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Abstract—We consider a single channel energy harvesting
cognitive radio system, where the joint optimization of spectrum
sensing, channel probing and transmission power control is
considered with the goal to maximize the throughput. We model
this control problem as a two-stage continuous-state Markov
decision process with one stage for sensing and probing control,
and the other for transmission power control. By utilizing the
stochastic structure of the two-stage Markov decision process,
we simplify the model via the notion of after-state, which
reduces the state space and facilitates decision makings. Finally,
the performance of the generated strategy is investigated via
simulation.

Index Terms—Energy harvesting, cognitive radio, spectrum
sensing, power control, Markov decision process.

I. INTRODUCTION

In an energy harvesting (EH) cognitive radio (CR) network,
secondary users (SUs) can opportunistically share spectrum
with primary users (PUs), leading to efficient use of spectrum
and relieving the spectrum scarcity problem. With EH, SUs
can harvest free energy, such as solar radiation, indoor illumi-
nation, etc., from surrounding environments, which helps to
achieve environmentally friendly wireless networks.

The premise of CR is that SUs must give priority to
reduce interference on PUs and can only access frequency
bands that are temporally unused by PUs. Thus, SUs need
to periodically sense the channel, and should not transmit
whenever the channel is sensed to be busy. Spectrum sensing
by SUs with constant power supply has been widely studied,
and the sensing solution and the corresponding performance
heavily depend on channel fading statistics [1]. In contrast,
when SUs are powered by an EH process, the stochastic nature
of harvested energy makes spectrum sensing significantly more
challenging than the case with constant power supply.

It was shown that in EH CR networks, a SU’s optimal
sensing strategy [2] and ultimate achievable throughput [3] are
not only affected by its obligation to protect PU’s transmission
but also constrained by its EH ability when the energy supply
rate is below a certain level. Therefore, spectrum sensing in EH
CR system should take into consideration characteristics of the
harvested energy. Based on this observation, the problem of
joint optimization of binary sensing decision, sensing energy
and transmitting energy is investigated [4] for a single-channel
EH CR system.
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However, in previous works [2]–[4], the channel is modeled
as static, and therefore, the sensing strategy and/or transmis-
sion power control are performed based on channel availability
(not based on the channel quality). In conventional CR sys-
tems with constant power supply, it was shown that, taking
channels’ quality into SU’s sensing decision can improve the
throughput [5], [6], since the SU can make more efficient use
of channel access opportunity by selecting channels with better
quality.

The spectrum sensing and accessing problem under fading
channel is considered in [7], where the wireless fading is
represented as the amount of energy needed to accomplish
one transmission. At each time slot, the SU needs to decide
whether to sense or not, and which channel to sense. After a
channel is sensed to be free and the channel state information
(CSI) is obtained from the receiver’s feedback, the SU needs
to decide to transmit or not. However, in the work of [7],
the battery is not rechargeable, and is with a finite energy
budget, and the sensing is assumed to be perfect. An EH
setting is considered in [8], as follows. The SU first probes
a subset of channels. Based on the probed CSI, remaining
energy and beliefs on channels’ availability, the SU decides
which channels to sense. After getting the sensing results,
the SU further decides which channels to access. However,
in [8], the channel probing is conducted before the spectrum
sensing, which may suffer from high failure probability due to
PU activity. Further, probing before sensing may cause severe
interference to PU transmissions.

In this paper, we consider a slotted single channel EH CR
system, and at each time slot the SU decides whether to
sense or not, and if the channel is sensed to be free, the
SU can probe the channel via sending a channel estimation
sequence (CES). And given the probed CSI, the SU needs
to decide on the transmission power to use. The problem is
formulated as a continuous-state two-stage Markov decision
process (MDP), in which one stage is responsible for the
decision of sensing and probing, while the other controls the
transmission power level. To the best of our knowledge, this
is the first paper that uses a two-stage MDP (which can better
represent a practical EH CR network than one-stage MDP) for
modeling the sensing, probing and transmitting in an optimal
control problem. Furthermore, we simplify the model based
on the notion of after-state, which reduces the state space
and facilitates decision makings. Finally, the performance of
generated strategy is investigated via simulation.



