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Abstract—In wireless channels, the received signal to noise
ratio (SNR) can be represented as γ = βγ, where γ is the
average SNR and β is a random variable with probability
density function (PDF) f (β). In this paper, we analyze the
high SNR performance of wireless channels with a logarithmic
singularity. That is, f (β) = aβt + bβµ log(β) + · · · near β = 0. This
logarithmic singularity (LS) is critically important in determining
the high SNR performance and appears to have been completely
overlooked. Important special cases include Gamma-Gamma
and Generalized-K channels. For instance, the GG has been
used to model scattering, reflection, and diffraction and optical,
navigation and relay channels [1]. This versatility highlights the
importance of LS wireless channels. Classical asymptotic or high
SNR analysis is developed by expanding f (β) = aβt + · · · near
β = 0 and expressing the diversity and coding gain as direct
functions of a and t. However, as this monomial expansion does
not hold for LS channels, we develop generalized asymptotic
performance measures for outage and error rates. The results
show significantly improved accuracy in the SNR range of 10-
25 dB. For this range, our new asymptotic expressions achieve
much better accuracy than the conventional ones that ignore this
singularity.

Index Terms—Logarithmic singularity, fading channels,
Gamma-Gamma distribution, outage probability, bit-error rate.

I. Introduction

Analysis of critical performance metrics such as outage and

error rates is contingent upon the proper statistical modeling

of the wireless channel. For example, statistical models are

used to design and optimize wireless transmitters and receivers

and their antenna configurations too [2]. In this paper, we

consider a class of channels called logarithmic singularity

(LS) wireless channels. A LS wireless channel has that the

characteristic property that its pdf has the expansion f (β) =

aβt + bβµ log(β) + · · · near β = 0. Importance of analyzing

LS channels is manifested by its versatility, as LS property is

observed in popular generalized fading models, e.g., Gamma-

Gamma (GG) channel and Generalized-K channel. Despite

numerous notable works, the impact of logarithmic singularity

(LS) at zero has been overlooked previously.

Moreover, the GG distribution is an alternative to popu-

lar models such as lognormal, Weibull, Rician, Nakagami,

Gamma mixture [3] and K-distribution [4]. The GG distri-

bution was introduced as a more flexible model than the

K-distribution [5], it covers Gamma and K-distribution, and

Nakagami-lognormal composite fading model as special cases.

Thereafter, it is used to model multiple communication scenar-

ios such as the single point-to-point channel with co-channel

interferers [6]–[9], relay networks with amplify-and-forward

(AF) and decode-and-forward (DF) strategies [10], wireless

optical channels [11], and radar systems [12].

The GG model is also relevant for free-space optical (FSO)

wireless communication, a complementary option to radio

wireless access, which is being developed for high-speed short

range links. The GG distribution is thus used to model the

signal fluctuation in such links. Important performance mea-

sures of FSO links under turbulent conditions, e.g., achievable

rate, bounds of average BER for different modulations, and

FSO MIMO links are studied using the GG model [13]–[15].

Moreover, applications of GG model on the relay and point-to-

point channels are extended to explore the spectral efficiency in

heterogeneous networks (HetNets) [16], [17], which are highly

relevant to the implementation of recent LTE release 12. It is

also useful for analyzing composite fading channels with co-

located interference, an important scenario of HetNets [18].

Thus, the importance of precise analysis of GG channel and

correspondingly LS wireless channels is clearly evident.

