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Abstract— In this letter, we investigate the potential benefits
of deploying two-way amplify-and-forward relays to help bidi-
rectional data exchange between two end users in a millimeter
wave (mmWave) network. While the locations of the two end
users are fixed, the locations of the potential relays are modeled
as a homogeneous Poisson point process. A relay is thus selected
to maximize the minimum of the two users’ end-to-end signal-to-
noise ratios. For this system, we derive the coverage probability
and show that the considered relay selection significantly out-
performs the random selection scheme in terms of coverage and
spectral efficiency.

Index Terms— 5G, blockage, mmWave networks, relay selec-
tion, two-way relays.

I. INTRODUCTION

Massive wireless bandwidth is needed due to unprecedented
capacity and data rate demands of future 5G wireless net-
works and Internet of things (IOT) networks. Fortunately,
huge bandwidth is available in millimeter wave (mmWave)
frequencies (30-300 GHz) [1]. However, in contrast to sub-
6 GHz bands, mmWave systems suffer from high propagation
loss, directivity, sensitivity to blockage, and losses due to
mobility. Links with line-of-sight (LOS) conditions are thus
necessary, and the non-line-of-sight (NLOS) regions from
transmitter may lack coverage [2]. Thus, to extend coverage,
densely placed mmWave relays have been investigated [1],
[3], [4]. These works analyze coverage and rate of cellular
mmWave one-way relays, where the source nodes and relays
are distributed in distinct Poisson point processes (PPPs) [4].

However, the problem with one-way relays is that bi-
directional data exchange between two end users requires four
time slots, which can be accomplished in two time slots by
using a two-way relay [5]. Thus, two-way relaying potentially
doubles spectral efficiency and has been extensively studied
for conventional sub-6 GHz bands (dominant with small-scale
fading) with typical issues such as channel estimation [6], [7]
and performance analysis [8], [9].

However, these works [6]–[9] and many similar sub-6 GHz
contributions do not directly apply to mmWave links, which
are fundamentally different due to directivity, path loss, block-
ages, and the disparity of LOS and NLOS parameters [2].
These factors decrease coverage even for nearby nodes without
the presence of relays [1]. To overcome impacts of these
factors, the work in [3] proposes a directional mmWave
medium access protocol to overcome the blockage, and the
work in [4] demonstrates the coverage improvement in a one-
way relay aided mmWave network.
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Fig. 1: Two-way relay network. Relay Rj is selected from a set of
potential relay nodes (triangles).

However, to the best of our knowledge, mmWave two-
way relaying has not been studied thus far. To fill this
gap, we investigate the potential benefits of deploying two-
way relays to help bidirectional data exchange between two
end users. We select a relay to maximize the minimum of
the two users’ end-to-end signal-to-noise ratios (SNRs). We
derive the coverage probability and show that the considered
relay selection significantly outperforms the random selection
scheme in terms of coverage and spectral efficiency.

Notations: for a random variable (r.v.) X , we use FX(·)
and fX(·) to represent cumulative distribution function (CDF)
and probability density function (PDF), respectively. R2 is the
two-dimensional real plane. P(·) and E[·] denote probability
and expectation. A log-normal r.v. X = eµ+σZ where Z is
N (0, 1) is denoted by X ∼ LN (µ, σ2), with PDF as fX(x) =

1√
2πxσ

exp
(
− (ln x−µ)2

2σ2

)
, x > 0.

II. SYSTEM MODEL

A. Network Modeling

Consider two-way amplify-and-forward (AF) relaying for
two end users (namely, u1 and u2) at a distance d (Fig. 1).
The locations of potential relays in the entire R2 plane form
a homogeneous PPP Φ of density λ. However, due to large
path losses, we consider only nodes inside a circular disc S of
radius rd (� d), centered at the mid-point of the two users.
The reason is as follows. Due to heavy path loss associated
with a large distance, the potential relay nodes outside of the
circular disc S are unlikely to be able to provide relaying
service. Thus, S is essentially equivalent to entire R2.

The homogeneous PPP Φ is a collection of points Φ =
{z1, z2, . . .}, zk ∈ R2. Here zj , j ∈ {1, 2, . . .} is the location
of j-th relay (Rj). The total number of relays in S, N ,
is a Poisson r.v. with mean λπr2

d. The widely used PPP
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model captures the random locations of nodes and provides
a tractable analysis [10]. In this letter, we assume that the
potential relay nodes are deployed without significant network
planning; consequently, their locations are random. This sce-
nario is perfectly modeled by a PPP.

