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Abstract

Spectrum sensing is the process of determining if a spectrum slot is occupied
or not by a primary signal. This tutorial emphasizes energy detection based
spectrum sensing and provides a broad overview of the tools necessary for perfor-
mance analysis of several spectrum sensing algorithms. A detailed description of
the spectrum sensing problem is provided as a binary hypothesis test. The main
parameters of interest – decision statistic, detection, and false-alarm probabilities
and the decision threshold – are discussed. These parameters of the energy detec-
tor, which computes the energy of the received signal, are described. The use of
the central limit theorem (CLT) to achieve energy detection with prescribed per-
formance level is discussed. The receiver operating characteristic (ROC) curve
and area under the curve (AUC) are described. Fading, a fundamental wireless
channel impairment, can be mitigated with multiple antenna techniques, which
provide spatial diversity gains. The performance of the energy detector with two
low-complexity diversity techniques is described. The performance is analyzed
for Rayleigh fading, for spatial correlation, and in the high signal-to-noise ratio
(SNR) regime. General analytical techniques are highlighted. Double-threshold
energy detector, P-norm detector, and energy detection for full-duplex nodes
are described. Alternative to energy detection includes cyclostationary detection,
matched filter-based detection, and waveform-based detection. These methods
are briefly discussed. Spectrum sensing is an essential part of smart grid, Internet
of things, and cognitive radio. An overview is provided.

Introduction

The growth of global mobile wireless networks is exponential and robust. It is driven
by the use of smartphones, tablets, laptops, and other wireless devices that allow
subscribers to browse the Web, use email, and download videos, multimedia, and
applications. For example, by 2021, the monthly mobile data traffic will exceed 49
exabytes, mobile devices per capita will be 1.5, the wireless connection rate will
increase to 20Mbps, over 50% of mobile connections will be from smartphones,
and mobile-to-mobile connections will be the majority [1].

Consequently, increasing demands for wireless mobile broadband are likely to
outstrip the available radio spectrum. For example, while the 0:1–5GHz band is
perhaps the most advantageous for communications, much of it has already been
allocated to about 40 different radio services such as fixed, mobile, satellite, ama-
teur, radio navigation and radio astronomy. In fact, International Telecommunication
Union (ITU) divides spectrum in to bands and assigns them to these services in order
to avoid radio interference [30]. Moreover, although frequencies above 5GHz offer
the potential vast bandwidths, high attenuation, blockage, and other impairments
pose significant difficulties. Therefore, spectrum congestion may hem the rapid
growth of next-generation (e.g., 5G) wireless networks and users.

One potential solution is to note that much of the current licensed/assigned
spectrum remains unused at different times and/or locations. Those temporary
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spectrum slots (aka spectrum holes or white spaces) [19, 39] can be as high as
15–85% of the licensed spectrum [29]. Radio nodes that can identify and utilize
such spectrum holes while minimizing potential interference on licensed users
(aka primary users) are called cognitive radios (aka secondary users). They clearly
improve overall spectrum usage, alleviating the need for new spectrum. The process
of identification of spectrum holes is called spectrum sensing.

Depending on when a secondary user accesses a primary spectrum slot regardless
if it is occupied or not, there are three different cognitive radio paradigms [30]:

1. Interweave – secondary user transmits only in an unused spectrum hole currently
unoccupied by a primary user. To do so, secondary user must know if primary
signals are present or absent in the frequency band. Thus, this paradigm clearly
needs spectrum sensing.

2. Underlay – secondary user is allowed to transmit in both unused and used
spectrum slots. In the latter, secondary user must adjust its transmission power
such that interference on primary network is below a certain threshold. Again,
the secondary requires spectrum sensing, for instance, to determine its transmit
power levels.

3. Overlay – the secondary access mechanism is similar to that of underlay mode.
However, secondary user earns the right to spectrum access by helping to enhance
primary communication capability and by taking suitable measures to limit
interference on the primary network. To achieve these two goals, secondary user
needs to know some characteristics of primary signals (e.g., modulation formats,
frequency, and more) in advance. This information is then used to improve
communication quality of both the primary and secondary users. For example,
secondary user may take proactive signal coding solutions to cancel interference
on primary network. To enhance primary rates, secondary user can relay primary
data. Thus, in this paradigm, secondary user must acquire much more primary
information than is the case with overlay and underlay modes. Nevertheless, a
critical part of the overall acquisition process is spectrum sensing.