A. High-SNR Analysis

To achieve simple, direct and insightful analytical results,

it is common to develop asymptotic or high signal-to-noise

ratio (SNR) analysis. In this paper, we thus consider the region

characterized by γ → ∞ where γ denote the unfaded SNR. We

also write the instantaneous fading SNR as γ = βγ, where β is

the random variable with the pdf f (β). High-SNR analysis is

then developed by extracting the first term of the Taylor series

expansion of the pdf f (β) near β = 0. Following this approach,

outage probability and BER asymptotics were developed by

Wang and Giannakis [19]. To do so, they expanded f (β) as

f (β) = aβt + Rt+1, for β→ 0+, where Rt+1 is a remainder

term that vanishes for β → 0+. The parameters a > 0 and

t ≥ 0 determine the SNR (coding) gain and diversity gain. The

intuition of their work is that since the asymptotic performance

may be given by
∫ 1/γ

0
g(β) f (β)dβ where g(·) is a rapidly

decreasing function, what matters is a simple but accurate

asymptote of f (β) near β = 0. Moreover, they observed that

classical coding and diversity gain model, given by (1) can be

expressed as a function of a and t.

Pe(γ) = (Gcγ)−Gd + R(γ) (1)

where R(γ) is the remainder term that vanishes as γ → ∞,

and Gc and Gd are called coding gain and diversity gain



respectively, which are important, widely-used parameters that

are useful for wireless system design and optimization. For

instance, from (1), we observe that on a log-log scale, P(γ)

varies linearly with γ, which is a directly insightful represen-

tation of the system performance. Not only error probability,

but also outage can be expressed in the same form as (1).

Moreover, the parameters Gc and Gd for various wireless

systems (e.g., multiple antenna transmission/reception ) can

be readily derived for popular fading channels models.

Since the seminal paper by Wang and Giannakis [19], many

further improvements have been reported [20]–[24]. However,

since f (β) = aβt + Rt+1 for β→ 0+ does not hold for the

LS channels, the classical coding and diversity gains (1) fail

to tightly approximate the LS wireless performance. Thus, in

terms of asymptotic analysis, LS channels are fundamentally

different from classical fading models. As the GG channel is

the most popular special case of LS wireless channels, it is

the focus of this paper.

B. Motivation and Contribution

Contributions of this paper are summarized below.

• We develop a new asymptotic performance measure for

all wireless channels (3). It includes an exponential term,

which leads to a generalization of the classical diversity

gain and coding gain relationship (e.g., (1)).

• We derive new asymptotic expressions for error and out-

age probability considering GG fading channel. Closed-

form asymptotics of BER are derived for different mod-

ulation schemes, Binary Phase Shift Keying (BPSK) and

Differential Binary Phase Shift Keying (DBPSK).

• We evaluate the difference our asymptotic expressions

and the existing ones (which are derived by ignoring

the logarithmic singularity). We use the Kolmogorov-

Smirnov test to measure the effects of using additional

terms in (2).

C. Paper Organization

The rest of the paper is organized as follows. We provide

the details of our asymptotic approach in Section II. Closed-

form solutions for BER and outage probability for different

scenarios are given in Section III. Numerical results for several

diversity schemes and performance comparison with existing

asymptotic approaches are given in Section IV. We give a brief

overview and conclude our paper in Section V.

II. Main Results

In this section, we discuss the details of the new asymp-

totic performance measure. For this purpose, we consider the

following expansion of LS channels:

f (β) = aβt + bβµ log(β) + R(β), for β→ 0+ (2)

where a, b, t and µ are constants to be determined from the

distribution of the fading channel, log is natural logarithm

throughout the paper, and R(β) is the vanishing remainder

term. The singularity is determined by the term bβµ log(β).

The most important result given in the next theorem.

Theorem 1. Now averaging a performance measure g(·) over

the two terms in (2), we get a generalized version of asymptotic

performance measure,

Pe(γ) = (Gcγ)−Gd exp

(

c′ log(γ)

γ
α

)

+ R(γ), as γ → ∞

(3)

where Gc, Gd, and R(γ) are coding and diversity gain, and

the remainder term, respectively.