All the potential relay nodes use mmWave and are capable
of directional beamforming. No direct link exists between u1

and u2 due to blockages and directivity, which necessitates
the use of a relay. Also we assume that u1 and u2 have the
same transmit power P and the j-th relay node transmits with
output power Qj . One node can serve as a central coordinator
who gets all the channel state information and performs relay
selection. Channel estimation can be done using pilots and
additional methods [9]. The information on direction can be
efficiently obtained using the existing methods [11].
B. Path Loss, Directivity and Blockage Modeling

The path loss is generally modeled by applying a linear
fit to the path loss data from propagation measurements. The
shadowing component is typically modeled as log-normal.
We use the model in [2] which incorporates the log-normal
shadowing and free-space path loss. Consequently, the total
channel attenuation between two points a, b ∈ R2 is given by

Ll(a, b)[dB] = βl + 10αl log10‖a− b‖+Xl (1)

where ‖a− b‖ means distance between points a and b, Xl ∼
N (0, σ2

l ) models the deviation in fitting, and l ∈ {L,N}
indicates the LOS and NLOS conditions that dictate the choice
of αl, βl and σ2

l . One interpretation of αl and βl is that αl
is the path loss exponent and βl represents path loss at a
reference point. We use this interpretation in our analysis and
we write βl = 20 log10 ( η

4π ) = β, where η is the wavelength
of the mmWave frequency.

We model the directivity as a function of azimuth angle
θ where the antenna possesses the gain Gmax within its half
power beamwidth (φ), and Gmin in all other directions [10].
In othre words, for gain G(θ), we have G(θ) = Gmax, if
|θ|≤ φ

2 , or G(θ) = Gmin otherwise. In our analysis, we first
consider perfect beam alignment between the communicating
nodes, i.e., u1 −Rj or u2 −Rj , which provides the effective
antenna gain, Geq = G2

max in a given link and derive coverage
probability. The misalignment of the beams is analyzed in
Section III-C.

The effect of blockages is modeled using the fixed LOS
ball model [10], where two points within a distance D have
a constant probability ω of being in LOS. The parameters ω
and D are propagation environment dependent and obtained
from geographic data [10].
C. SNR Modeling

Considering the j-th node (Rj) to be used, the SNR for the
uk −Rj , (k = 1, 2) link can be written as

γuk,Rj
= PΓuk,Rj

(2)

where Γuk,Rj
incorporates the effect of path loss, blockage,

beamforming gain at transmitter and receiver, and noise power
at receiver, and is defined as

Γuk,Rj

∆
=
Geq

N0

(
ω

LL(uk, Rj)
+

1− ω
LN(uk, Rj)

)
, (3)

where N0 is the noise power at the receiver, and Ll(uk, Rj)
is from (1). The attenuation Ll(a, b)[dB] can be written in
linear scale as Ll(a, b) = 10(βl+Xl)/10‖a − b‖αl . Using the
linear scale notations, (3) can be rewritten as

Γuk,Rj
= Kωe−XLr−αL

k,j︸ ︷︷ ︸
Y

+K(1− ω)e−XNr−αN

k,j︸ ︷︷ ︸
Z

, (4)

where K =
10−β/10ξGeq

N0
, ξ = ln(10)

10 is a constant used to

convert dB to natural logarithm, rk,j is the distance between
uk (k = 1, 2) and relay Rj , and e−XL ∼ LN (0, σ2

L) and
e−XN ∼ LN (0, σ2

N) are two independent log-normal r.v.s for
LOS and NLOS links, respectively. Using the scaling property
of log-normal r.v.s, the two summands in (4) satisfy Y ∼
LN

(
Kωr−αL

k,j , σ2
L

)
and Z ∼ LN

(
K(1− ω)r−αN

k,j , σ2
N

)
.

Then, the total sum Γuk,Rj
can be approximated by a log-

normal r.v. using the Fenton-Wilkinson method [12].
Using the channel reciprocity, the relay-to-user link (Rj −

uk, k ∈ {1, 2}) SNRs can be written as

γRj ,uk
= QjΓuk,Rj .

The end-to-end receive SNR γk,Rj
of uk, k ∈ {1, 2} when

relay Rj (j = 1, 2, . . . , N ) is used can be written as [8, eq.
(2)]

γk,Rj
=

PQjΓuk,RjΓuk̄,Rj

1 + (P +Qj)Γuk,Rj
+ PΓuk̄,Rj

(5)

where we denote {k̄} , {1, 2} \ {k}.

III. RELAY SELECTION

A relay is selected from Φ to maximize the reliability of
both users u1 and u2, i.e., maximize the minimum of the two
users’ end-to-end SNRs. The selection criterion may thus be
stated as

R = argmax
j

min{γ1,Rj
, γ2,Rj

}, (6)

where γ1,Rj
and γ2,Rj

are the end-to-end SNRs given in (5).