Overall, since spectrum is essential to all the three paradigms, solid understanding
of the performance of sensing algorithms in different propagation environments
and in network configurations is necessary. The reliability and performance can be
quantified with rigorous analytical techniques. Before discussing the basics of the
performance analysis, it should be mentioned that standards with spectrum sensing
include IEEE 802.22 WRAN (wireless regional area network) and its amendments,
IEEE 802.11af for wireless LANs, IEEE 1900.x series, and licensed shared access
(LSA) for LTE mobile operators [17]. In particular, WRAN is cognitive radio
designed to operate in empty TV bands, which provides additional spectrum for
wireless mobile networks on a non-interfering basis.

This tutorial aims to provide a broad overview of the tools necessary for
performance analysis of spectrum sensing algorithms, with particular emphasis on
energy detection. The tutorial is organized as follows:



4 C. Tellambura

1. The spectrum sensing problem is formulated as a binary hypothesis test. The
decision statistic, detection, false-alarm probabilities, and decision threshold are
discussed. The energy detector, one of the most common sensing algorithms,
is described in terms of its basic performance parameters. The use of CLT to
estimate the number of samples needed for the energy detection with prescribed
performance level is discussed. The ROC curve and AUC are described.

2. Fading is mitigated by the use of multiple antenna techniques, which provide
spatial diversity gains. The performance of the energy detector with selection
and combining diversity techniques is described. Moreover, the performance is
analyzed for Rayleigh fading, for spatial correlation, and in the high-SNR regime.
General analytical techniques based on probability density function (PDF) and
moment generating function (MGF) are highlighted.

3. Double-threshold energy detector, P-norm detector, and energy detection for full-
duplex nodes are described. Alternative to energy detection includes cyclosta-
tionary detection, matched filter-based detection, and waveform-based detection.
These methods are briefly discussed.

4. An overview of spectrum sensing for smart grid, Internet of things, and cognitive
radio is provided.

Spectrum Sensing Problem Formulation

Clearly, accurate, reliable, and low-complexity spectrum sensing is essential for
opportunistic spectrum access. To this end, secondary nodes must detect the pres-
ence/absence of a primary signal in a given frequency band Œf0; f1� for a particular
time slot. This process is commonly called spectrum sensing. It can be readily
formulated as a binary hypothesis test. For example, the complex signal observed at
time t by the secondary user in the desired band Œf0; f1� may be modeled as [47]

y.t/ D

(
n.t/ W H0

h.t/s.t/C n.t/ W H1

(1)

where n.t/ is an additive complex white Gaussian noise process, h.t/ represents a
fading process (e.g., nonfading means h.t/ D 1), and s.t/ is a signal transmitted
by the primary node [47]. The sensing decisions are made using N � 1 samples
of y.t/. The choice of N will be discussed later. Starting with this observational
model, it is possible to formulate a wide array of spectrum sensing techniques
based on signal energy, matched filtering, cyclostationary features, covariances, and
others. These will be discussed subsequently.

Let y.k/ be the k-th (k D 1; 2; : : : ; N ) sample of y.t/. All the samples are
placed in to the vector y D Œy.1/; : : : ; y.n/�0: These samples are used to compute a
decision statistic T .y/: The hypothesis test for spectrum sensing is then given by
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if

(
T .y/ < � accept W H0

T .y/ > � accept W H1

(2)

where 0 < � < 1 is called the decision threshold. The reliability associated with
the decision the rule (2) can be characterized by probability of detection Pd and
probability of false alarm Pf . The former is the probability of detecting the primary
signal when it is actually present in the frequency band, Œf0; f1�: Consequently,
large detection probability is highly desirable. Mathematically, it is a conditional
probability given by

Pd D Pr.T .y/ > �jH1/:

Equivalently, the complement of this probability Pmd D 1�Pd is also widely used
for illustration and design purposes.

On the other hand, the test might incorrectly decide that s.t/ is present in Œf0; f1�
when it actually is not, and this false-alarm probability may be written as

Pf D Pr .T .y/ > �jH0/ :

The exact values of Pd and Pf depend on how T .y/ is constructed using
received samples, channel estimates, propagation characteristics, the choice of the
threshold, and other information. The false alarms will clearly reduce spectrum
access opportunities for secondary users, and hence the expected improvements
in spectral efficiency are not materialized. This problem may be alleviated by
choosing the decision threshold � for an optimum balance between Pd and Pf .
However, this requires knowledge of noise and detected signal powers. Estimation
of both noise power and signal power can be challenging as they are depend on
evolving transmission standards and the locations of primary and secondary nodes.
In practice, with the knowledge of noise variance, the threshold is chosen to obtain
a certain false-alarm rate (section “Threshold Optimization Techniques”).