Proof. Using (2) we can derive an expression for error prob-

ability similar to one obtained using Taylor series,

Pe(γ) =
c1

γ
t+1
+

c2

γ
µ+1
+

c3

γ
µ+1

log(γ), (4)

where c1, c2, and c3 are constants depending on the modula-

tion scheme and t, µ are the constants from (2). As we are

interested in asymptotic solution,therefore, for γ → ∞ we can

ignore the second term in (4) and applying elementary series

approximations over (4) without the second term we reach the

generalized form of error probability given by (3),

Pe(γ) =
c1

γ
t+1

(

1 +
c3/c1

γ
µ−t

log(γ)

)

=
c1

γ
t+1

exp

(

c′ log(γ)

γ
µ−t

)

, (5)

where c′ = c3/c1. Understandably, (5) can be written in the

form of (3) with Gc = c
−1/t+1

1
, Gd = t + 1, and α = µ − t. �

Proposition 1. However, the asymptote in (2) works only in

the high SNR regime. To overcome this shortfall and extend

the SNR range we add one more higher order term with (2)

and develop a new asymptote,

f (β) = aβt + a1β
t+1 + bβµ log(β) + b1β

µ+1 log(β) + R(β)

= aβt exp

(

−a1

a
β

)

+ bβµ log(β) exp

(

−b1

b
β

)

+ R(β) (6)

Similar to (2), R(·) is the remainder term.

The asymptote in (6) significantly improves the performance

in the SNR range of 5-15 dB. Considering few more higher

order terms and developing an asymptote similar to (6) can

be a simple way to improve the accuracy of the asymptotic

measure.

Comparing (1) and (3), we observe an additional exponen-

tial, correction term. This correction term can be found in

(17) as the second and third term on the right hand side. In

absence of logarithmic singularity, the log(γ) term vanishes

and the expression reduces to the classical formula (1).

A. Application on Fading channels

We derive the expressions of the variables and constants

mentioned in (2). Each of the variable and constant can be

derived from the pdf of the GG distribution, and the pdf is

given by,

f (β) =
2β(m+k)/2−1

Γ(m)Γ(k)

(

km

θ0

)(m+k)/2

Kk−m

(

2

√

kmβ

θ0

)

, (7)



where Kn(·) is the modified Bessel function of second kind

with order of k − m, m and θ0 are the shaping parameter and

the average local mean of β, respectively [1].

Since the asymptote of pdf f (β) depends on the polynomial

terms of β, we derive a series expansion of the GG pdf. A

sum formula for the modified Bessel function with order of n

is given by Abramowitz and Stegun [ [25], 9.6.11],

Kn(x) =
1

2

( x

2

)−n
n−1
∑

k=0

(n − k − 1)!

k!

(

− x2

4

)k
+ (−1)n+1log

x

2

× In(x) + (−1)n 1

2

( x

2

)n
∞
∑

k=0

(ψ(k + 1) + ψ(n + k + 1))

× (x2/4)k

k!(n + k)!
, (8)

where ψ(·) is the logarithmic derivative of the gamma function,

commonly known as the digamma function and In(·) is the

modified Bessel function of first kind. Now, we use the

asymptotic approximation of the Bessel function of second

kind, given in (8) to derive the expressions for a, b, t, and µ

of (2). Replacing n with k −m and x with
(

2
√

km
θ0

)

in (8) and

thereafter considering the first term in the series we obtain,

f (β) =
(k − m − 1)!

Γ(m)Γ(k)

(

km

θ0

)m

β(3m−k)/2−1 +
(−1)k−m+1

(k − m)!Γ(m)Γ(k)

×
(

km

θ0

)k

βk−1

(

γ + log

(

km

θ0

)

− ψ(k − m + 1)

)

+
(−1)k−m+1

(k − m)!Γ(m)Γ(k)

(

km

θ0

)k

βk−1 log(β) + R(β) (9)

We would like to mention that (ψ(1) = −γ) is a constant,

where γ is the Euler-Mascheroni constant.