The rest of paper is organized as follows. Section II de-
scribes the system model. The optimal control problem is
formulated as a two-stage MDP in Section III, and it is
further simplified via after-state transforming in Section IV.
The performance of the generated strategy is investigated in
Section V. Section VI concludes the paper.

II. SYSTEM MODEL

Primary user model: We consider a single-channel system,
where the PU transmits in a time-slotted manner, and across
time slots, the PU’s channel occupancy is modeled as an on-off
Markov process (Fig. 1).

Fig. 1. The primary user’s channel occupancy model

Channel sensing model: The SU’s sensing functionality is
implemented via an energy detector, which works under a
fixed sensing duration τS and a predefined threshold, and
each sensing process requires a fixed amount of energy eS .
The sensing result, denoted as Θ, is used by the SU to
estimate the channel’s true status C. And the imperfection of
energy detector can be characterized by false alarm probability
pFA = prob{Θ = 0|C = 1} and miss detection probability
pM = prob{Θ = 1|C = 0}. And pD = 1 − pM and
pO = 1− pFA represent the probability of correctly detecting
the presence of the PU and correctly claiming an opportunity
to access the channel, respectively. It is assumed that pM is
low enough to protect the PU system.

Sufficient statistic of channel’s status: Due to the discon-
tinuous monitoring of the channel, and imperfect sensing, the
channel’s true state is unknown in general. The best that the
SU can do is to make decisions based on all observation
information (including but not limited to sensing outcomes).
The information can be summarized as a scale sufficient
statistic, known as belief variable p ∈ [0, 1], which represents
the SU’s belief on the channel’s availability.

Energy harvesting model: We assume the SU also works
under a time-slotted scheme, which is synchronized with the
PU. The SU can harvest energy from its surroundings, which
is not affected by either the PU’s transmission or the SU’s
own actions. The harvested energy is assumed to arrive as
an energy package at the beginning of each time slot. The
amount of harvested energy at each time is modeled as an
independent and identically distributed (i.i.d.) random variable
(r.v.), denoted as EH , with probability density function (pdf)
fE(·). The SU equips a finite battery, with capacity Emax. The
amount of remaining energy in battery is denoted as b.

Data transmission model: We assume the SU always has
data to send. The channel gain between the SU and its receiver
is assumed to be under block fading, and modeled as an
i.i.d. r.v., denoted as H , with pdf fH(·). We assume the SU

can adapt its transmission rate to different channel states via
changing its transmission power, which can only be set to
a finite number of levels. The CSI is available by probing
channel. In order to get CSI, the SU can send a CES, if it
senses a free channel. And if the channel is indeed free from
the PU, the SU’s receiver is assumed to always be able to
receive the CES; otherwise, a collision will occur, and the
decoding of CES is assumed to always fail. Upon successfully
receiving the CES, the SU’s receiver can estimate CSI and
send it back to the SU. And the feedback is assumed to be
always successful. We assume this whole channel probing
process costs a fixed amount energy, denoted as eP , and a fixed
time duration, denoted as τP , no matter whether the feedback
is received or not.

MAC protocol: As shown in Fig. 2, the SU’s working time
slot is further divided into four sub-slots. At the beginning
of sensing sub-slot, the SU gets a harvested energy package.
Based on the harvested energy eH , current belief p, and battery
level b, the SU needs to decide whether to sense the channel
or not. If “to sense” is decided, and the channel is sensed
to be free, i.e., Θ = 1, it needs to decide whether to probe
the channel or not. If the SU decides to probe the channel, it
will send a CES to its receiver. And if the feedback from the
receiver is received, the SU knows the CSI, and in the rest of
the time slot, it needs to decide the transmission energy to use,
which is denoted as eT and can be taken from set ET (the
set ET includes a finite number of energy levels). And if any
of conditions is not satisfied, the SU will remain idle during
the remaining time slot, repeat the procedure at the next time
slot, and continue forever.