Notations

P.�/, E.�/, Var.�/ denote the probability measure, expectation, and variance. � .z/ DR1
0
t z�1e�t dt , � .z; x/ D

R1
x
t z�1e�t dt , 2F1.a; bI cI z/ D

P1
kD0

.a/k.b/k.z/k

.c/kkŠ
is

the Gauss hypergeometric function, with .x/y denoting the Pochhammer sym-
bol. If X1; : : : ; Xk are independent Gaussian N.0; �k/ random variables, then
Y D

Pk
iD1 X

2
i ; is noncentral chi-square, �2k.ı/, with k degrees of freedom

and ı D
P
�2k . If all �k D 0, Y is central chi-square, �2k . The generalized

Marcum-Q function is Ql.a; b/ D
R1
b

xl

al�1
e�.x

2Ca2/=2Il�1.ax/dx, where Il .x/
is the l-th order modified Bessel function. The Gaussian-Q function is Q.x/ DR1
x

e�t
2=2

p
2�
dt .
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Classical Energy Detector

As mentioned before, although the exponential growth of mobile data traffic is
likely to outstrip the available spectrum, licensed users may not be active at a given
spectrum slot (e.g., 54–806 MHz TV band), a time, and a location. To access those
spectral holes, secondary user may first sense them via the most popular spectrum
sensing algorithm: energy detector, which has thus attracted massive wireless
research interest due to its simple structure and low hardware complexity [7].

This detector computes a proxy for the energy of received signal over the
spectrum slot that is being tested. The basic concept is that the computed energy
must be sufficiently high if the slot contains primary signals; otherwise, the slot
contains noise only. Thus, this detection problem can be formulated as a special
case of the hypothesis test (2) with the decision statistic given by

T .y/ D
NX
iD1

jyi j
2 (3)

where yi is the i -th (i D 1; 2; : : : ; N ) sample of y.t/ and N is the number of
samples. It can be readily shown that T .y/ conditional onH0 andH1 are distributed
as central chi-square �22N and noncentral chi-square �22N .2�/, respectively, both
with 2N degrees of freedom. The noncentrality parameter is 2� where � is the
SNR. For a static channel scenario, false-alarm and detection probabilities may be
expressed as

Pf D � .N; �=2/=� .N / (4)

Pd D QN.
p
2�;
p
�/; (5)

where � .a; b/ and QN.a; b/ are incomplete Gamma function and the Marcum-Q
function, respectively. The choice of a suitable value forN has critical ramifications
on both performance and complexity. The method of choosing N will be discussed
in Sect. “Use of the CLT.” The SNR � is a fixed quantity if the channel is static
(e.g., h.t/ D 1); otherwise, it will be modeled as a random variable (this case will
be treated subsequently).

The Eqs. (4) and (5) connect false-alarm and missed-detection probabilities with
the SNR, the decision threshold, and the number of samples. Thus, many design
choices and requirements can be made depending on specific requirements. For
example, very low SNR is �20 dB with a signal power of �116 dBm and a noise
floor of �96 dBm [7]. For this reason, IEEE 802.22 prescribes both Pd and Pf be
less than 0.1. While energy detection performs well at moderate and high SNRs,
low-SNR operation typically requires large N , which impacts the sensing and
processing time. For example, IEEE 802.22 limits the maximal detection latency to
2 s which may include sensing time and subsequent processing time. This maximal
time limit is critical at low-SNR spectrum sensing.
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In the literature, the detection probability Pd has also been analyzed extensively,
treating propagation characteristics, multiple antennas, cooperative diversity, and
other factors [3, 5, 16, 20, 42]. However, exact analysis tends to be complicated
(special functions, infinite series, and so on). Moreover, since closed-form Pd
for more complicated versions of energy detection appears intractable, several
computational methods have been developed [40]. To detect potential spectrum
opportunities rapidly, sensing algorithms must operate with the fewest possible
number of samples and offer high reliability. Therefore, selection of a suitable
number of samples, N , is considered next.

Use of the CLT

When the number of samples N is sufficiently large, CLT can be used instead of the
exact equations (4) and (5) [7]. Thus, false-alarm and detection probabilities may
be approximated as

Pf;CLT � Q

�
� � 2N

2
p
N

�
(6)

Pd;CLT � Q

�
� � 2N.1C �/

2.1C �/
p
N

�
(7)

where primary signal s.t/ is assumed to be zero-mean, complex Gaussian andQ.x/
is the standard Gaussian upper tail probability function. Although it is possible
to consider different models for s.t/, the details are omitted for brevity. This
approximation has been utilized to investigate sensing-throughput tradeoff [28],
multiple-band spectrum sensing [35], low-SNR spectrum sensing [6, 31], and
numerous others. However, it may not be accurate enough for small sample sizes
[37].

