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Abstract—Wireless and digital communications applications
require the detection of an integer vector x̂ from y = Ax̂ + v,
where A ∈ Rm×n is a random matrix whose entries are indepen-
dent and identically distributed (i.i.d.) standard Gaussian N (0, 1)
entries, and v ∈ Rm is a noise vector following the Gaussian
distribution N (0, σ2) with given σ. The successive interference
cancellation (SIC) decoders are frequently used to detect x̂
due to their high accuracy and low implementation complexity.
However, to accurately characterize their performance, we need
to analyze their symbol error rates (SER). In this paper, we
derive a closed-form expression for the SER of the SIC decoders
and investigate its properties. Simulated error probabilities of
the SIC decoders agree closely with our theoretical expressions.

Index Terms—Symbol error rate, successive interference can-
cellation, Babai’s nearest plane algorithm, integer least squares
problems.

I. INTRODUCTION

In many applications, we need to detect an integer parameter
vector x̂ ∈ Zn from

y = Ax̂ + v, v ∼ N (0, σ2I), (1)

where y ∈ Rm is an observation vector, A ∈ Rm×n is a ran-
dom matrix whose entries independent and identically follow
the standard Gaussian distribution N (0, I), and v ∈ Rm is
a noise vector following the Gaussian distribution N (0, σ2I)
with given σ.

One of the widely used methods to detect x̂ in (1) is to solve
the following ordinary integer least squares (OILS) problem:

min
x∈Zn

‖y −Ax‖22, (2)

whose solution is the maximum-likelihood estimator of x̂. As
(2) is equivalent to finding the point in the lattice {Ax : x ∈
Zn} that is closest to y, the OILS problem is also referred to
as the closest point problem in cryptography (see, e.g., [1]).

One of the most popular methods to solve (2) in commu-
nications is the sphere decoder, which is implemented via
the Schnorr-Euchner algorithm [2], which is an improved
version of the Fincke-Pohst algorithm [3], or its variants,
see e.g. [1], [4]–[8]. Although lattice reductions, such as the
Lenstra-Lenstra-Lovász (LLL) reduction [9], can decrease the
computational cost of solving (2) by sphere decoding [10],
it has been shown in [11] that (2) is an NP-hard problem.
Hence, for many applications, a suboptimal algorithm of (2)
may be utilized to detect x̂ instead of completely solving (2).
One frequently used suboptimal algorithms is the ordinary

successive interference cancellation (SIC) decoder which is
actually the Babai’s nearest plane algorithm [12]. The solution
obtained by a SIC decoder is also referred to as an ordinary
Babai point (e.g., [1], [10]), which is actually the first integer
vector found by the Schnorr-Euchner algorithm for solving
(2). For more details, see [1], [13].

In order to accurately characterize the performance of a
decoder, we utilize the probability of the solution, obtained by
the decoder, that is not equal to the true integer vector x̂, which
is referred to as symbol error rate (SER). The probability of
correct detection is referred to as the success probability of
the decoder, see, e.g., [10], [14]–[16].

As showed in [10], [15] and [16], the SER characterization
of the SIC decoder is very important. Indeed, when using an
SIC decoder to detect x̂, the SER P OSIC

e serves as an important
quality parameter. Specifically, if the SER is sufficiently low,
say fairly close to 0, the decoder can be used with confidence.
In this case, the additional effort to optimally solve the OILS
(2) yields diminishing returns. However, if the P OSIC

e is high,
then other more effective decoders, such as the maximum-
likelihood estimator, should be used. Even if one intends to
solve the OILS (2) to get the maximum-likelihood estimator of
x̂, it is still of vital importance to compute P OSIC

e since P OSIC
e

is often used to approximate its SER. Moreover, generally
speaking, the lower the P OSIC

e , the lower the complexity of
solving (2) by sphere decoding [10].