Fig. 2. Time slot structure

III. TWO-STAGE MDP FORMULATION

A. FSM for MAC protocol
In this part, we will use a finite step machine1 (FSM), as

shown in Fig. 3, to elaborate on the MAC protocol introduced
in Section II.

(1.1) At the sensing step of time slot t, the SU, initially
with battery level bSt , belief pSt ,2 and harvested energy eHt,
needs to decide whether to sense or not. If the SU chooses
not to sense, it remains idle until the sensing step of time slot
t + 1. And it will have energy bSt+1 = φ(bSt + eHt), where
φ(b) is defined as:

φ(b) , max{min{b, Emax}, 0}, (1)

1Instead of the conventional terminology, finite state machine, we use “step”
in order to distinguish the “state” that will be introduced in the MDP model
in the next subsection.

2Superscript S represents sensing, and subscript t means slot index.



which is used to describe battery’s transition after energy re-
plenishment or consumption. And due to channel occupancy’s
transition, the SU’s belief will change to pSt+1 = ψ(pSt ), where
ψ(p) is defined as:

ψ(p) , prob{Ct+1 = 1|pt = p} = p ·p11 + (1−p) ·p01, (2)

which is used to describe the SU’s belief transition across time
slot. The harvested energy of next slot eHt+1 is drawn from
pdf fE(·).

(1.2) If the SU chooses to sense, with probability 1 −
pΘ(pSt ), it will get a negative sensing result, i.e., Θ = 0,
where pΘ(p) is defined as:

pΘ(p) , prob{Θ = 1|p} = p · pO + (1− p) · pM . (3)

Then it will remain idle until the sensing step of slot t+1, and
we have bSt+1 = φ(φ(bSt +eHt)−eS), and pSt+1 = ψ(pN (pSt )),
where pN (p) means the probability that the channel is idle
given belief p and negative sensing result, i.e.,

pN (p) , prob{C = 1|p,Θ = 0} =
p · pFA

p · pFA + (1− p) · pD
.

(4)
(1.3) If the SU chooses to sense, with probability pΘ(pSt ), it

will get a positive sensing result, i.e., Θ = 1. Then it reaches
the probing step, and at this moment, the battery level becomes
bPt = φ(φ(bSt + eHt) − eS),3 and the belief transits to pPt =
pP (pSt ), where pP (p) is the probability that channel is idle,
given belief p and positive sensing result, i.e.,

pP (p) = prob{C = 1|p,Θ = 1} =
p · pO

p · pO + (1− p) · pM
.

(5)
(2.1) At the probing step of time t, if the SU with (pPt , b

P
t )

chooses not to probe, it will keep idle until the sensing step
of slot t+1, and the battery remains the same bSt+1 = bPt , and
the belief becomes pSt+1 = ψ(pPt ).

(2.2) If the SU chooses to probe, and after sending CES,
there is probability 1−pPt that channel is busy, and therefore,
the receiver’s feedback cannot be obtained. And then it keeps
idle until the sensing step of slot t + 1 with battery bSt+1 =
φ(bPt − eP ) and belief pSt+1 = p01.

(2.3) After sending CES, with probability pPt , it can get
the feedback, and observe the channel gain information, ht,
which is draw from fH(·). And the SU reaches the transmitting
step. At this moment, it can make sure that the channel is
free from the PU, i.e., pTt = 1,4 and the remaining energy is
bTt = φ(bPt − eP ).

(3) At the transmitting step of time t, the SU decides the
amount of energy eT ∈ ET to use for transmission. After data
transmission, it transits to the sensing step of slot t + 1 with
battery bSt+1 = φ(bTt − eT ) and belief pSt+1 = p11.

B. Two-stage MDP based on FSM

Based on the FSM, in this part, we will use a MDP
model to mathematically formulate the control problem. A

3Superscript P represents probing.
4Superscript T represents transmitting.