Next the above is used to determine the suitable sample size N . Suppose the
prescribed performance point is .Pf ; Pd/. By using (6) and (7), and solving for N ,
it turns out that

N �
�
��1Q�1.Pf / � .1C �

�1/Q�1.Pd /
�2
:

Based on the CLT, this estimate may be accurate only when N is sufficiently high
but not when Pf is low and Pd is high [37]. To get around these challenges, [37]
has developed an estimate of N using the cube-of-Gaussian approximation (CGA),
and further results have been reported in [9, 38].

Threshold Optimization Techniques

In (2), the key parameter is the decision threshold, �. This threshold must be
optimized for each detection technique to improve its performance. The threshold
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may be chosen by considering Pf and Pd . A common practice is to set the threshold
is based on a constant false-alarm probability, say, Pf . For example, then based on
the normalized threshold is

�� D 2
p
N
�
Q�1.Pf /C

p
N
�

which must adjusted based on the variance of the additive noise. Note that Pd and
Pf are functions of �. In general, it is chosen to make Pd large and Pf small
as possible (e.g., in IEEE 802.22 WRAN needs Pf � 0:1 and Pd � 0:9). More
generally, the threshold may be optimized by considering noise level, total error
rate, and other factors [7].

ROC Curves

Although detection (or missed detection) and false-alarm probabilities are key
measures, detection capability is typically illustrated with a so-called ROC curve
– a plot of the detection probability versus the false-alarm probability when the
threshold varies from 0 to1. Thus, the ROC curve is defined parametrically as pair
.x; y/ with

x D Pf .�/ y D Pd.�/; 0 � � <1: (8)

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

= −20 dB

= −5 dB

= 0 dB

= 5 dB

Fig. 1 ROC for energy detection
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A set of ROC curves for the basic energy detector (N D 10) in a static channel is
depicted in Fig. 1. Each ROC curve corresponds to a particular SNR, � . The upper
left corner or coordinate (0,1) of the ROC space, representing 0% false alarms and
100% detection, depicts the best possible detector. The diagonal line (Pd D Pf )
from the left bottom to the top right corners depicts a random detector such as
detection by flipping coins (heads or tails). The further away is the ROC curve from
the diagonal, the better is the detector performance. The ROC figures have been
widely used to illustrate the energy detector performance for small-scale and large-
scale fading, diversity reception techniques, and cooperative spectrum sensing [7].

However, a single summarizer of detection capability is also desirable. This is
called area under the ROC curve (AUC) [2]. The AUC is a number between 0 and
1, and a perfect detector has an AUC of 1. Moreover, an AUC of 0.5 represents a
random detector (e.g., coin flip). In fact, the more far AUC is from 0.5, the better
is performance. If AUC is below 0.5, the detector output must be inverted. For
example, if AUC is zero, the inverted detector output yields a perfect decision. The
AUC may be evaluated as

A D

Z 1

0

PddPf : (9)

By substituting the values of Pd and Pf from (5) and (4), the AUC of classical
energy detector can be obtained as [2]

A .�/ D 1 �

u�1X
kD0

1

2kkŠ
�ke

��
2 C

u�1X
kD1�u

� .uC k/

2uCk� .u/
e�� 1F1

�
uC kI 1C kI

�

2

�
(10)

where 1F1.a; b; c/ is the regularized confluent hypergeometric function. The expres-
sion (10) shows that as SNR tends to infinity, the AUC approaches one, which is
desirable.

AUC and complementary AUC (CAUC) (e.g., 1 � A ) have been derived
for an energy detector with no diversity reception, with several popular diversity
schemes, with channel estimation errors, with fading correlations, and with relay
signaling [2] and [4]. However, the analysis of [2, 4] may not work for cooperative
spectrum sensing. Moreover, special functions (e.g., Marcum-Q and confluent and
regularized confluent hypergeometric functions) in Pd make closed-form evaluation
of the AUC rather intractable. To circumvent these drawbacks, AUC can be related
to the MGF of the received SNR. The resulting calculations are simple, avoid
special functions, and are readily available in modern mathematical platforms (e.g.,
Mathematica and MAPLE). This approach will be developed in Sect. “MGF-Based
Approach.”

