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Abstract—We consider an energy harvesting wireless com-
munication link, where arriving data packets have different
importance values. The wireless transmitter needs to decide
whether each arriving data packet should be transmitted or
not, based on the packet’s importance value, channel condition,
and energy status. Under certain conditions, we show this
high dimensional control problem can be transformed to a one
dimensional continuous value function estimation problem using
the notion of after-state. Then, by analyzing the structure of
the value function, we propose a polynomial approximation to
effectively compress the continuous function space into a finite
weight space. Furthermore, we develop a reinforcement learn-
ing algorithm for our after-state setting. Finally, the proposed
function approximation and learning algorithm are investigated
under various system parameter settings via simulation.

Index Terms—Energy harvesting, data importance, after-state,
reinforcement learning, function approximation.

I. INTRODUCTION

Energy harvesting (EH) wireless devices are designed to
collect energy from ambient environments, such as solar en-
ergy, indoor illumination, vibration, and others [1]. This ability
promises the green evolution of future wireless communication
networks, where due to the self-sufficiency of energy, the life
time of the system is constrained by the limits of hardware,
rather than by the battery life time. In the literature, power
allocation in wireless communication networks with constant
power supply has been widely investigated [2]–[5], where one
major focus is to deal with time-varying wireless channels.
In EH wireless systems, the amount of harvested energy
randomly changes over time [1]. Thus, system performance
optimization is challenging to achieve when considering both
the time-varying wireless channels and harvested energy.

In this research, we develop an adaptive learning algorithm
to address the above challenge in an EH wireless system
where different data packets have different importance values1.
Power allocation and energy management in EH wireless
systems for the transmission of data packets with different
importance values have been investigated in [6]–[9]. In [6],
the amount of energy replenishment from harvesting sources
and energy consumption for each packet transmission are both
assumed to be one quantum, and thus, the battery dynamic is

This work is jointly supported by China Scholarship Council/University
of Alberta Scholarship, Alberta Innovates Graduate Student Scholarship and
Natural Sciences and Engineering Research Council of Canada.

1For example, in wireless sensor networks, packets containing measurement
values that far deviate from the mean value are considered to be more
important.

modeled as an N -state Markov chain. The optimal policy is
proven to be threshold based for different importance value
given certain battery level. With the same assumption, works
in [7] and [8] show that a heuristic policy with single threshold
for data importance value regardless of the battery’s level
can achieve performance comparable to that of the optimal
policy, but with less complexity. However, works in [6]–[8] do
not consider the wireless fading in decision making. Wireless
fading is considered in a recent work [9], which assumes that
amounts of energy replenishment from harvesting and energy
consumption for each packet transmission are general ran-
dom variables (r.v.s). The optimal policy and low-complexity
heuristic policy are developed. However, the general r.v.s are
quantized, which results in the curse of dimensionality [10,
p. 201] and may lead to slow learning speed.

In this paper, optimal transmission decisions are made
based on the amount of harvested energy, data importance,
wireless channel state and the residual batter energy. We model
the problem as a continuous state Markov decision process
(MDP). This is a high dimensional problem with multiple
continuous r.v.s. By exploiting the notion of the after-state, we
reduce the dimension of the problem to be one (i.e., only the
battery dimension). Furthermore, by analyzing the structure
of optimal value function and policy, we propose a linear
function approximation with polynomial basis functions to
effectively deal with continuous state space and to accelerate
the learning speed. Finally, based on the approximation, we
develop a policy iteration based algorithm to achieve near
optimal control.

The rest of paper is organized as follows. Section II de-
scribes the system model. The optimal control problem is
formulated as an MDP in Section III, and it is transformed
into after-state setting in Section IV. The after-state value
function and policy are analyzed in Section V. An after-state
reinforcement learning (RL) algorithm is developed in Section
VI, and its performance is investigated in Section VII. Section
VIII concludes the whole paper.