Fig. 3. FSM for MAC protocol

MDP can be fully characterized by specifying the 4-tuple (S,
{A(s)}s, f(·|s, a), r(s, a)), namely state space, allowed actions
at different states, state transition kernel, and reward associated
with each state-action pair, which are described as follows.

Fig. 4. Two-stage MDP

(1) In order to reduce the state space, the sensing step
and probing step are merged into one stage (represented by
superscript SP ) via jointly deciding the actions of sensing and
probing at the beginning of sensing step. And also observing
that at transmitting step, the belief is always equal to 1,
and there is no need to represent it. Therefore, the state
space S is divided into two classes: 1) sensing-probing state
sSP = [bSP , pSP , eH ], with bSP ∈ [0, Emax], pSP ∈ [0, 1]
and eH ∈ [0,∞); and 2) transmitting state sT = [bT , h], with
bT ∈ [0, Emax] and h ∈ [0,∞).

(2) At sensing-probing states sSP , the full set of available
actions are “not to sense”, “to sense but not to probe”, and “to
sense and to probe if possible”, i.e., we have aSP ∈ A(sSP ) =
{00, 10, 11}. If available energy φ(bSP +eH) is less than eS+
eP , the available actions A(sSP ) is limited to {00, 10}; and if
it is less than eS , we have A(sSP ) = {00}. And at transmitting
state sT , the available actions are “transmission energy to use”,
i.e., aT ∈ A(sT ) = ET .

(3) f(·|s, a) is a pdf of next state s′ ∈ S given initial
state s and the taken action a. Denote δ(·) as the Dirac
delta function, which is used to generalize f(·|s, a) to include
discrete transition components. And we can read out the
state transition kernel following the description of the FSM.
Starting from sSPt = [pSPt , bSPt , eHt], it may transit to sSPt+1 =
[pSPt+1, b

SP
t+1, eHt+1] or sTt = [bTt , ht] depending on chosen

actions, with f(·|sSPt , aSP ) shown in (6), (7), (8) and (9) on top
of next page. From transmitting state sTt = [bTt , ht], it can only
transit to sSPt+1 = [pSPt+1, b

SP
t+1, eHt+1], with f(·|sTt , aT ) shown



f(sSPt+1|sSPt , aSP = 00) = δ(pSPt+1 − ψ(pSPt ))δ(bSPt+1 − φ(bSPt + eHt)) fE(eHt+1) (6)

f(sSPt+1|sSPt , aSP = 10) = [(1− pΘ(pSPt ))δ(pSPt+1 − ψ(pN (pSPt ))) + pΘ(pSPt )δ(pSPt+1 − ψ(pP (pSPt )))]×
δ(bSPt+1 − φ(φ(bSPt + eHt)− eS)) fE(eHt+1) (7)

f(sSPt+1|sSPt , aSP = 11) = pΘ(pSPt )(1− pP (pSPt ))δ(pSPt+1 − p01)δ(bSPt+1 − φ(φ(bSPt + eHt)− eS − eP ))×
fE(eHt+1) + (1− pΘ(pSPt ))δ(pSPt+1 − ψ(pN (pSPt )))δ(bSPt+1 − φ(φ(bSPt + eHt)− eS)) fE(eHt+1) (8)

f(sTt |sSPt , aSP = 11) = pΘ(pSPt ) pP (pSPt )δ(bTt − φ(φ(bSPt + eHt)− eS − eP )) fH(ht) (9)

f(sSPt+1|sTt , aT = eT ) = δ(pSPt+1 − p11)δ(bSPt+1 − φ(bTt − eT )) fE(eHt+1) (10)

in (10). Note that we treat fH(·) and fE(·) as generalized pdf’s,
which allows the development to equally cover the discrete or
mixed r.v.s model for EH and H .

(4) At sensing-probing states, because there is no data
transmission happened yet, the reward is set to 0, i.e.,

r(sSPt , aSP ) = 0. (11)

At transmitting states, the Shannon’s formula is used to bridge
the relationship between the transmission energy and data
sent for simplicity, and our method can be extended to other
formulations. Therefore, we have

r(sTt , aT = eT ) = τTW log2(1 +
eTht

τTN0W
)1(bTt ≥ eT ),

(12)
where W is the spectrum bandwidth of the channel, N0 is
the thermal noise spectrum density, and 1(·) is the indicator
function. Here we put one technical restriction on the r.v. H .