Performance in Fading Channels

Wireless channel impairments include small-scale fading, shadowing, and path loss
[18,32]. Modeling these impairments is critical to characterize and analyze spectrum
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Fig. 2 ROC for energy detection in a Rayleigh channel

sensing algorithms. Small-scale fading is characterized by various models such as
Rayleigh, Nakagami-m, and Rician [32]. A detailed sensing performance analysis
for these channels is beyond the scope of this tutorial. Moreover, although fading
does not impact Pf (4), Pd (5) must be averaged over the distribution. For instance,
the performance under Rayleigh fading (i.e., f�.x/ D 1

N�
e�x= N� ; 0 � x <1) is given

as [16, 21]

Pd D e
� �2

N�2X
iD0

�
�
2

	i
i Š
C

�
1C N�

N�

�N�1
�

2
64e� �

2.1CN�/ � e�
�
2

N�2X
iD0

�
� N�

2.1CN�/

�i
i Š

3
75 : (11)

A set of ROC curves for the basic energy detector (N D 10) in a Rayleigh fading
channel is depicted in Fig. 2. Each ROC curve corresponds to a particular SNR, N� .
The diagonal line ( NPd D Pf ) from the left bottom to the top right corners depicts
a random detector such as detection by flipping coins (heads or tails). The further
away is the ROC curve from the diagonal, the better is the detector performance.
Thus, note that as N� increases, the ROC moves away from the diagonal and toward
the (0,1) point, which is the ideal performance.
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Spatial Diversity for Spectrum Sensing

Spatial diversity (e.g., multiple antennas) can be exploited to mitigate fading. In
the literature, a large body of research has investigated the use of L > 1 antennas
to enhance the performance of spectrum sensing (see [7] and references therein).
With multiple antenna systems, channel states of individual antenna branches and
spatial correlations must be considered. These factor will complicate the analysis
and operation of common energy detector. Nevertheless, two diversity schemes
are briefly described next. In square-law combiner (SLC), the individual energy
measurements of different antennas are added together to form the total. The
decision statistics is thus T .y/ D

PL
iD Yi where Yi is the decision statistic for

the i -th antenna branch (i D 1; : : : ; L). The equivalent SNR is thus given by
�SLC D

PL
iD1 �i where �i is the SNR associated with the i -th antenna branch

(i D 1; : : : ; L). The final decision is made after comparing T .y/ against the
threshold. The false-alarm and the detection probabilities are thus obtained as [16]

Pf;SLC D
� .LN; �

2
/

� .LN/
;

Pd;SLC D QLN

�p
2�SLC ;

p
�
�
:

In square-law selection (SLS), only the branch with the largest energy is selected.
The decision statistics is thus T .y/ D max.Y1; : : : ; YL/ where Yi is the decision
statistic for the i -th antenna branch (i D 1; : : : ; L). Thus, false-alarm and detection
probabilities can be obtained as [16]

Pf;SLS D 1 �

"
1 �

�
�
N; �

2

	
� .N/

#L

Pd;SLS D 1 �

LY
iD1

h
1 �QN

�p
2�i ;
p
�
�i
:

A set of ROC curves for the basic energy detector (N D 10) with SLC in
Rayleigh fading is depicted in Fig. 3. Each ROC curve corresponds to a particular
number of antennas,L. The diagonal line ( NPd D Pf ) from the left bottom to the top
right corners depicts a random detector such as detection by flipping coins (heads or
tails). The further away is the ROC curve from the diagonal, the better is the detector
performance. Thus, note that asL increases, the ROC moves away from the diagonal
and toward the (0,1) point, which is the ideal performance. This suggests that the
spatial diversity of SLC improves the energy detector performance.

Thus far, it has been seen that the average of Pd in fading channels requires the
PDF of � . In many wireless problems, this PDF can be a highly complex expression
or even intractable.
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Fig. 3 ROC for energy detection and SLC for different numbers of antennas

MGF-Based Approach

To avoid such difficulties, the MGF of � can be utilized for analysis [43–45]. The
reason of this wide applicability is that MGF of a sum of independent random
variables is equal to the product of individual MGFs [25, 26].

Using the alternative representation of the Marcum-Q function [44], the average
of Pd (5) in a multiple antenna system can be expressed as

P d D
e�

�
2

2�j

I
4

M
�
1 �

1

z

� e
�
2 z

zq.1 � z/
d z (12)

where MGFM.s/ D E.e�s� /, j D
p
�1,4 is a circular contour of radius 0 < r <

1 that encloses origin, and q is a positive integer which depends onN , the number of
antennas and diversity combining method. For example, with SLC described earlier,
q D LN . The integral expression (12) can thus be customized for many diversity
systems where the MGF is readily available.

