
n

√
2(

��
n

√ + 1)
, Pr =

Pt

2
(5)

where n = gar/gbr, gar = (Pt/s
2) ha

∣∣ ∣∣∣∣ ∣∣2 and gbr = (Pt/s
2) hb

∣∣ ∣∣∣∣ ∣∣2.
Proof:We rewrite the total power constraint Pa + Pb + Pr = Pt with
two auxiliary variables a and b such Pa = abPt, Pb = (1− a)bPt
and Pr = (1− b)Pt (0 ≤ a, b ≤ 1). We now need to find the
optimal value of a and b. For this purpose, we can use the
arithmetic geometric mean inequality. Hence, (P2) becomes a
special case of [36, Theorem 1] with n = 2, X1 = 1+ ga, X2 = 1+
gb and a1 = a2 = 1 and [36, Proposition 1] – which indicates that
for n ≫ 1, if gopta = goptb = gbr/(2+ 4

����
1/n

√
) is in the feasibility

region then the corresponding PA is optimal – we only need to
show that

gopta = goptb = gbr
2+ 4

����
1/n

√ (6)

is feasible. This is equivalent to showing that 0 ≤ aopt, bopt ≤ 1. The
corresponding a and b can be obtained as

aopt = 1��
n

√ + 1
, bopt = 1

2
, (7)

which both satisfy 0 ≤ aopt, bopt ≤ 1. □
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Fig. 2 Achievable sum rate performance using PPA and UPA with n = 100, s2
a = s2

b = 1, mb = 1 and N0 = 1
It is interesting to see that the optimal allocation requires that half of
the total power be allocated to the relay and the remaining half is
divided according to the ratio 1:

��
n

√
. Since n is large, more power

is thus allocated to Tb. Note that n (5) is a random variable.
However, since one of the terminals is massive MIMO, by using
the weak-law of large numbers, we find that it converges to
n ≃ Nas

2
a/Nbs

2
b. The reasons for the approximation are detailed in

Appendix 1, and numerical evidence for its accuracy is given in
Section 5. This constant value is used for the ergodic sum rate
analysis next.
Fig. 3 Achievable sum rate performance using PPA and UPA with n = 20, s2
a =
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3.3 Ergodic sum rate

While the optimal solution derived (5) yields the instantaneous total
sum rate as a function of instantaneous channel gains, the ergodic
sum rate, a far more important performance measure, is derived by
averaging over all channel statistics. For this purpose, all the
entries in the channel vectors ha and hb between Ta and Tb, and
relay R are assumed to be independent and Nakagami-m
distributed with parameters ma, mb [ N and average fading
powers sa and sb, respectively. Therefore, our results also include
Rayleigh fading channels as a special case when ma = mb = 1.
s2
b = 1 and mb = 1
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Theorem 2: The ergodic sum rate for the optimal PA obtained in
Theorem 1 can be expressed as

�R = s 2+ 4

��
1

n

√( )mbNb

exp
mb 2+ 4

����
1/n

√( )
�gbr

( )

×
∑mbNb

k=1

G k − mbNb, mb 2+ 4
����
1/n

√( )
/�gbr

( )
mb 2+ 4

����
1/n

√( )
/�gbr

( )k (8)

where s = ((mbNb − 1)!/ ln 2G mbNb

( )
) mb/�gbr
( )mbNb .

Proof: See Appendix 1. □

4 Additional quality of service (QoS) constraints

4.1 Problem formulation

Suppose, in comparison to the SNRs they have achieved in (6), one
of the terminals needs a higher SNR (e.g. for better quality of
service) while the other one does not. This scenario is of interest
in wireless cellular networks where some mobile users may
require higher SNRs due to limitations such as hardware
requirements. Next, we treat the case where it is terminal Tb that
needs higher SNR out of the two terminals.