II. SYSTEM MODEL

We consider a communication link with harvested energy
supply (Fig. 1). The transmitter works in a time-slotted
manner, and each arriving data packet, which is with fixed
length, triggers a time slot. Note that, for the case where the
interval of two successive data packets is random, the duration
of each time slot is random. Different arriving data packets



may have different importance values, denoted as D, which
is assumed to be an independent and identically distributed
(i.i.d.) r.v. with probability density function (pdf) fD(d). We
assume that E[D] and E[D2] exist and are bounded, where
E[·] means expectation. Harvested energy during last time slot
is assumed to arrive as an energy package at the beginning
of current time slot. The amount of energy in each energy
package is denoted as E, and is modeled as an i.i.d. r.v. with
pdf fE(e). Via the receiver’s feedback, the transmitter knows
the current channel state. Depending on the modulation and
coding scheme used, the transmitter can calculate the amount
of energy needed to guarantee one successful transmission,
which is an i.i.d. r.v., denoted as H , with pdf fH(h). And
the amount of energy remaining in battery is denoted as B.
The maximum value of B is limited by battery capacity Bmax.
Note that the transmitter does not know the distributions fE(e),
fD(d), and fH(h).

Fig. 1. Components of the investigated system

At time slot t,2 based on bt (the remaining energy in
battery), et (harvested energy), dt (the importance value of
data packet), and ht (the amount of energy needed for trans-
mission), the transmitter needs to decide to transmit or not.
When the transmitter decides to send, i.e., action at slot t
is at = 1, it makes one successful transmission, if current
available energy is sufficient, i.e., bt + et ≥ ht; however, the
attempt of sending will result in transmission failure and waste
of energy, if bt + et < ht. When the transmitter decides to
drop current packet, i.e., at = 0, the harvested energy will
be stored, which increases the level of battery, and therefore,
one successful transmission in next time slot is more likely.
At each time slot, the transmitter must intelligently decide the
transmission action, in order to have the most efficient use of
energy and therefore maximize the sum of importance values
of successfully transmitted data packets.

III. PROBLEM FORMULATION

A. MDP model

We use an infinite time horizon discounted continuous state
Markov decision process (MDP) to formulate the above prob-
lem by defining 4-tuple < S,A, p, r >, namely state space,
action space, state transition kernel and reward associated with
each state-action pair:
1) Each state s ∈ S is defined as the composition of four
variables [b, e, h, d], in which b, e, h, d are battery level at the

2Throughout this paper, the subscript t denotes time slot index.

beginning of a slot, harvested energy, energy needed for a
successful transmission, and importance value of the current
packet, respectively;
2) The action a ∈ A available at each state is binary, with ‘1’
means to send, and ‘0’ means to drop;
3) The state transition kernel p(·|s, a) is a pdf over state
space S given state action pair (s, a) ∈ S × A. For s′ =
[b′, e′, h′, d′] ∈ S,3 p(s′|s, a) is defined as the pdf to state s′

given initial state s and action a, expressed as

p(s′|s, a) , fE(e′) · fH(h′) · fD(d′) · δ(b′ − %(s, a)), (1)

where δ(·) is Dirac Delta function and %(s, a) is the remaining
battery energy level after action a for initial state s, expressed
as:

%(s, a) , min{max{b+ e− h · a, 0}, Bmax}. (2)

4) The reward r(s, a) is the immediate reward associated with
each state action pair, defined

r(s, a) , 1(a = 1) · 1(b+ e ≥ h) · d, (3)

where 1(·) is the indicator function.

B. Classical formulation for controlling

To achieve the optimal control of MDP, it is sufficient to
consider stationary deterministic policies Π [11], which are
stationary mappings from state space to action space. The
optimal Bellman equation, which works at the central role
in classical MDP theory, is defined as follows,

V (s) = max
a
{r(s, a) + γ · E [V (S′)|s, a]} , (4)

where the constant γ ∈ [0, 1) is the discounting factor and
r.v. S′ means the next state after state s with an action. The
solution to (4), denoted as V ∗, can be used to define an optimal
policy π∗ as follows [11, p. 154],

π∗(s) = arg max
a

{r(s, a) + γ · E [V ∗(S′)|s, a]} . (5)

The optimality of π∗ is in the sense that starting from any
state s ∈ S, no policy can get larger discounted accumulated
reward than π∗ does. Formally speaking, for any π ∈ Π, we
can define the value function V π(s) for any state s as

V π(s) , E

[ ∞∑
τ=t

γτ−tr(sτ , aτ )|st = s, aτ ∈ π(sτ )

]
, (6)

and V π
∗
(s) = sup

π∈Π
{V π(s)}. Furthermore, it can be shown

that V ∗(s) = V π
∗
(s) for ∀ s [11, p. 152]. Therefore, we use

V ∗(s) and V π
∗
(s) interchangeably. It is easy to check that (6)

can be recursively written as

V π(s) = r(s, π(s)) + γ · E [V π(S′)|s, π(s)] , (7)

which will be used in the transforming to after-state formula-
tion in Section IV.