Assumption 1. Given any battery level bT and any transmis-
sion energy eT , E[r(sT , eT )] exists and is bounded.

C. Optimal control via classical MDP formulation

Denote set Π as all stationary deterministic strategies, which
are maps from s ∈ S to A(s). We limit the control within Π.
The optimization goal is to find a strategy which achieves
the highest expected discounted accumulated reward for any
starting state. To be specific, given any π ∈ Π, we define a
so-called value function V π : S→ R for π as follows,

V π(s) , E[

∞∑
τ=t

γτ−tr(Sτ , aτ )|St = s, aτ = π(sτ )], (13)

where γ ∈ [0, 1) is a constant, called discounting factor, and
the expectation is defined by the state transition kernel (6),
(7), (8), (9) and (10). For the optimal strategy π∗ ∈ Π, we
have V π

∗
(s) = sup

π∈Π
{V π(s)}, ∀s. It is well-known that π∗

can be identified by the so-called optimal Bellman equation
[9, p. 154], which is defined as follows,

V (s) = max
a∈A(s)

{r(s, a) + γE[V (S′)|s, a]}, (14)

where S′ denotes the random next state given current state s
and taken action a. The solution to (14), denoted as V ∗, can

be used to generate π∗ as follows,

π∗(s) = arg max
a∈A(s)

{r(s, a) + γE[V ∗(S′)|s, a]}. (15)

Note that, given V ∗, decision generating with (15) needs
to compute expectation, which can be time consuming. One
solution is to pre-calculate the optimal action at each state
and create a strategy lookup table, which is, however, space
consuming. In next section, we will show via utilizing the
stochastic structure of the two-stage MDP model, the expec-
tation for action generating is eliminated, and furthermore,
the required space to represent a value function can also be
reduced.

IV. SIMPLIFICATION VIA AFTER-STATE MDP

A. Stochastic structure of the two-stage MDP

Notice that each state consists of an endogenous component
and an exogenous component. Specifically, for sSP ∈ SSP , the
endogenous component, dSP , is [pSP , bSP ], and denote the set
of all possible dSP as DSP , and the exogenous component,
xSP , is eH , and denote the set of all possible xSP as XSP .
Similarly, for sT ∈ ST , the endogenous component, dT , is bT ,
and denote the set of all possible dT as DT , and the exogenous
component, xT , is h, and denote the set of all possible xT as
XT . We denote D = DSP∪DT , and X = XSP∪XT . Therefore,
we have SSP = DSP ×XSP , ST = DT ×XT , and S = D×X.

Checking the state transition kernel defined via (6), (7), (8),
(9) and (10), we can see that, given state s = [d, x], and action
a ∈ A(s), transitions to next state s′ = [d′, x′] (noting that ()′

means state of next slot) have following two properties. 1)
There are N(d, a) possible transitions to d′. And for the i-
th transition, the resulted endogenous component d′ can be
deterministically expressed as a function %i(d, x, a), and the
associated probability can be expressed as a function pi(d, a).
2) The transition to x′ depends on (s, a) through %i(d, x, a).
Specifically, x′ obeys fE(·), if %i(d, x, a) ∈ DSP ; x′ obeys
fH(·), if %i(d, x, a) ∈ DT . And this defines a conditional pdf,
and denote it as fX(x′|%i(s, a)). The values of N , pi, %i and
fX for different d, x and a are listed in Table I. Therefore,
the state transition kernel f(s′|s, a) can be rewritten as:

f(s′|s, a) = f((d′, x′)|(d, x), a)

=

N(d,a)∑
i=1

pi(d, a)δ(d′ − %i(s, a)) fX(x′|%i(s, a)).
(16)