In this scenario, we maximise the sum rate subject to the
constraints that the total power of the network is Pt and the SNRs
at both terminals must exceed target threshold values. Therefore,
the optimisation problem (P2) can be reformulated as

s.t

max
Pa ,Pb ,Pr

R

Pa + Pb + Pr = Pt
ga ≥ ĝa

gb ≥ ĝb

(P3)

where ĝb . goptb .
Fig. 4 Impact of n on the achievable sum rate with s2
a = s2

b = 1, mb = 1, N0 =
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4.2 Sub-optimal solution

To solve (P3), we first note that with the optimal PA (5), both
terminals reach SNRs approximately gbr/2 as n 	 1. From a
practical point of view, since Ta and Tb can be considered as base
station and mobile user, respectively, it makes sense to increase
the SNR of the mobile terminal (Tb), who has the fewer number of
antennas. To quantify the SNR improvment, we define an
improvement coefficient ĝb = z(gbr/2) where 1 ≤ z ≤ 2.

To achieve a sub-optimal solution for this case, we set the SNR of
Tb, which requires higher SNR, to the target value and maximise the
SNR of Ta. Hence, let gb = ab(1− b)gar/(abn+ 1) = ĝb then we
have

a = ĝb

b(1− b)gar − bnĝb

. (9)

To simplify analysis, let n ≫ 1 which is equivalent to exploiting the
large scale antenna arrays at terminal Ta. Therefore, we have

ga(b) ≃ bgbr −
ĝbgbr

gar 1− b− (ĝb/gbr)
( ) , (10)

By taking derivative of ga(b) with respect to b, we obtain

bs−opt = 1−
����
ĝb

gar

√
− ĝb

gbr
, (11)

Because 0 , bs−opt , 1, we have 0 ,
��������
ĝb/gar

√ + (ĝb/gbr) , 1.
The second inequality should be considered as the feasibility
condition. By substituting bs−opt in (9), one can easily show that
0 , a , 1. Using bs−opt, we obtain

gs−opt
a = gbr − ĝb − 2gbr

����
ĝb

gar

√
. (12)
1 and Nb = 1
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Fig. 5 Achievable sum rate of sub-optimal PA for a feasible system with s2
a = s2

b = 1, mb = 1, N0 = 1, Nb = 10, z = 1.4 and n = 100
4.3 Ergodic sum rate

We next provide the closed-form ergodic sum rate over Nakagami-m
fading channels for the solutions given in (9) and (11).

Theorem 3: The ergodic sum rate for the sub-optimal solutions given
in (9) and (11), can be expressed as

�R =
∑
i[C

simbNb exp
mbi

�gbr

( ) ∑mbNb

k=1

G k − mbNb, mbi/�gbr
( )

mbi/�gbr
( )k , (13)

where C = 1/(1− (z/2)− 2
������
z/2n

√
), 2/z

{ }
and s is given in (8).
Fig. 6 Achievable sum rate of sub-optimal PA for an infeasible system with s2
a =

IET Commun., 2017, Vol. 11, Iss. 2, pp. 211–217
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Proof: See Appendix 2.

5 Numerical and simulation results

In this section, Monte Carlo simulation results and theoretical
analyses given in (5) and (13) are compared for verification.

Figs. 2 and 3 show the ergodic sum rate of both optimal PA and
uniform power allocation (UPA) (Pa = Pb = Pr = Pt/3) for
different values n = 100, 20 and Nb = 1, 3. These figures show
the following:

(i) The analytical result (8) agrees well with the Monte Carlo
simulations, even for lower values of n = 20.
s2
b = 1, mb = 1, N0 = 1, Nb = 10, z = 1.4 and n = 100
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(ii) The optimal PA offers better ergodic sum rates over the UPA.
For example, for n = 100, Nb = 1 and �R = 4 bit/s/Hz, a 1 dB gap
exists between (8) and UPA. Moreover, as the antennas of Tb
increases to 3, this gap increases to about 5 dB.

Fig. 4, illustrates the impact of n on the system ergodic sum rate
for both (8) and UPA. As can be seen, optimal PA outperforms
UPA for different values of n.

Fig. 5 shows that the simulation results match well with theoretical
expression (13). Furthermore, the proposed sub-optimal PA
outperforms random PA which satisfies considered QoS
constraints. For example, for n = 100, Nb = 10 and
�R = 4 bit/s/Hz, the sub-optimal PA strategy saves the total power
about 2 dB in comparison with random PA.