A. Coverage Probability

With relay selection (6), coverage is defined as the proba-
bility that the minimun end-to-end SNR of the two users is
above a predefined threshold γth. Since the potential relays
are located randomly in the disc S with radius rd � d with a
PPP of density λ, the number of nodes in S, N , is a Poisson
r.v. with mean λ|S|, where |S|= πr2

d is the area of S. For a
realization of PPP with N nodes, SNR with relay selection is
given by

γR =

{
max{γ1, γ2, ..., γN}, if N 6= 0

0, if N = 0
(7)

where γR is the equivalent end-to-end SNR of selected relay
R, and γj = min{γ1,Rj , γ2,Rj}. Subsequently, we will denote
γj by γz since it represents an arbitrary node in Φ. From
the properties of PPP, given N = k > 0, the location
z is uniformly distributed in S and γz’s are independent.
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Thus, with relay selection (6), the coverage probability can
be evaluated as

Pcov = P
(
γR ≥ γth

)
= 1− P

(
max
z∈Φ

γz ≤ γth
)

(a)
= 1− EΦ

[ ∏
z∈Φ

P
(
γz ≤ γth

)]
(b)
= 1−

∞∑
k=1

P(N = k)Ez
[ ∏
z∈Φ

Fγz (γth|N = k)
]

(c)
= 1−

∞∑
k=1

e−λ|S|(λ|S|)k

k!
Ez
[
Fγz (γth)

]k
= 1− e−λ|S|

∞∑
k=1

(λ|S|)k

k!
νk

= 1− e−λ|S|(eλ|S|ν − 1) (8)

where (a) follows form independence of individual γz’s, in
(b) the sum starts from k = 1 since we assume N = k >
0, (c) uses the probability for Poisson distribution, and ν is
the outage probability of a randomly located relay uniformly
distributed over S and is given by [13]

ν = Ez
[
Fγz (γth)

]
=

1

|S|

∫ 2π

0

∫ rd

0

Fγz (γth)rdrdθ (9)

where given z, Fγz (γth) is the conditional CDF of end-to-
end SNR γz . The value of ν is then obtained numerically by
averaging Fγz (γth) over Φ.

B. CDF expression of γz

Expression of Fγz (γth) is needed to compute the outage
probability ν in (9). To derive Fγz (γth), we condition the
location of Rj to be z. Specifically, we first derive the
conditional CDF Fγz (γth) of minimum end-to-end SNR γj =
min{γ1,Rj , γ2,Rj} conditioned on the location z, and then
compute its expected value as in (9). For simplicity, the
conditional notation is omitted.

Let X ∆
= Γu1,Rj

and Y ∆
= Γu2,Rj

, where X ∼ LN
(
µx, σ

2
x

)
and Y ∼ LN

(
µy, σ

2
y

)
. Now the CDF of min{γ1,Rj , γ2,Rj}

can be written as

Fγ(γth) = 1− P
(
min{γ1,Rj , γ2,Rj} > γth

)
= 1− P(γ2,Rj > γth, X < Y )︸ ︷︷ ︸

Pr1

−P(γ1,Rj > γth, X > Y )︸ ︷︷ ︸
Pr2

. (10)

Here Pr1 is given by

Pr1 = P
( PQjXY

PX + (P +Qj)Y + 1
> γth, X < Y

)
=

∫ ∞
a

P
(
y > max

{
x,

(1 + Px)γth
PQjx− (P +Qj)γth

})
fX(x)dx

=

∫ b

a

P
(
y >

(1 + Px)γth
PQjx− (P +Qj)γth

)
fX(x)dx

+

∫ ∞
b

P
(
y > x

)
fX(x)dx

=

∫ b

a

∫ ∞
c1

fY (y)fX(x)dydx+

∫ ∞
b

∫ ∞
x

fY (y)fX(x)dydx,

(11)

where c1 = (1+Px)γth
PQjx−(P+Qj)γth

, a =
P+Qj

PQj
γth and b =

(2P+Qj)γth+
√

(2P+Qj)2γ2
th+4PQjγth

2PQj
. Similarly, Pr2 can be

derived as

Pr2 = P
( PQjXY

(P +Qj)X + PY + 1
> γth, X > Y

)
=

∫ ∞
b

P
(
y >

(1 + (P +Qj)x)γth
PQjx− Pγth

, y < x
)
fX(x)dx

=

∫ ∞
b

∫ x

c2

fY (y)fX(x)dydx (12)

where c2 =
(1+(P+Qj)x)γth
PQjx−Pγth . By substituting (11) and (12) in

(10) and with some mathematical manipulation, we get

Fγ(γth)

= 1−
∫ b

a

∫ ∞
c1

fY (y)dyfX(x)dx−
∫ ∞
b

∫ ∞
c2

fY (y)dyfX(x)dx

= 1−
∫ b

a

Q
( ln c1 − µy

σy

) 1√
2πxσx

exp
(
− (lnx− µx)2

2σ2
x

)
dx

−
∫ ∞
b

Q
( ln c2 − µy

σy

) 1√
2πxσx

exp
(
− (lnx− µx)2

2σ2
x

)
dx.