TABLE I
TRANSITION MODEL DECOUPLED VIA AFTER-STATE

d x a ∈ A(d, x) N(d, a) pi(d, a) d′ = %i(d, x, a) fX(x′|%i)

[b, p] eH

00 1 1 [ψ(p), φ(b+ eH)] fE(·)

10 2 pΘ(p) [ψ(pP (p)), φ(φ(b+ eH)− eS)] fE(·)
1− pΘ(p) [ψ(pN (p)), φ(φ(b+ eH)− eS)] fE(·)

11 3
pΘ(p) pP (p) φ(φ(b+ eH)− eS − eP ) fH()
pΘ(p)(1− pP (p)) [p01, φ(φ(b+ eH)− eS − eP )] fE(·)
1− pΘ(p) [ψ(pN (p), φ(φ(b+ eH)− eS)] fE(·)

b h eT 1 1 [p11, φ(b− eT )] fE(·)

It can be seen that given certain realization of endogenous
component %i(d, x, a), the state of next time slot s′ = [d′, x′]
is independent of (s, a). Therefore, the value of %i(d, x, a) is
sufficient to determine the standing of current situation, which
is similar to the “state” in the classical MDP model. And we
name all possible %i(d, x, a) as after-states, which is formally
defined in the next part.

B. Optimal Bellman equation for after-states

Define the after-state space as Ξ , {β ∈ D|β =
%i(s, a),∀(s, a, i)}, i.e., Ξ is the maximum subset of D such
that for every element β ∈ Ξ, we can find a state s and action
a ∈ A(s) such that β = %i(s, a) for some i.

We define the optimal Bellman equation over after-state
space as

J(β) = γ E
X′|β

[ max
a′∈A([β,X′])

{r(β,X ′, a′)+

N(β,a′)∑
i=1

pi(β, a
′)J(%i(β,X

′, a′))}], (17)

where X ′ is a r.v. presenting x′ and E
X′|β

[·] means taking

expectation over fX(x′|β). The following theorem states the
existence of solution to (17) and also gives a method to obtain
the solution. The proof is omitted due to space limitation.

Theorem 1. Given Assumption 1, there is a unique J∗ that
satisfies (17). And J∗ can be calculated via value iteration
algorithm, i.e., with J0 being arbitrary bounded function, the
sequence of functions {Jl}Ll=0 defined by following iteration
equation

Jl+1(β)← γ E
X′|β

[ max
a′∈A([β,X′])

{r(β,X ′, a′)+

N(β,a)∑
i=1

pi(β, a
′)Jl(%i(β,X

′, a′))}], (18)

converges to J∗ when L→∞.

C. Optimal control via J∗

We will now establish the relationship between J∗ and
V ∗. Assuming the existence of V ∗, define a function G
over the after-state space as G(β) , γ E

X′|β
[V ∗(β,X ′)] .

Expanding V ∗ with (14), and also using (16),

we have G(β) = γ E
X′|β

[ max
a′∈A([β,X′])

{r(β,X ′, a′) +∑N(β,a′)
i=1 pi(β, a

′)G(%i(β,X
′, a′))}], which is just the

optimal Bellman equation defined in (17). According to
Theorem 1, this implies G = J∗. Therefore, from (14) and
the definition of G, V ∗ can be expressed via J∗ as

V ∗([d, x]) = max
a∈A([d,x])

{
r(d, x, a)+

N(d,a)∑
i=1

pi(d, a)J∗(%i(d, x, a))
}
, (19)

which means the existence of J∗ implies the existence of
V ∗. Similarly, the optimal strategy π∗ defined by (15) can
be expressed via J∗ as

π∗([d, x]) =arg max
a∈A([d,x])

{r(d, x, a)+

N(d,a)∑
i=1

pi(d, a)J∗(%i(d, x, a))}. (20)

With discretization over Ξ, fE(·) and fH(·), which converts
the problem into finite state case, the value iteration algorithm
(18) can be used to compute the approximated value function
of J∗. And the approximated value function can further be
used to generate a near optimal strategy with (20).