In Fig. 6, ĝa is set so that the system becomes infeasible. It is clear
that the sum rate for random PA is even greater than the PPA in low
powers. In this case, the system cannot provide the target SNR due to
total power constraint. However, when the systems become feasible,
the presented sub-optimal PA strategy outperforms the random PA.

As shown in Figs. 5 and 6, the derived sub-optimal solution is
close to the optimal solution of the first scenario which is a
relaxed version of the second scenario. Hence, the proposed
sub-optimal solution is even closer to the optimal solution of its
own setup.

Finally, all the figures verify that the approximation
n ≃ Nas

2
a/Nbs

2
b results in the ergodic sum rate expressions that

match well with the simulation results.
6 Conclusion

The paper investigated a network of two MIMO terminals and a
single-antenna relay. One of the terminals is a massive MIMO
device. Subject to the total power constraint, we derived the exact
closed-form optimal PA to maximise the sum rate. We also
derived a sub-optimal PA to maximise sum rate when the SNRs at
both terminals must exceed target values. The resulting sum rates
are function of instantaneous channel gains. By exploiting the
weak law of large numbers, we then derived the ergodic sum rates
in closed-form. To provide a degree of generality, we used the
Nakagami-m fading model. Both feasible and infeasible systems
were simulated. Simulation results showed both the accuracy of
the derived theoretical expressions and the efficiency of proposed
PA strategies. Note that our results remain valid even with two
massive MIMO terminals, as long as the number of antennas in
one terminal is much larger than that of the other. The extension
of this paper to the more general case of multiple-antenna relay is
an interesting idea for future work.
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8 Appendices

8.1 Appendix 1

Using the weak-law of large numbers,
∑Nl

i=1 |hli|2/Nl −	
p

E(|hl|2) =
s2
l as Nl 	 1, ∀l [ {a, b} where (−	p ) denotes the convergence in

probability. Hence

n = Na

Nb

∑Na
i=1 |hai|2/Na∑Nb
k=1 |hbk |2/Nb

= Nas
2
a

Nbs
2
b

(14)

However, even for small number of antennas, this approximation is
good (see Section 5). To evaluate the ergodic sum rate,
�R = (1/2)E[ log2 (1+ ga)+ log2 (1+ gb)] = E[ log2 (1+ ga)], we
have (see (15))
�R = E[ log2 (1+ ga)] =
∫1
0

∫1
0
log2 (1+ ga)f (gar, gbr) dg

=(a)
∫1
0

∫1
0
log2 (1+ ga)fgar (gar)fgbr (gbr) dgar dgbr

≃(b)
∫1
0
log2 (1+ ga)fgbr (gbr) dgbr

=(c) 1

ln 2G mbNb

( ) mb

�gbr

( )mbNb
∫1
0
ln 1+ gbr

2+ 4
����
1/n

√
( )

g
mbN
br

=(d) 2+ 4
����
1/n

√( )mbNb (mbNb − 1)!

ln 2G mbNb

( ) mb

�gbr

( )mbNb

exp
mb 2+((
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where:

(a) Follows from the fact that two channel hops are independent.
(b) Follows from the fact that ga is independent from gar.
(c) The reason is that channel coefficients follow Nakagami-m
distribution.
(d) Follows from the fact that

�1
0 ln (1+ x)xn−1 exp(−tx) dx = (n −

1)!et
∑n

k=1G −n+ k, t( )/tk for t . 0, n = 1, 2, . . . [37, Appendix B].

8.2 Appendix 2

First, one should note that 1 ≤ z , 2 where the upper bound comes
from the domain of logarithm function. Using this fact and (9) and
(11), the ergodic sum rate expression for the presented sub-optimal
PA can be proven similar to Appendix 1.
ar dgbr

b−1 exp
−mbgbr
�gbr

( )
dgbr

4
����
1/n

√ )
�gbr

) ∑mbNb

k=1

G k − mbNb, mb 2+ 4
����
1/n

√( )
/�gbr

( )
mb 2+ 4

����
1/n

√( )
/�gbr

( )k (15)
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