Although a closed-form expression for the SER of the
ordinary SIC decoder has been given in [10] for deterministic
A, to the best of our knowledge, the SER has not been derived
for the common case where A is a random matrix, which is
required in many applications. This paper fills this gap and
derives closed-form SER expression for the SIC decoder. Some
properties of the SER will also be discussed.

The rest of the paper is organized as follows. In Section
II, we introduce the computational details of the ordinary SIC
decoder. In Section III, we develop a closed-form expression
for the SER of the ordinary SIC decoder and investigate its
properties. In Section IV, we provide numerical simulations
to illustrate the proposed formula. Finally, the paper is sum-
marized and discussed in Section V.

In this paper, for a vector x, we use bxe to denote its nearest
integer vector, i.e., each entry of x is rounded to its nearest
integer (if there is a tie, the one with smaller magnitude is
chosen), and we use xi to denote the i-th element of x. Let



aij be the element of matrix A at row i and column j. Let
P OSIC
e denote the SER of the ordinary SIC decoders

II. QR REDUCTION AND TRANSFORMATION OF THE ILS
PROBLEMS

We briefly introduce the computational details of the ordi-
nary SIC decoder.

Suppose that A in (1) has the following QR factorization

A = [Q1,Q2]

[
R
0

]
, (3)

where [Q1
n
, Q2
m−n

] ∈ Rm×m is an orthogonal matrix and R ∈

Rn×n is an upper triangular matrix.
Let ȳ = QT

1 y and v̄ = QT
1 v. Since v ∼ N (0, σ2I), v̄ ∼

N (0, σ2I). By (3), (1) can be transformed to

ȳ = Rx̂ + v̄, v̄ ∼ N (0, σ2I). (4)

Let xOSIC ∈ Zn denote the output of the ordinary SIC
decoder which is actually the Babai nearest plane algorithm
[12], then it can be computed as follows:

cOSIC
i = (ȳi −

n∑
j=i+1

rijx
OSIC
j )/rii, xOSIC

i = bcOSIC
i e, (5)

for i = n, n−1, . . . , 1, where
∑n
n+1 · = 0. Clearly, the entries

of xOSIC are determined from the last one to the first one.

III. SER ANALYSIS FOR THE ORDINARY SIC DECODERS

In this section, we derive the SER of the ordinary SIC
decoder and investigate its properties.

A. SER analysis the ordinary SIC Decoders

This subsection presents a closed-form SER expression
P OSIC
e for the SIC decoder.
We begin with the following lemma which derives P OSIC

e for
the one dimensional case.

Lemma 1: Suppose that we have the following linear mod-
el:

ȳ = rx̂+ v̄, v̄ ∼ N (0, σ2), (6)

where x̂ ∈ Z is a fixed unknown parameter number, v̄ ∈ R is
a noise number following the Gaussian distribution N (0, σ2),
and r2 > 0, which is independent with v̄, follows the chi-
square distribution with degree k. Let x = bȳ/re, then

Pr(x = x̂) = Ck

∫ arctan(1/(2σ))

0

cosk−1(θ)dθ, (7)

where
Ck =

2Γ((k + 1)/2)√
πΓ(k/2)

. (8)

Proof: See Appendix A.
Before developing the main theorem to compute P OSIC

e , we
need to introduce the following lemma from [17, P. 99].

Lemma 2: Suppose that the entries of A are independent
and identically distributed as the standard Gaussian distribu-
tion N (0, 1), then all rij , 1 ≤ i ≤ j ≤ n, are independent.

Moreover, r2
ii ∼ χ2

m−i+1 and rij ∼ N (0, 1) for 1 ≤ i ≤ j ≤
n.