This equation (12) can also be used to derive average AUC under different fading
channels. Since NA D

R 1
0
NPddPf , average AUC is obtained as

NA D
1

j 2�

I
4

M
�
1 �

1

z

� 1

zq.1 � z/.z � 2/N
d z: (13)
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Both (12) and (13) are versatile and provide a powerful basis for analysis of energy
detector with various diversity schemes (see [7] for further examples).

Antenna Correlation

Standards like the Long-Term Evolution (LTE) Advanced, WiMax, and Interna-
tional Mobile Telecommunications (IMT) Advanced have promised high data rate
services; they motivate the use of multiple antenna terminals. With such secondary
nodes, the antenna correlation is an important factor that affects the overall
performance of energy detection. To illustrate the impact of antenna correlation,
energy detection with SLC can be analyzed. The branch SNR’s �i (i D 1; : : : ; L)
are related by a correlation matrix. The PDF of SNR may be written as

f�SLC .x/ D
1

N�

LX
kD1

�k

�k
e�x=. N��k/; 0 � x <1 (14)

where �k is the k-th eigenvalue of the correlation matrix and �k D
Y
i¤k

�k

�k � �i
:

The correlation matrix is called exponential if the ij -th entry 	ij D 	ji�j j. However,
this model is not universal. For example, the correlation depends the placement,
spacing and height of antenna elements, signal incident angles, and so on. Another
common model is the Toeplitz structure where 	ij D Œ	ji�j j� with 	0 D 1.

For illustration purposes, consider two correlated (	) antennas. The two eigen-
values can be shown to be
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Fig. 4 ROC for SLC energy detection with antenna correlation
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�1; �2 D .1˙ 	/: (15)

The ROC curves for this system are shown in Fig. 4. It is clear that the correlation
penalizes the performance. That is, as 	 increases, the ROC curves move toward
the diagonal line. The impact of correlation is not high because this is a system
with two branches only. A higher impact can be expected for systems with more
antennas.

Asymptotic Performance Measures

As mentioned before, the SNR � in a fading environment is a random variable, and
hence average of Pd over the distribution of � , denoted by P d , is often computed.
The details of the averaging process are as follows. First, Pd.�/ for a fixed channel
realization is given in (5). It is convenient to express SNR as the product � D
�ˇ, where � is the average SNR (in static channels ˇ D 1 and � D �), and ˇ
is a nonnegative random variable, which accounts for system conditions including
channel propagation conditions, antenna diversity, interference, and others. Thus, ˇ
is characterized by PDF f .ˇ/. In the second step, Pd.�/ is integrated over f .ˇ/.

The average probability detection can thus be expressed as

P d D

Z 1
0

QN .
p
2�ˇ;

p
�/f .ˇ/dˇ: (16)

Thus, the main challenge in (16) is the lack of closed-form solutions for integrals
involving the Marcum-Q function or tedious analytical expressions involving
complicated special functions and/or infinite series [33]. One solution is to use the
MGF approach (12).

An alternative solution is to simplify f .ˇ/ in order to facilitate the evaluation
of (16) in simple yet accurate form. To this end, an idea of Wang and Giannakis [49]
may be utilized. The basic concept is that in the high-SNR regime (e.g., N� ! 1),
the integral (16) can be tightly approximated by simply using just the first term of
the Taylor series expansion of f .ˇ/ at ˇ D 0. Thus, let exact PDF f .ˇ/ have the
monomial expansion as ˇ ! 0C [49]

f wg.ˇ/ D aˇt CO.ˇtC1/; (17)

where the parameters a and t define the first term of the PDF expansion, which in
turn depend on the operating conditions. These two can be obtained by utilizing
the exact PDF or MGF of the diversity structure. Moreover, (17) holds for many
practical fading models like Rayleigh, Nakagami-q, Nakagami-n, and Nakagami-m
[49]. Further developments on (17) can be found in [14, 15].

By utilizing f wg.ˇ/, [48] has derived the asymptotic
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Pmd �
A

N�tC1
; N� !1 (18)

where A is a constant independent of N� . This shows that for large SNRs (� � 1),
missed-detection probability decreases at rate of t C 1 on a log-log scale. This
observation leads to the notion of sensing gain, which is equal to t C 1. However,
this approximation is accurate only in the high-SNR regime (say, � � 20 dB).
This means something other than f wg.ˇ/ is needed to approximate Pmd which
is accurate over a wider range of SNRs (say, 0 � � < 1). New approximations
with such properties can be developed [14, 15, 41].