3Throughout the paper, x′ means notation x for the state in next time slot.



In our setting where the transmitter does not know the
distributions fE(e), fD(d), and fH(h), the main challenges
for using (4) and (5) to develop optimal policy are as follows.
First, the max{·} operation outside of E[·] operation in (4)
will impede us to use samples to estimate V ∗. Second, E[·]
operation for the action selection in (5) will impede us to get
the optimal action, even if V ∗ is known.

In the next section, we will address these challenges by
transforming the standard MDP formulation into after-state
formulation.

IV. TRANSFORM TO AFTER-STATE MDP
A. The notion of after-state

The notion of after-state is a trick in RL for the learning
tasks of playing games [10, p. 145]. For example, when
playing chess, the learner can deterministically control its
move, and what is random is the opponent’s action. Before
a move needed to be decided, the learner is facing certain
positions of pieces on chessboard, which is in the same sense
of “state” of classical MDP formulation. The after-state for
a move of the learner is defined as the resulted positions on
chessboard after this move but before the opponent’s move.
If we can learn the chance of winning for all different after-
states, we can use these values to behave optimally: we simply
choose the action whose after-state has the highest chance of
winning.

This notion can be applied in our problem, where, at each
time slot, the control of battery level at the next time slot is
deterministic for both a = 1 and a = 0, and what is random
at the next time slot is the exogenous r.v.s E, H and D.
Because of the i.i.d. assumptions of the exogenous r.v.s, at
time slot t, knowing the battery level resulted from action
at applied on state st, (st, at) has nothing to do with the
future decision making. Therefore, we define the battery level
%(s, a) after action a applied on state s as the after-state of
(s, a). For presentation clarity, we use β to denote the battery
level whenever referring it as the after-state from certain state
action pair (s, a). If we can know the maximum expected total
rewards that one can get starting from any battery level β,
denoted as J∗(β), the optimal decision at state s is the action
a that maximizes r(s, a) + J∗(%(s, a)).

B. After-state formulation for controlling
Before delving into the solving of J∗(β), we formalize the

sense of maximization of J∗(β). We define the value function
Jπ(β) of after-state β as the expected accumulated discounted
reward one can obtain, if equipping battery level β at the end
of time t and following policy π starting from time t + 1.
Comparing with the definition of V π in (6), the relationship
of Jπ and V π can be easily shown as follows,

Jπ(β) = γE [V π(S′)|β] = γE [V π(β,D′, H ′, E′)] , (8)

where γ is introduced for discounting, since the expectation
is starting from next time slot. And plug (7) into (8), we can
get the recursive equation respected to Jπ as follows:

Jπ(β) = γE [r(S′, π(S′)) + Jπ(%(S′, π(S′)))] , (9)

where S′ = [β,E′, H ′, D′].
In order for solving J∗(β), we define the optimal Bellman

equation as

J(β) = γE
[
max
a′
{r(S′, a′) + J(%(S′, a′))}

]
, (10)

with S′ = [β,E′, H ′, D′].

Theorem 1. There is a unique J∗ that satisfies (10), and we
have J∗(β) = sup

π
{Jπ(β)} for all β, and furthermore from

J∗ we can define an optimal policy:

π∗(s) = arg max
a
{r(s, a) + J∗(%(s, a))}, (11)

such that Jπ
∗
(β) = J∗(β) for all β. Finally J∗ can be

calculated via value iteration algorithm, i.e., with J0 being
arbitrary bounded function, the sequence of functions {Jl}Nl=0

defined by the following iteration equation

Jl+1(β)← γE
[
max
a′
{r(S′, a′) + Jl(%(S′, a′))}

]
, (12)

converges to J∗ when N →∞.

Proof is omitted due to the space limitation.

C. Optimality of V ∗ from J∗

We will now establish the relationship between
V ∗ and J∗. Assume V ∗ exists, and define a
function G over after-state space as: G(β) ,
γE [V ∗(β,D′, H ′, E′)]. Expanding V ∗ using (4), we

have G(β) = γE
[
max
a′
{r(S′, a′) +G(%(S′, a′))}

]
, with

S′ = [β,E′, H ′, D′]. And this is nothing, but exactly the
optimal Bellman equation defined in (10). And according
to Theorem 1, we must have G = J∗. Then we have
V ∗(s) = max

a
{r(s, a) + J∗(%(s, a))}. Therefore, the

existence of J∗ implies the existence of V ∗.
Note that in (10), the E[·] operation is outside a max{·}

operation, which enables the possibility of sample estimation,
and in (11), the action selection does not need the knowledge
of fE(e), fD(d), and fH(h), if J∗ is known. Furthermore,
compared with V ∗, working with J∗ considerably reduces the
amount of space for representing a value function, which can
save computation resources of solving the problem.