Based on Lemmas 1 and 2, the following theorem for P OSIC
e

can be obtained.
Theorem 1: The symbol error rate P OSIC

e of the ordinary SIC
decoder (see (5)) satisfies

P OSIC
e ≡ Pr(xOSIC 6= x̂) = 1−

m∏
i=m−n+1

Ri, (9)

where

Ri =
2√
π

Γ((i+ 1)/2)

Γ(i/2)

∫ arctan(1/(2σ))

0

cosi−1(θ)dθ. (10)

Similar to the proof of [10, Theorem 1], we first use the
chain rule of conditional probabilities to transform 1 − P OSIC

e

to the product of n terms with each of them representing a
conditional success probability for one dimensional. Then, we
use Lemma 1 to compute each term, and finally we obtain (9).
For more details, see the following proof.

Proof: Let

P OSIC
s = Pr(xOSIC = x̂),

then by the chain rule of conditional probabilities, we have

P OSIC
s = Pr

(
n⋂
i=1

(xOSIC
i = x̂i)

)
= Pr(xOSIC

n = x̂n)

×
n−1∏
i=1

Pr

xOSIC
i = x̂i|

n⋂
j=i+1

(xOSIC
j = x̂j)

 .

Thus, by (9) to show the theorem, it suffices to show

Pr(xOSIC
n = x̂n) = Rm−n+1, (11)

Pr

xOSIC
i = x̂i|

n⋂
j=i+1

(xOSIC
j = x̂j)

 = Rm−i+1, (12)

for i = n− 1, n− 2, . . . , 1.
By (4), we have

ȳn = rnnx̂n + v̄n, v̄n ∼ N (0, σ2), (13)

ȳi −
n∑

j=i+1

rij x̂j = riix̂i + v̄i, v̄i ∼ N (0, σ2) (14)

for i = n − 1, . . . , 1. Moreover, if xOSIC
i+1 = x̂i+1, · · · , xOSIC

n =
x̂n, by (5) and (14), we can see that, for i = n− 1, . . . , 1,

rii c
OSIC
i = riix̂i + v̄i, v̄i ∼ N (0, σ2). (15)

By Lemma 2,

r2
ii ∼ χ2

m−i+1, i = n, n− 1, . . . , 1.

Thus, by (15) and Lemma 1, we can see that both (11) and
(12) hold. Hence, the theorem holds.

Since
m∏

i=m−n+1

2√
π

Γ((i+ 1)/2)

Γ(i/2)
=

(
2√
π

)n
Γ((m+ 1)/2)

Γ((m− n+ 1)/2)
.

(16)



By Theorem 1, we can immediately obtain the following result
which computes P OSIC

e in a more efficient way than that by
using Theorem 1.

Corollary 1: The symbol error rate P OSIC
e of the ordinary

SIC decoder xOSIC (see (5)) satisfies

P OSIC
e = 1− α

m∏
i=m−n+1

∫ arctan(1/(2σ))

0

cosi−1(θ)dθ,

where

α =

(
2√
π

)n
Γ((m+ 1)/2)

Γ((m− n+ 1)/2)
.

B. Properties of the ordinary SIC Decoders

In this subsection, we investigate some properties of P OSIC
e .

We begin with the following important lemma which es-
sentially shows that P OSIC

e tends to 0 if σ tends to 0 for one
dimensional case.

Lemma 3: For each fixed integer k, Rk (see (10)) satisfies

lim
σ→0

Rk = 1. (17)

Proof: See Appendix B.
By Lemma 3, we have the following result.
Theorem 2: The SER P OSIC

e of the OSIC decoder is an
increasing function of both σ and n. Moreover it satisfies

lim
σ→0

P OSIC
e = 0. (18)

where P OSIC
e is defined in (9).

Proof: By (9) and (10), the first part of the result
obviously holds.

By (17), we have

lim
σ→0

P OSIC
e =1− lim

σ→0

m∏
i=m−n+1

Ri

=1−
m∏

i=m−n+1

lim
σ→0

Ri = 0.