P-Norm Detection

This idea generalizes classical energy detection (19). Instead of simply squaring, the
magnitudes of the signal samples are raised to power p > 0 [12, 31, 40]. Thus, the
decision variable becomes

T .y/ D
NX
iD1

jyi j
p (19)

where yi is the i -th sample and N is the number of samples. Note that p D 2

reverts to the classical energy detector (Sect. “Classical Energy Detector”). Several
approximations for conditional decision variables T jH0,T jH1 and probabilities Pf
and Pd are analyzed in [8]. One idea is to approximate T .y/ a three-parameter
gamma distribution. The approximate detection probability is given as [8]

P
tg

d D
1

� .˛/
�

�
˛;
� � ı

ˇ

�
: (20)

where ı, ˛, and ˇ are calculated by cumulant matching. Using this, AUC or area
under the ROC curve can be derived. This single figure of merit for P-norm detection
[7] has been elusive for arbitrary sample sizes. As well, exact computational
methods for Pd and Pf exploiting Talbot’s method of numerical integration and
Laguerre-polynomials can be found in [40].

Double Threshold Energy Detection

Although the classical energy detector has the benefits of low complexity and blind
operation (e.g., without needing primary signal information), the optimum threshold
value to achieve target probabilities of false alarm and detection is prone to estima-
tion errors, e.g., noise estimation error. Moreover, these two probabilities cannot be
independently adjusted to desirable levels using a single decision threshold. These
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drawbacks can be alleviated with a double threshold energy detection [22], which
allows independent setting of arbitrarily low Pf and Pmd at the cost of an increased
uncertainty region. For this detector, the hypothesis test is thus defined as

if

8̂̂<
ˆ̂:
T .y/ < �0 accept W H0

�0 � T .y/ < �1 No decision

T .y/ � �1 accept W H1

(21)

Thus, false-alarm and detection probabilities (4) and (5) depend on �0 and �1.
However, for double threshold energy detection, a new parameter of probability
of uncertainty is incorporated and expressed as a function of �0 and �1. Probability
of uncertainty is given by [22]

Pc D
� .N; �0=2/ � � .N; �1=2/

� .N /
CQN.

p
2�;

p
�0/ �QN.

p
2�;

p
�1/: (22)

If �0 D �1, this rule reverts to the classical (2).

Energy Detection with Full Duplex Nodes

Radio nodes typically operate in half-duplex (HD) mode, e.g., transmission and
reception functions require distinct, separate time or frequency slots. However,
if both functions occur simultaneously on the same frequency band, spectral
efficiency potentially doubles at the cost of self-interference. Since this self-
interference poses a fundamental limit, cancellation methods have been devel-
oped with recent advances in antenna design and analog/digital signal processing
techniques [10]. Nevertheless, residual self-interference will limit the system
performance.

This residual interference will affect the ability of a radio node to sense spectrum
holes. Thus, the complex signal observed at time t by the secondary full-duplex user
in the desired band Œf0; f1� may be modeled as [36]

y.t/ D

(
d.t/C n.t/ W H0

h.t/s.t/C d.t/n.t/ W H1

(23)

where d.t/ is the residual self-interference signal. According to this model, the
effective SNR can be expressed as [36]

�FD D
�t

�i C 1
; (24)

where �t and �i denote SNR at transmitter and the ratio between self-interference
power and thermal noise, respectively. Assuming self-interference d.t/ to follow
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complex Gaussian with mean 0 and variance 
2i [36], false-alarm and detection
probabilities may be expressed as

Pf D � .N; �=2.1C 

2
i //=� .N / (25)

Pd D QN.
p
2�FD;

p
�=.1C 
2i //: (26)

The ROC curves can be plotted by using these equations. Thus, it is possible to
evaluate the performance of full-duplex energy detection.

Alternatives

As mentioned before, energy detection offers not only a low-complexity and low-
cost solution for spectrum sensing but also avoids a prior information about primary
signals. However, it sometimes performs poorly. For example, when a primary
signal and multiple interfering signals are present in a band, the energy detector
may not readily differentiate among these, and hence spectrum access decisions can
be overly conservative. In the following, three alternatives are briefly described.