Therefore, transforming the standard MDP formulation into
after-state MDP setting is not only useful in establishing the
theoretical result, but also beneficial in achieving much lower
computation complexity for practical purposes.

V. ANALYSIS OF OPTIMAL VALUE AND POLICY

In this section, we will present several analytical results
regarding the optimal value function and optimal policy. They
help us to understand the problem and also serve as the
guidance for us to develop an efficient function approximation.
The proof of the rest analytical results is omitted due to space
limitation.

Theorem 2. The optimal after-state value J∗ is monotone
non-decreasing respected to battery level β. The optimal state



value V ∗ is monotone non-decreasing respected to b, e, d and
−h.

Theorem 2 confirms our intuitive understanding that higher
battery level, more harvested energy, higher data importance
and better channel condition correspond to a “good” state.

Theorem 3. The optimal policy π∗ is threshold based non-
decreasing respected to d, i.e., given any b, h and e, if
π∗(b, d, h, e) = 1, then π∗(b, d, h, e) = 1, for any d ≥ d.

Theorem 3 shows that the optimal policy is non-decreasing
threshold based respected to d. However, the threshold-based
property does not necessarily hold for b or e or −h.

Theorem 4. The J∗(β) is continuous function respected to β,
if D, H , E are all continuous r.v.s.

VI. AFTER-STATE REINFORCEMENT LEARNING

A. Polynomial basis linear function approximation

Choosing an appropriate function approximation is crucial
for the successful application of RL algorithms when facing a
continuous after-state space. Among different approximations,
linear function approximation, where the value function is
approximated as a sum of weighted basis functions, is of
our interest because of the simplicity of the structure and the
powerful representation ability. Well designed basis functions
can not only reduce continuous state space into much smaller
weight space, but also provide experience sharing among
different states that have weights in common to efficiently
accelerate the learning speed.

When facing continuous variables, quantization or state
aggregation is often used in the EH literature [9], [12], [13],
where the continuous variable space is discretized or aggre-
gated into several non-overlapped intervals or clusters, and
variables inside the same interval/cluster are considered as the
same and have identical value. Although this treatment is sim-
ple, the resulted learning algorithm can be very slow, because
learning experience only shares inside the interval/cluster,
which is known to have poor generalization ability. Therefore,
when certain range of variables are seldom reached during
the learning process, the learning of value function of the
corresponding interval/cluster can be problematic.

For better generalization ability, a more sophisticated ap-
proximation is thus needed. In this paper, we propose a
polynomial approximation:

Ĵ(β) =< w, βp >, w0 +

N∑
i=1

wiβ
pi , (13)

where N is the number of polynomials, w = [w0, ..., wN ] are
weights with wi ∈ R for i ∈ {0, 1, ..., N} and p = [p0, ..., pN ]
are polynomial power with pi ∈ R for i ∈ {1, 2, ..., N}
and p0 = 0. In Section V, we have showed that J∗ is
a non-decreasing function, and when the involving r.v.s are
continuous, J∗ is, in addition, a continuous function. With
carefully chosen hyper-parameter p, both monotonicity and

continuity can be well presented by our proposed polynomial
approximation via optimizing w.

B. Approximate policy improvement

Given Jπk for any policy πk, we can generate another policy
πk+1 from Jπk in a greedy manner,

πk+1(s) = arg max
a
{r(s, a) + Jπk(%(s, a))}, ∀s. (14)

It was showed in [10, p. 82] that πk+1 is better than πk in the
sense: Jπk+1(β) ≥ Jπk(β) for all β, which is known as policy
improvement property, and therefore (14) is called policy im-
provement operation. Note that if policy improvement results
in an unchanged policy, i.e. πk+1 = πk, then comparing it
with (11), it implies πk = π∗, and Jπk = J∗.