As mentioned earlier, only dominant terms are considered

in asymptotic measures. Therefore, we can ignore the second

term in (9), and determine the parameters of interest, a, b, t,

and µ.

t =

(

3m − k

2

)

− 1

µ = k − 1

a =
(k − m − 1)!

Γ(m)Γ(k)

(

km

θ0

)m

b =
(−1)k−m+1

(k − m)!Γ(m)Γ(k)

(

km

θ0

)k

(10)

III. Closed-form solutions

In this section, we derive the closed-form expressions for

two important performance measures: BER and outage prob-

ability.

A. BER

The average BER (or simply BER) is taken over the

statistical distribution representing the wireless fading [26].

Integrating the conditional error probability (CEP), Pb(γ) of

a modulation scheme, over the pdf of the instantaneous SNR

f (β), we find

Pe(γ) =

∫ ∞

0

Pb(γ) f (β)dβ (11)

Various expressions for the binary modulations are available

in the literature, mainly using the Q-function, however, a

general form of CEP for binary modulations that works for

BPSK, DBPSK, and BFSK (binary frequency shift keying) is

given in [27],

Pb(γ) =
Γ(λ, νγβ)

2Γ(λ)
(12)

where Γ(λ, νx) denote the upper incomplete gamma function,

and λ, ν are the modulation dependent parameters. Γ(·, ·) is

defined by,

Γ(a, x) =

∫ ∞

x

ta−1e−tdt (13)

For BPSK, DBPSK, and BFSK modulation, (ν, λ) are

(1,0.5), (1,1), and (0.5,0.5), respectively [27]. BER for binary

modulations can be evaluated by substituting (12) in (11),

Pe(γ) =

∫ ∞

0

Γ(λ, νγβ)

2Γ(λ)

(

aβt + bβµ log(β)
)

dβ (14)

We use the following properties of incomplete gamma

function [ [28], 8.352.4, 8.359.3] to derive the closed form

solutions for BER,

Γ(0.5, x2) =
√
π
(

1 − Φ(x)
)

Γ(n, x) = (n − 1)!e−x

n−1
∑

m=0

xm

m!
for n ∈ I (15)

Applying the first property in (15), BER for BPSK modu-

lation using (2) is given by,

Pe(γ) =

√
π

2Γ(λ)

∫ ∞

0

(

1 − Φ
(

√

νγβ

2

))

(aβt + bβµ log(β))dβ

(16)

Theorem 2. Closed-form solution to evaluate BER for BPSK

modulation is given by,

Pe(γ) =
aΓ(t + 3/2)

(2t + 2)(νγ/2)2tΓ(λ)
+

bΓ(µ + 1/2)

(νγ/2)2µΓ(λ)

(

1

2µ + 2
+

2µ + 1

2

× ψ
(

2µ + 1

2

)

)

− bΓ(µ + 3/2)

(2µ + 2)(νγ/2)2µΓ(λ)
log(νγ/2)

(17)

Details of the derivation are given in Appendix A.

Theorem 3. Applying the second property in (15), closed-form

expression to evaluate BER for DBPSK is given by,

Pe(γ) =
(λ − 1)!

2Γ(λ)

λ−1
∑

m=0

(νγ)m

m!

(

aΓ(t + m + 1)

(νγ)t+m+1
+

bΓ(µ + m + 1)

(νγ)µ+m+1

×
(

ψ(µ + m + 1) − log(νγ)
)

)

(18)

Details of the derivation are given in Appendix B.