Thus, (18) holds.
Note that, Theorem 2 also holds for deterministic A. For

more details, see [16, Corollary 2].
In many application domains, the matrix A in (1) is a square

matrix. For the convenience of writing, we denote the SER of
the ordinary SIC decoder corresponding to the n × n square
matrix A as P OSIC

e (n), then the following result can be directly
obtained from Theorem 1.

Theorem 3: Let n1 < n2 be two integers, then P OSIC
e (n1)

and P OSIC
e (n2), which are respectively the SER of the ordinary

SIC decoders corresponding to n1×n1 and n2×n2 matrices
A, satisfy

1− P OSIC
e (n2)

1− P OSIC
e (n1)

=

n2∏
k=n1+1

R(k). (19)

Note that the significance of Theorem 3 is it quantifies the
gap between two P OSIC

e . Specifically, if σ is close to 0, then
Rk is close to 1 for any integer k (for more details, see (10)
and (17)). As a result, both P OSIC

e (n2) and P OSIC
e (n1) are close

to 0 which implies that their gap is very small even if n2−n1

is very large as long as σ is close to 0. This contradicts with
the intuition that the gap is very large no matter how small
is σ. For more details, see the numerical experiments in Sec.
IV.

IV. NUMERICAL EXPERIMENTS

In this section, we provide simulation results to illustrate the
effectiveness of the SER formula (9) by comparing the average
theoretical SER and experimental SER over 104 samples. For
simplicity, we assume m = n in all the following tests (note
that we did lots of simulations and found that (9) is always
an effective formula for the SER of the ordinary SIC decoder
no matter whether m = n or not).

We did the simulations by choosing a range of n and σ.
For each fixed n and σ, we randomly generated 104 A’s
whose entries independent and identically follow the standard
Gaussian distribution N (0, 1) and v’s with each of them
following the Gaussian distribution N (0, σ2I). To illustrate
the effectiveness of (9), we randomly generated only one
x̂ ∈ Zn corresponding to these 104 A’s and v’s for each
fixed n and σ. As a result, we got 104 linear models in
the form of (1). Then, we found the outputs xOSIC of the
ordinary SIC decoders corresponding to each ordinary linear
model according to (5). Finally, we computed the ratio of the
number of events xOSIC 6= x̂ to 104 as the experimental SER
for ordinary SIC decoders which is denoted as “Exp.”. To
compute the average theoretical SERs, for each generated A,
we used (9) to compute the theoretical SER of the ordinary SIC
decoder, and took their averages which is denoted as “Theo.”.

Table I shows the average theoretical and experimental SER
of the ordinary SIC decoder for σ = 0.05 : 0.05 : 0.5 with
n = 4, 8, 64 over 104 samples, and Table II displays the results
for n = 2 : 2 : 20 with σ = 0.05, 0.1, 0.5.

TABLE I
AVERAGE THEORETICAL AND EXPERIMENTAL SER OF THE ORDINARY

SIC DECODER OVER 10000 SAMPLES

σ
n=4 n=8 n=64

Theo. Exp. Theo. Exp. Theo. Exp.
0.05 0.0685 0.0680 0.0685 0.0683 0.0685 0.0712
0.10 0.1459 0.1454 0.1460 0.1466 0.1460 0.1496
0.15 0.2300 0.2347 0.2307 0.2317 0.2307 0.2318
0.20 0.3176 0.3272 0.3202 0.3185 0.3202 0.3211
0.25 0.4049 0.4046 0.4113 0.4093 0.4116 0.4102
0.30 0.4883 0.4930 0.5009 0.4986 0.5016 0.4986
0.35 0.5652 0.5637 0.5856 0.5783 0.5874 0.5865
0.40 0.6338 0.6309 0.6627 0.6598 0.6665 0.6711
0.45 0.6934 0.6887 0.7303 0.7343 0.7368 0.7422
0.50 0.7443 0.7432 0.7877 0.7815 0.7974 0.8000

From Tables I-II, one can see that the average theoretical
and experimental SER are almost the same, which confirms
the effectiveness of the formula (9) from simulation point of
view. Note that the small differences between these SERs are
due to the fact that there are some differences between the
theoretical probability and its realizations.