However, we need to consider how to represent a policy,
which is a mapping from four dimensional continuous state
space into binary action space. Therefore, explicitly represent-
ing a policy is a challenge. Fortunately, there is an elegant way
to use weights to implicitly represent a policy as follows:

πw(s) , arg max
a
{r(s, a)+ < w, %(s, a)p >}. (15)

Noticing the similarity between (14) and (15), if the function
Ĵ(β) =< w, βp > is an approximated value function of
some policy πk, πw(s) is “approximately” better than πk [14,
theorem 3.1].

C. Temporal difference learning

Temporal difference learning (TD) is an incremental weight
adjusting algorithm for policy evaluation [15]. Given any
policy π, our goal is to find a way to adjust weights w in
order to approximate Jπ .

At time t, when facing some state st, we take action
at = π(st) and get reward rt and observe the next state
st+1, where the action will be at+1 = π(st+1), although
it has not happened yet. With this 5-tuple information
(st, at, rt, st+1, at+1),4 the classical TD algorithm can get one
adjustment respect to the weights. But because we are dealing
with after-states, the 5-tuple needs to be converted into after-
state setting. Using (2), we can infer βt and βt+1 from (st, at)
and (st+1, at+1), respectively, and using (3) we can infer rt+1

from (st+1, at+1), although it has not happened yet. Then, we
get a 3-tuple (βt, rt+1, βt+1). At time t, given any wt, we
can evaluate and get the approximated value at βt and βt+1

as Ĵ(βt) and Ĵ(βt+1), respectively. Based on these, we define
a scale ηt, called temporal different error, as follows,

ηt = γ
(
rt+1 + Ĵ(βt+1)

)
− Ĵ(βt). (16)

Using ηt, we can get one updating respected to w as follows,

wt+1 ← wt + αt · ηt · βp
t , (17)

where αt ∈ (0, 1) is the step size. After this update, setting
time to be t+1 and starting with st+1, the weights adjustment

4This 5-tuple information (s, a, r, s, a) gives an abbreviation SARSA, and
this is how the name of resulted control algorithm comes in the RL literature.



process can go on incrementally. With properly decreasing step
size, the limiting point of approximated value function Ĵ(β)
approaches the best least square approximation of Jπ as t→
∞ [15].

D. After-state SARSA algorithm

In the RL field, SARSA is a light-weight incremental algo-
rithm for (near) optimal control via combining approximate
policy improvement and TD policy evaluation [10]. With
the same spirit, we realize the after-state version SARSA,
named as A-SARSA, summarized in Algorithm 1. Note that
at time t using TD we have one incremental update respect
to weights w to evaluate current policy (in line 15), and
at time t + 1, the updated weights are immediately used to
generate action, and therefore, the policy is iterated (in line
12). Since the weights used to generate policy have not yet
accomplished the policy evaluation, the policy improvement
property does not necessarily hold for every policy iteration.
However, compared with the case where the policy evaluation
is fully accomplished, this optimistic policy iteration method
is more computationally efficient in practice. However, the
theoretic analysis of the algorithm is difficult. The strong
convergence result of SARSA is now still an open question in
the RL field [10, p. 224]. But it has been proved that SARSA
will never diverge [16], and in the worst case it chatters among
a group of good policies, and “this kind of solution can be
completely satisfactory in practice” [17].

Algorithm 1 A-SARSA algorithm with polynomial approximation
1: procedure A-SARSA
2: Randomly initialize w0

3: Initialize p to some proper value
4: Starting from some battery level β0
5: Sample environment and get [e0, h0, d0]
6: Get s0 = [β0, e0, h0, d0]
7: Infer a0 = πw0 (s0) based on (15)
8: for t from 0 to ∞ do
9: Apply at, get reward rt and βt = %(st, at)

10: Sample environment and get [et+1, ht+1, dt+1]
11: Get st+1 = [βt, et+1, ht+1, dt+1]
12: Infer at+1 = πwt (st+1) based on (15)
13: Infer βt+1 = %(st+1, at+1) and rt+1 = r(st+1, at+1)

14: ηt = γ
(
rt+1 +wT

t β
p
t+1

)
−wT

t β
p
t

15: wt+1 ← wt + αt · ηt · βp
t

16: end for
17: end procedure

VII. NUMERICAL SIMULATION

In this section, we investigate the A-SARSA algorithm for
different settings, and compare its performance with those of
several different function approximations, a greedy policy and
a heuristic single threshold policy.