Cyclostationary Based Detection

Cyclostationarity signals are signals that exhibit periodic probability structures
(e.g., periodic mean and autocorrelation). These periodicities are in turn caused
by special features such as modulation formats and cyclic components of primary
signals or may even be introduced deliberately in order to assist spectrum sensing.
Such detection algorithms can readily differentiate H0 from H1 because simply
additive noise does not exhibit any correlation structures. Furthermore, they may
even distinguish among different types of transmissions and primary users. Their
performance has been surveyed in [11, 50].

Matched Filter Based Detection

The received signal is correlated with a copy of the primary signal [7, 27]. If
the primary signal and channel response are known, this detector is thus optimal
(Neyman-Pearson sense) and maximizes the SNR. It can also take advantage of
matched-filter implementations ion existing networks. For example, a matched filter
is used by IEEE 802.11 (WiFi) nodes to detect incoming packets, and the same filter
may also be leveraged to help with spectrum sensing. This detector also requires
perfect timing and synchronization and thus incur computational complexity. Its
performance decreases dramatically when channel response changes rapidly or
when there are multiple primary user signals over the same band. However, a
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matched filter can be customized for each primary signal, but the overall complexity
will be high. The performance of a matched filter (noise level of one) is given in [11].

Waveform-Based Detection

Current wireless networks periodically transmit special signal patterns for synchro-
nization or for other purposes. They include prefixes for frame delineation, pilot
patterns, spreading sequences, and others [50]. Thus, such a preamble can be
correlated with the received signal. Such waveform-based (WF) sensing or coherent
sensing can outperform energy detector in terms of reliability and convergence time.
The performance advantage increases as the length of the known signal pattern
increases. WF sensing performs well even with very low SNRs.

Applications

Smart Grids

A smart electrical grid includes a variety of operational and energy measures
including smart meters, smart appliances, renewable energy resources, and energy-
efficient resources. The communication goals of smart grid can be served by the
use of spectrum sensing. For example, [13] studied the energy detector-based
spectrum sensing in smart grids and its impact on the performance of demand
response management. Matched filter-based spectrum sensing may also be used.
A feature detection-based spectrum sensing for smart grid has been examined in
[34]. However, sophisticated spectrum sensing algorithms may require significantly
high power requirements. On the other hand, cooperative energy-efficient sensing
schemes are suitable for dense smart grid environments [24]. Several practical
spectral sensing approaches for CR in smart grids have been surveyed in [24].

Internet of Things (IoT)

Cognitive radio is expected to have a variety of IoT applications where very
large numbers of sensors will coexist in a small physical space. Thus, spectrum
sensing technologies are highly important for WSAN (wireless sensor and actuator
networks) based IoT and the requirements and issues related to adaptive systems and
architectures [23]. WSANs generally utilize the industrial, scientific, and medical
(ISM) radio bands. However, overcrowded ISM bands negatively affect WSAN
performance. Thus, improved spectrum sensing and spectrum data processing must
be developed [46].
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Spectrum Sensing in Standards

Spectrum sensing has been considered in IEEE 802.22 (for TV white spaces)
and ECMA 392 [30]. However, specific techniques are not prescribed. Thus,
anyone which satisfies the false-alarm and missed-detection requirements of the
standard can be chosen. Coexistence among different standards is also important.
For example, in heterogeneous network settings, coexistence between IEEE 802.22
WRAN and IEEE 802.11af Super Wi-Fi in the TV white spaces may be required.
However, maximum transmit power of an 802.22 node is 1W while that for an
802.11af is 100mW. Thus, such power disparities will affect the ability of the
spectrum sensing algorithm to differentiate between presence/absence of primary
signals. Moreover, its performance may also be affected by interference from
random numbers of nodes located randomly.

Summary

This tutorial provides a broad overview of the tools necessary for performance
analysis of spectrum sensing algorithms, with particular emphasize on energy
detection. The following contributions are made.

1. The spectrum sensing problem is provided as a binary hypothesis test. The deci-
sion statistic, detection, and false-alarm probabilities and the decision threshold
are discussed. The basic parameters of the energy detector are described. The use
of CLT to estimate the number of samples and prescribed performance levels is
discussed. The ROC and AUC are described.

2. Fading is mitigated with multiple antenna techniques, which provide spatial
diversity gains. The performance is analyzed for Rayleigh fading, diversity com-
bining, and spatial correlation and in the high-SNR regime. General analytical
techniques are highlighted.

3. Double-threshold energy detector, P-norm detector, and energy detection for
full-duplex nodes are described. Alternative to energy detection includes cyclo-
stationary detection, matched filter-based detection, and waveform-based detec-
tion. These methods are briefly discussed. Spectrum sensing is an essential
part of smart grid, Internet of things, and cognitive radio. An overview is
provided.
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