Tables I-II show that P OSIC
e increases when σ or n increases.

Indeed this is true and can be explained with Theorem 2.



TABLE II
AVERAGE THEORETICAL AND EXPERIMENTAL SER OF THE ORDINARY

SIC DECODER OVER 10000 SAMPLES

n
σ = 0.05 σ = 0.10 σ = 0.50

Theo. Exp. Theo. Exp. Theo. Exp.
2 0.0681 0.0660 0.1426 0.1494 0.6464 0.6560
4 0.0685 0.0660 0.1459 0.1464 0.7443 0.7451
6 0.0685 0.0679 0.1460 0.1445 0.7754 0.7805
8 0.0685 0.0660 0.1460 0.1401 0.7877 0.7885
10 0.0685 0.0687 0.1460 0.1444 0.7929 0.7880
12 0.0685 0.0695 0.1460 0.1499 0.7953 0.7927
14 0.0685 0.0730 0.1460 0.1432 0.7964 0.7953
16 0.0685 0.0646 0.1460 0.1445 0.7969 0.8002
18 0.0685 0.0705 0.1460 0.1443 0.7972 0.7895
20 0.0685 0.0658 0.1460 0.1429 0.7973 0.7919

Intuitively, for a fixed σ, P OSIC
e increases significantly if n

largely increases. But interestingly, from the Table I, one can
see that the gap between P OSIC

e (4) and P OSIC
e (64) (i.e., P OSIC

e for
n = 4 and n = 64) is small. Moreover, Table II shows that
P OSIC
e seems does not change with n when σ = 0.05 (note

that actually, as showed in Theorem 2, P OSIC
e increases as n

increases, but the differences are too small to be seen clearly
when σ = 0.05).

In the following, we use Theorem 3 to explain the above
phenomena. To quantify their gaps, we show 1−POSIC

e (64)
1−POSIC

e (4)
and

1−POSIC
e (8)

1−POSIC
e (4)

, which are respectively denoted as ”64/4” and ”8/4”,

in Figure 1. From Figure 1, one can see that 1−POSIC
e (64)

1−POSIC
e (4)

is
around 0.79 even when σ = 0.5 which means the gap between
them is not large.
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Fig. 1. Success rate ratio for ordinary SIC decoder

We use (19) to explain it. Specifically, we have

1− P OSIC
e (64)

1− P OSIC
e (4)

=

64∏
k=5

Rk,
1− P OSIC

e (8)

1− P OSIC
e (4)

=

8∏
k=5

Rk. (20)

From Figure 2, one can see that, R5 ≈ 0.924 even when
σ = 0.5. Moreover, Rk are very close to 1 when k > 16 and
σ = 0.5, and this explains why the gap between P OSIC

e (64) and
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Fig. 2. Rk for ordinary SIC decoder

P OSIC
e (4) is small even when σ = 0.5. From Figure 2, one can

also see that when σ = 0.05, Rk are very close to 1 for all
integers k, so by (20), 1−P OSIC

e (64) and 1−P OSIC
e (4) are very

close, and this explains why P OSIC
e (64) and P OSIC

e (4) are almost
the same when σ = 0.05.

V. SUMMARY AND DISCUSSIONS

In this paper, we have developed a closed-form expression
for computing the SER P OSIC

e of the ordinary SIC decoder, and
investigated its properties. Simulation results have also been
given to illustrate the proposed formula.

It has been theoretically shown in [10] that the LLL reduc-
tion can always decrease (not strictly) P OSIC

e . So it is of vital
importance to develop a formula for computing P OSIC

e after the
LLL reduction is performed. But to do this, we need to find
the distribution of the entries of R̄, which is the LLL reduced
matrix of R (see (3)). However, to the best of our knowledge,
this is still an open problem due to the complication of the
process of the LLL reduction.