A. Performance under different energy supply rate

We use Shannon’s capacity to bridge the relationship be-
tween channel state and the energy needed for one transmis-
sion, i.e.,

H = T
(2

R
B − 1)N0B

hshf
,

where the data packet length T is assumed to be 10 ms; R is
the bit rate, and B is the bandwidth, and R/B is assumed
to be 2 bit/s/Hz; N0 is the thermal noise spectral density,
and N0B is assumed to be −107 dBm; hs representing path
loss is assumed to be −102.45 dB; and hf describing channel
fading is assumed to follow exponential distributed with mean
equal to µh = 2. And the data importance D is modeled as
gamma distributed with shape parameter Dk = 0.1 and scale
parameter Dθ = 10. And we assume the battery capacity Bmax

is equal to 10−4 Joule. We also model the amount of energy
supply E in each time slot as gamma distributed with shape
parameter Ek = 1, and scale parameter Eθ varying during
simulation to evaluate the performance of algorithms under
different energy supply rates.

The performance of the proposed polynomial approxima-
tion (Poly) is compared with that of three other commonly
used function approximations, namely state aggregation (State
Aggr), tile coding, and Gaussian radial basis function (GRBF)
[10]. Tile coding can be understood as modified state ag-
gregation, where the aggregated groups have certain pattern
of overlapping, and the learning experience at an after-state
is shared among the corresponding overlapped clusters. For
GRBF, value function is approximated by weighted Gaussian
shape basis functions, and learning experience at an after-
state is shared among all weights in proportion to the value
of corresponding basis functions. Therefore, compared with
State Aggr, tile coding and GRBF have better generalization
ability. We also compare the performance with a greedy policy
(Greedy), which always chooses to transmit whenever the
energy is sufficient.
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Fig. 2. Average accumulated rewards under different energy supply rate

We vary Eθ, which is equal to the mean of E, from 10−6 to
10−4 Joule. Fig. 2 shows the accumulated rewards obtained
by Greedy and different function approximations during the
first 105 steps. It is as expected that when the harvested
energy supply is low, intelligently saving energy for future
use can achieve better performance than Greedy; while when
the harvested energy supply is high, simply greedy use of
energy is optimal. Because the uniform generalization ability



of polynomial structure, Poly achieves the best performance
under all different energy supply rates. GRBF and tile coding
have moderate generalization ability, and therefore, show
modest performance gain in low energy rate region, and are
slightly less powerful than Greedy in high energy region.
As the State Aggr has no generalization across the different
clusters, it has difficulty to learn the value function in high
battery region when energy supply is low, which results in the
slowest performance gain. When the energy supply is high, its
learned value function in low battery level region is again poor,
which results in lots of unnecessarily conservative actions, and
therefore, makes it perform even much worse than Greedy.

B. Compared with heuristic single threshold policy

Single threshold policy is often used as a compromised
solution when facing the curse of dimensionality [8] [9].
We construct a heuristic single threshold policy (Heu), which
chooses to transmit if energy is sufficient, and the importance
of data packet is above certain fixed threshold, whose optimal
value is found via brute force search. The performance of
Heu is compared with Poly and Greedy under different data
variances.

We set Eθ = 10−5, and µh = 1. And the data importance
D is considered to be a mixture of two data classes with equal
probability. We model both data classes as gamma distribution,
with mean of the first class equal to 10 and variance equal to
1, and mean of the second class equal to 5, and varying its
variance for comparison.
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Fig. 3. Average accumulated rewards under different data importance variance
of the second data class

The performance for Poly, Greedy, and Heu is shown in
Fig. 3, where Greedy is considered as a baseline. It can be
seen that the performance gain of Heu heavily depends on the
data importance variance. When the variance of the second
class data importance is high, both Poly and Heu show high
performance gain, and the achieved performance of Heu is
approaching Poly. However, when the variance is small, the
performance gain of Heu is marginal. When the variance is
about 10−1, Heu shows no improvement over Greedy.

VIII. CONCLUSION

In this paper, the optimization of transmission strategy has
been studied for energy harvesting communication systems.
By exploiting the stochastic structure and after-state notion, we
have shown that the optimal control problem whittles down to
a one dimensional value function estimation problem, which
greatly simplifies problem and increases application flexibility.
Based on the analysis of optimal policy and value function,
we have proposed a polynomial approximation, which ac-
celerates the learning process compared to commonly used
function approximations. Furthermore, with the polynomial
approximation, we have developed the A-SARSA learning
algorithm via tailoring a classical learning algorithm into after-
state setting. Finally, the performance of proposed algorithm
has been evaluated comprehensively via simulations.
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