We have shown that V ∗ and J∗ are theoretically equivalent
in achieving the optimal control. However, compared with V ∗,
J∗ does not need to explicitly represent the exogenous space
X. From the implementation point of view, this can reduce
the computation complicity in solving the MDP. Furthermore,
unlike (15), if J∗ is known, (20) can be used to generate ac-
tions without the need of taking expectation. This is favorable,
since it eliminates the requirement of either time consuming
expectation computation or space consuming strategy lookup
table.

V. NUMERICAL SIMULATION

The performance of the generated strategy from the after-
state MDP, which is named as Near Opt, is investigated. For
comparison, we further construct two partially greedy strate-
gies, namely Greedy-Sensing-Probing (GSP) and Greedy-
Transmitting (GT). GSP always senses and probes the channel
whenever it is able to do so, but carefully chooses the transmis-
sion energy. It is constructed via constraining A(s) in (18) and



(20) to have only the greedy action at sensing-probing states.
Similarly, we construct GT, which only uses the maximum
power level for transmission, but carefully chooses the sensing
and probing action. Finally, we construct a purely greedy
strategy, GSPT, which only uses the maximum power level
for transmission, and always senses and probes the channel
whenever the resulted energy at transmitting stage is enough
for transmission.

We set p00 = 0.2, p11 = 0.1, pFA = 0.1, pM = 0.01,
W = 1 MHz, τT = 10 ms and N0B = −107 dBm. The
static power attenuation is set to be −100 dB and fast fading
is modeled as Rayleigh fading with mean equal to 3. We set
eS = 10−6 Joule, eP = 10−6 Joule, eT ∈ {0, 1, 2, 3} × 10−6

Joule and Emax = 10−5 Joule. The harvested energy process
EH is modeled as the gamma distribution with variance 10−9,
and with mean ranging from 10−7 to 2.5× 10−5.
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Fig. 6. Data rate under different mean of harvested energy

Fig. 5 shows the probabilities of accessing the channel for
different strategies under different mean of harvested energy,
which are upper bounded by the channel’s idle probability
p01/(p01 + p10). And Fig. 6 shows the ultimate achieved
data rates for all strategies, which is upper bounded by
p01/(p01 + p10) · pO · E[W log2(1 +

eMT H
τTN0W

)] ≈ 0.86 Mbps,
where eMT = max{ET}. It can be seen that all strategies
can exploit the increasing harvested energy to obtain more
channel access opportunity and also more data throughput, and

at highest energy supply rate, the purely greedy use of energy
also trends to be optimal. Comparing Near Opt with GSPT, it
can be observed that the lower harvested energy rate is, the
higher the performance improves by intelligent use of energy.
To be specific, under the smallest mean of harvested energy,
Near Opt can achieve around 65% more data throughput than
GSPT does; and when harvested energy supply increases, the
relative increase achieved via Near Opt in the throughput,
although less significant, is still not negligible. It is interesting
to note that GSP captures almost the same channel access
opportunity as Near Opt does at low energy rate region,
and captures even more when energy rate is high. However,
from the ultimate data throughput point of view, Near Opt
always outperforms GSP under all energy rates. The reason
is, although GSP’s aggressive sensing-probing and intelligent
transmitting strategy can achieve reasonable access probability,
it wastes too much energy by blindly sensing and probing,
which leaves less energy to transmitting stage. It can also
be observed that GSP achieves more performance gain than
GT. This is because the greedy transmission strategy needs
more energy than greedy sensing and probing strategy, and
without adapting transmission power to fading channel, GT
cannot fully utilize the channel access opportunity obtained
at sensing-probing stage. This observation also confirms the
importance of the joint optimization of sensing, probing and
transmitting under fading channel.

VI. CONCLUSION

In this paper, we have studied the optimal sensing, probing
and power control problem under fading channel in EH CR
systems. The problem is modeled as a two-stage continuous
state MDP, which is further simplified via after-state formu-
lation. Finally the performance of the generated strategy is
investigated via simulation.
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