On the other hand, although the LLL reduction can reduce
the integer lattices (i.e., the lattices with their basis vectors
being integer vectors) in polynomial time (see [9], [18]), and
the average complexity of reducing a matrix A whose entries
are independent and identically distributed as the standard
normal distribution is also a polynomial of the column rank of
A (see [19], [20]), its worst-case complexity is not even finite.
Thus, from this point of view, having a closed-form expression
for P OSIC

e is of crucial importance. Indeed, if P OSIC
e is already

very low, it is not need to spend time to do the LLL reduction
to decrease the SER which can save some computation time
in practical applications.

APPENDIX A
PROOF OF LEMMA 1

Proof: By (6),

x = bȳ/re = bx̂+ v̄/re = x̂+ bv̄/re,



thus, x = x̂ if and only if |v̄/r| ≤ 1/2.
Let X = v̄2, Y = r2, U = X/Y and V = Y . Then x = x̂

if and only if U ≤ 1/4. Thus, to show (7), it is equivalent to
show:

Pr(U ≤ 1

4
) = Ck

∫ arctan(1/(2σ))

0

cosk−1(θ)dθ, (21)

where Ck is defined in (8).
In the following, we find the probability density function

(PDF) of U . We first find the PDF of X . Since X = v̄2 and
v̄ ∼ N (0, σ2), for x ≥ 0, we have

Pr(X ≤ x) = Pr(−
√
x ≤ v̄ ≤

√
x)

=
1√

2πσ2

∫ √x
−
√
x

exp

(
− t2

2σ2

)
dt

=
2√

2πσ2

∫ √x
0

exp

(
− t2

2σ2

)
dt.

Thus,

fX(x) =
dPr(X ≤ x)

dx
=

1√
2πσ2

x−1/2 exp
(
− x

2σ2

)
.

Since Y = r2 ∼ χ2
k, we obtain

fY (y) =
1

2k/2Γ(k/2)
yk/2−1 exp

(
−y

2

)
.

By the fact that X and Y are independent, the joint distribution
of (X,Y ) is:

fX,Y (x, y) = Cx−1/2yk/2−1 exp

(
−x+ σ2y

2σ2

)
,

where
C =

1√
2πσ2

1

2k/2Γ(k/2)
. (22)

Since X = UV and Y = V ,

J =

[
∂X
∂U

∂X
∂V

∂Y
∂U

∂Y
∂V

]
=

[
V U
0 1

]
.

Thus, |det(J)| = |V | = V (note that V is always nonnega-
tive). Therefore, the PDF of the joint distribution of U and V
is:

fU,V (u, v) = Cu−1/2v(k−1)/2 exp

(
− (u+ σ2)v

2σ2

)
,

where C is defined in (22).
By the aforementioned equation, the marginal distribution

of U is:

fU (u) =

∫ ∞
0

fU,V (u, v)dv

(a)
=

C√
u

(
2σ2

u+ σ2

)(k+1)/2 ∫ ∞
0

t(k−1)/2 exp(−t)dt

(b)
=

C√
u

(
2

u/σ2 + 1

)(k+1)/2

Γ((k + 1)/2)

=
2(k+1)/2Γ((k + 1)/2)C√
u(u/σ2 + 1)(k+1)/2

(c)
=
Ck
2σ

1√
u(u/σ2 + 1)(k+1)/2

,

where (a) follows from the integral transformation with t =
(u+σ2)v

2σ2 , (b) is due to the definition of Gamma function, and
(c) is because of (8) and (22).

Therefore, by some fundamental calculations, we obtain

Pr(U ≤ 1

4
) =

∫ 1/4

0

fU (u)du

=
Ck
2σ

∫ 1/4

0

du√
u(u/σ2 + 1)(k+1)/2

=Ck

∫ arctan(1/(2σ))

0

cosk−1(θ)dθ,

where the last equality follows from the integral transformation
with u = σ2 tan2(θ). Thus, the lemma holds.