B. Outage Probability

In addition to the BER, outage probability is another impor-

tant performance measure for fading channels. In this paper we

define outage probability as the probability of instantaneous

SNR γ dropping below a certain threshold γth. Therefore, it

can be evaluated using,

Pout(γth, γ) = P[γ ≤ γth] = P[βγ ≤ γth] (19)

As SNR is always non-negative, therefore, the outage prob-

ability is simply the cdf of β. Now exact cdf of GG distribution

is not computation friendly and therefore, it is important to

use asymptotes of the pdf to obtain a computation friendly

expression. Integrating the asymptote in (2) we obtain,

Pout(γth, γ) =
a(γth/γ)t+1

1 + t
+

b(γth/γ)µ+1((1 + µ) log(γth/γ) − 1)

(1 + µ)2

(20)

Wang and Giannakis also observed that outage probability

can be expressed as a function of outage diversity and coding

gain, and similar to the error probability in (1), they expressed

outage probability as [19],

Pout = (Ocγ)−Od + R(γ), (21)

where Od and Oc are outage diversity and coding gain,

respectively.

For LS wireless channels (21) does not hold, therefore, we

express (20) in a more generalized form. Similar to (3), we

derive a generalized form of outage probability using outage

diversity and coding gain that works for channels with and

without logarithmic singularity. Similar to Theorem 1 we can

express outage probability as,

Pout = (Ocγ)−Od exp

(

c′

γ
α

(

η log(γth/γ) − 1
)

)

, (22)

where Oc =
1

γth

(

a

t + 1

)−1/(t+1)

, Od = 1 + t, c′ =
bγ

µ−t

th
(t + 1)

a(1 + µ)2
,

α = µ − t, and η = 1 + µ.

IV. Numerical Results

Numerical results are generated for BER and outage prob-

ability. Throughout this section, we will use the following

legends, Exact, Approx1, Approx2, Existing1, and Existing 2

to represent the exact solution, solution using the asymptote in

(2), using the asymptote in (6), Taylor series based approach

used by Wang and Giannakis, and the asymptotic solution

given by Dhungana and Tellambura in [20], respectively.

Performance is observed for SNR varying from 5 − 20 dB.

Outage probability is calculated for two different cases,

(k = 2, m = 1, θ = 1) and (k = 3, m = 2, θ = 1), and γth

is assumed to be 0 dB. Performance of the proposed asymp-

totic measures are compared with two existing asymptotic

approaches for SNR varying from 5 − 20 dB. From Fig. 1

we observe that proposed approximations give a considerable

improvement over the existing ones. As mentioned earlier,

Approx2 gives better performance than Approx1 in the SNR

range of 5− 10 dB. We also observe approximation by Dhun-

gana and Tellambura gives better performance than Wang-

Giannakis model but worse than Approx1 even after using

two terms from the series expansion.

5 10 15 20
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

O
u
ta

g
e 

P
ro

b
ab

il
it

y

 

 

Exact

Approx1

Approx2

Existing1 [19]

Existing2 [20]

k=2, m=1

k=3, m=2

Fig. 1. Outage probability for varying SNR.
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We also plot the relative error for all the approximations,

where relative error is calculated using (23),

ê =
| approx − exact |

exact
(23)

Errors from the proposed and existing asymptotic measures

are compared in Fig. 2. We observe significant improvement

using our asymptotic approach in the range of 8 − 20 dB.

Now we compare the asymptotic measures for BPSK and

DBPSK modulation and observe the performance by varying

SNR from 5 − 20 dB. In Fig. 3 and 4 we observe Approx1

performs better for higher SNR, this is the primary shortfall

of asymptotic approaches, which converges to the exact one

in infinity. We also observe that Approx2 performs better than

other asymptotes in the region of 10 − 14 dB, and it is the

effect of including the additional exponential function which

reduces the divergence to a great extent in the lower SNR

regime (0 − 10) dB.

We should also keep in mind that only a single term from

the series is used in Approx1, and therefore, the inclusion of

more terms will certainly enhance the performance. Therefore,
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Fig. 4. BER for DBPSK modulation with varying SNR.

we observe the effects of including additional terms using a

well-known statistical test.