(13)

Now by substituting ln x−µx√
2σx

= u in (13), we get

Fγ(γth) = 1− 1√
π

∫ b′

a′
Q

(
ln c′1 − µy√

2σy

)
e−u

2

du

− 1√
π

∫ ∞
b′

Q

(
ln c′2 − µy√

2σy

)
e−u

2

du (14)

where a′ = ln a−µx√
2σx

, b′ = ln b−µx√
2σx

, Q(·) is the upper tail
probability of the standard Gaussian distribution, and c′1 and
c′2 are obtained by substituting x = e(µx+

√
2σxu) in c1 and c2,

respectively. The integrals in (14) can now be calculated with
one sided Gauss-Hermite Quadrature rule [14].

C. Coverage Probability with Beamsteering Errors
In Section II-B, coverage (8) is derived for no beamsteering

errors. Next we consider the case with beam alignment error.
We use the analytical method given in [15], as follows.
Assume the beamsteering error of either u1 −Rj or u2 −Rj
link is a Gaussian r.v. ε ∼ N (0, σ2

E). Then its absolute
value |ε| follows a half normal distribution, and its CDF is
F|ε|(x) = erf

(
x/(
√

2σE)
)
, in which erf(·) is the Gauss error

function. The effective antenna gain Geq for either u1 − Rj
or u2 −Rj link has the following PDF

fGeq(g) = F|ε|

(
φ

2

)2

δ(g−G2
max)

+ 2F|ε|

(
φ

2

)(
1− F|ε|

(
φ

2

))
× δ(g−GmaxGmin) +

(
1− F|ε|

(
φ

2

))2

δ(g−G2
min)

,

in which δ(·) represents the Kronecker delta function. Accord-
ingly, the overall coverage probability Pcov can be calculated
as:

Pcov =

∫ ∞
0

Pcov(g)fGeq(g)dg

= F|ε|(φ/2)
2Pcov(G

2
max) + 2F|ε|(φ/2)

(
1− F|ε|(φ/2)

)
× Pcov(GmaxGmin) +

(
1− F|ε|(φ/2)2

)
Pcov(G

2
min) (15)

where Pcov(g) means the coverage probability as a function
of the gain.
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Fig. 2: Coverage vs. threshold for several
relay densities.
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IV. NUMERICAL RESULTS AND SIMULATIONS

In this section, our analytical results are verified with
Monte-Carlo simulation (105 independent realizations of PPP).
We consider a carrier frequency of 73 GHz with bandwidth
W = 1 GHz, and all nodes have directional antennas with
gains Gmax = 18dB and Gmin = −10dB. We set αL = 2,
αN = 3.3, σL = 5.2 dB and σN = 7.6 dB [10]. The transmit
power of 30 dBm is used for all the nodes, i.e., u1 and u2 and
relays. In the figures, the curves represent analysis, and the
markers are for simulated results. Clearly, analytical results
match exactly with simulations, verifying the correctness of
our analysis.

Fig. 2 plots coverage probability versus the SNR threshold
for the selected relay in (6) and that of a random relay, for
various node densities. We can observe that as the node density
increases from 10/km2 to 100/km2, the coverage improves
from 20% to 90% for a 15 dB threshold. In Fig. 3, we plot
the effect of beamsteering error on coverage probability. We
can observe that for small beamsteering error (σE) of up to 5
degrees, the performance is very close to that of perfect beam
alignment case. However, when σE exceeds 7 degrees, the
coverage probability starts to decrease for both the randomly
picked relay and the selected relay.

Fig. 4 shows the effect of relay density in average user
throughput, which is calculated as C = WPcov log2(1 + γth).
The achieved throughput with a random relay is always less
than that of the optimally selected relay per (6), and increasing
the relay density increases the throughput of the system.

V. CONCLUSIONS

We study the two-way AF relay selection in a mmWave
wireless network. The challenge is to improve the bidirectional
communication between two fixed end users. The locations
of potential relay nodes are modeled as a homogeneous PPP.
The best relay is selected to maximize the minimum of the
two users’ end-to-end SNR. We derive the exact CDF of the
minimum end-to-end SNR with a random relay, and use it to
get the coverage probability of relay selection (6). It is found
that relay selection (6) provides significantly better coverage
and spectral efficiency compared to the random selection
scheme. Increasing the node density also improves coverage
due to spatial diversity. Overall, two-way relay selection in
mmWave networks appears to offer significant benefits. Future
works may consider other relay selection criteria.
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