APPENDIX B
PROOF OF LEMMA 3

Proof: By (8) and (10), to show (17), it suffices to show∫ π/2

0

cosk−1(θ)dθ =
1

Ck
, (23)

where Ck is defined in (8).
If k = 1, then the left-hand side of (23) is π/2. By direct

computation, one can verify that C1 = 2Γ(1)√
πΓ(1/2)

= 2
π , thus

(23) holds.
If k = 2, then the left-hand side of (23) is 1. By direct

computation, we have C2 = 2Γ(3/2)√
πΓ(1)

= 1, thus (23) holds.
In the following, we show (23) holds for k ≥ 3.
By some basic calculations, one can show that∫ π/2

0

cosk−1(θ)dθ

=

∫ π/2

0

cosk−2(θ) cos(θ)dθ

=

∫ π/2

0

cosk−2(θ)d sin(θ)

= cosk−2(θ) sin(θ)
∣∣π/2
0
−
∫ π/2

0

sin(θ)d cosk−2(θ)

=(k − 2)

∫ π/2

0

cosk−3(θ) sin2(θ)dθ

=(k − 2)

∫ π/2

0

cosk−3(θ)(1− cos2(θ))dθ

=(k − 2)

[∫ π/2

0

cosk−3(θ)dθ −
∫ π/2

0

cosk−1(θ)dθ

]
.

Thus,∫ π/2

0

cosk−1(θ)dθ =
k − 2

k − 1

∫ π/2

0

cosk−3(θ)dθ. (24)



In the following, we prove (23) by considering two differ-
ence cases. If k is a even number, then by (24), we have∫ π/2

0

cosk−1(θ)dθ

=
(k − 2) . . . 2

(k − 1) . . . 3

∫ π/2

0

cos(θ)dθ

=
(k − 2) . . . 2

(k − 1) . . . 3
=

(k − 2)!!

(k − 1)!!
.

Thus, by (8), to show (23) holds for any even number k, it
is equivalent to show

Γ((k + 1)/2)

Γ(k/2)
=

√
π

2

(k − 1)!!

(k − 2)!!
. (25)

By using the basic fact that Γ(t + 1) = tΓ(t) for any t > 0,
we obtain

Γ((k + 1)/2)

Γ(k/2)

=
(k − 1)/2

(k − 2)/2

Γ((k − 1)/2)

Γ((k − 2)/2)

= . . .

=
(k − 1)(k − 3) . . . 3

(k − 2)(k − 4) . . . 2

Γ(3/2)

Γ(1)

=
(k − 1)!!

(k − 2)!!

√
π

2
.

Clearly, (25) holds.
In the following, we show (23) also holds for odd numbers

k. Similarly, if k is an odd number, then by (24), we have∫ π/2

0

cosk−1(θ)dθ

=
(k − 2)(k − 4) . . . 1

(k − 1)(k − 3) . . . 2

∫ π/2

0

cos0(θ)dθ

=
(k − 2)!!

(k − 1)!!

π

2
.

Thus, by (8), to show (23) holds for any odd number k, it
is equivalent to show

Γ((k + 1)/2)

Γ(k/2)
=

1√
π

(k − 1)!!

(k − 2)!!
. (26)

Similarly, when k is an odd number, we have

Γ((k + 1)/2)

Γ(k/2)

=
(k − 1)(k − 3)

(k − 2)(k − 4)

Γ((k − 3)/2)

Γ((k − 4)/2)

= . . .

=
(k − 1)(k − 3) . . . 2

(k − 2)(k − 4) . . . 1

Γ(1)

Γ(1/2)

=
(k − 1)!!

(k − 2)!!

1√
π
.

Clearly, (26) holds.
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