A. KS Test

In this section we measure the closeness of our asymptotic

measures, and effect of considering additional terms, using the

Kolmogorov-Smirnov (KS) goodness-of-fit test [29]. KS test

is a null hypothesis test where T-statistic is evaluated from the

absolute difference between empirical cumulative distribution

function (CDF) and approximated CDF. KS test statistic is

defined as,

T , max | Fβ(z) − F̂β(z) | (24)

Till now, all the results are generated by considering a

single term from the series. Now, we explore the effect of

including more terms in new asymptote, given by (2) and

asymptotic approach by Wang and Giannakis. We compute

the T-statistic for varying number of terms (1−4) and varying

z, and define a null hypothesis to determine the significance

of both approaches.

• Definition: We define H0 as the null hypothesis, that

accepts a measurement with significance of 95% when

corresponding T is less than a threshold (Tmax), and

similarly, rejects a measurement with 5% significance

when T is greater than Tmax.
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Fig. 5. KS test statistic.

We use the standard value of Tmax = 0.05, to compare the

performance. Test statistics for distribution parameter k = 2,

m = 1, varying z from 0 − 1 and number of terms from 1 − 4,

is given in Fig. 5. From the results, it is evident that the

performance of the new asymptotic approach is significantly

better than the existing approach, our proposed asymptote with

one term outperforms the Taylor series based asymptote, even

with four terms. We also observe the hypothesis H0 does

not accept any of the results using the existing asymptotic

approach with 95% significance, whereas all the results using

the proposed asymptote with four terms are accepted with 95%

significance.

V. Conclusion

The impact of logarithmic singularity in certain wireless

channels has been overlooked in all previous works. In LS

channels, the Taylor series based asymptotic approaches are

incorrect and the classical coding and diversity gain expres-

sions fail. To circumvent these problems, we have proposed

new asymptotic measures and developed a generalized coding

and diversity gain model. It covers fading models with and

without the logarithmic singularity. We also derived several

asymptotic measures for error probability. We have provided

numerical results for different modulation schemes. Results

suggest significantly improved accuracy in the 10-25 dB SNR

range. To increase the SNR range even further, we further

developed the asymptotic approach which shows significant

improvement in the 5-15 dB range.

References

[1] S. Al-Ahmadi, “The Gamma-Gamma Signal Fading Model: A Survey,”
IEEE Antennas Propagat. Mag., vol. 56, no. 5, pp. 245–260, Oct. 2014.

[2] A. F. Molisch, Wireless Communications, 2nd ed. Wiley-IEEE Press,
Nov. 2010.

[3] S. Atapattu, C. Tellambura, and H. Jiang, “A Mixture Gamma Distri-
bution to Model the SNR of Wireless Channels,” IEEE Trans. Wireless

Commun., vol. 10, no. 12, pp. 4193–4203, Oct. 2011.
[4] M. C. Teich and P. Diament, “Multiply stochastic representations for K

distributions and their Poisson transforms,” Optical Engineering, vol. 6,
no. 1, pp. 80–91, Jan. 1989.



[5] P. S. Bithas, N. C. Sagias, and P. T. Mathiopoulos, “The bivariate
generalized-K (KG) distribution and its application to diversity re-
ceivers,” IEEE Trans. Commun., vol. 57, no. 9, pp. 2655–2662, Sep.
2009.

[6] I. Kostic, “Analytical approach to performance analysis for channel
subject to shadowing and fading,” IEE Proceedings Communications,
vol. 152, no. 6, pp. 821–827, Dec. 2005.

[7] I. Trigui, A. Laourine, S. Affes, and A. Stephenne, “Performance
analysis of Mobile Radio Systems over Composite Fading/Shadowing
channels with co-located interference,” IEEE Trans. Wireless Commun.,
vol. 8, no. 7, pp. 3448–3453, July 2009.

[8] N. Chatzidiamantis and G. Karagiannidis, “On the Distribution of the
sum of Gamma-Gamma Variates and applications in RF and Optical
Wireless Communications,” IEEE Trans. Commun., vol. 59, no. 5, pp.
1298–1308, May 2011.

[9] P. Shankar, “Maximal Ratio Combining (MRC) in shadowed fading
channels in presence of shadowed fading cochannel interference (CCI),”
Wireless Personal Communications, vol. 68, pp. 15–25, Jan. 2013.

[10] J. Laneman, D. Tse, and G. W. Wornell, “Cooperative Diversity in
Wireless Networks: Efficient Protocols and Outage Behaviour,” IEEE

Trans. Inform. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.

[11] M. Hassan, X. Song, and J. Cheng, “Subcarrier intensity modulated
wireless optical communications with rectangular QAM,” IEEE/OSA

Journal of Optical Communications and Networking, vol. 4, no. 6, pp.
522–532, June 2012.

[12] D. J. Lewinsky, “Nonstationary probabilistic target and clutter scattering
models,” IEEE Trans. Antennas Propagat., vol. 31, no. 3, pp. 490–498,
May 1983.

[13] W. Gappmair and M. Flohberger, “Error performance of coded FSO links
in turbulent atmosphere modeled by Gamma-Gamma distributions,”
IEEE Trans. Wireless Commun., vol. 8, no. 5, pp. 2209–2213, May
2009.

[14] M. R. Bhatnagar and Z. Ghassemlooy, “Performance evaluation of FSO
MIMO links in Gamma-Gamma fading with pointing errors,” in IEEE

International Conf. on Communications (ICC), Jun. 2015, pp. 5084–
5090.

[15] T. A. Tsiftsis, “Performance of heterodyne wireless optical communi-
cation systems over Gamma-Gamma atmospheric turbulence channels,”
Electronics Letters, vol. 44, no. 5, pp. 373–375, Feb. 2008.

[16] H. Tabassum, Z. Dawy, E. Hossain, and M. S. Alouini, “Interference
statistics and capacity analysis for uplink transmission in two-tier small
cell networks: A geometric probability approach,” IEEE Trans. Wireless

Commun., vol. 13, no. 7, pp. 3837–3852, Mar. 2014.

[17] M. R. Bhatnagar, “Average BER analysis of differential modulation
in DF cooperative communication system over Gamma-Gamma fading
FSO links,” IEEE Commun. Lett., vol. 16, no. 8, pp. 1228–1231, Aug.
2012.

[18] T. T. Tjhung and C. C. Chai, “Fade statistics in Nakagami-lognormal
channels,” IEEE Trans. Commun., vol. 47, no. 12, pp. 1769–1772, Dec.
1999.

[19] Z. Wang and G. Giannakis, “A simple and general parameterization
quantifying performance in fading channels,” IEEE Trans. Commun.,
vol. 51, no. 8, pp. 1389–1398, Aug. 2003.

[20] Y. Dhungana and C. Tellambura, “New simple approximations for error
probability and outage in fading,” IEEE Commun. Lett., vol. 16, no. 11,
pp. 1760–1763, Oct. 2012.

[21] ——, “Uniform approximations for wireless performance in fading
channels,” IEEE Trans. Commun., vol. 61, no. 11, pp. 4768–4779, Nov.
2013.

[22] V. R. S. Banjade, C. Tellambura, and H. Jiang, “New asymptotics for
performance of energy detector,” in IEEE Global Telecommun. Conf.

(GLOBECOM), Dec. 2014, pp. 4020–4024.

[23] ——, “Asymptotic performance of energy detector in fading and diver-
sity reception,” IEEE Trans. Commun., vol. 63, no. 6, pp. 2031–2043,
June 2015.

[24] A. Annamalai, C. Tellambura, and V. K. Bhargava, “A general method
for calculating error probabilities over fading channels,” IEEE Trans.

Commun., vol. 53, no. 5, pp. 841–852, May 2005.

[25] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. Dover, 1972, no. 10.

[26] T. Rappaport, Wireless Communications: Principles and Practice. Pren-
tice Hall, Dec. 2001.

[27] M. K. Simon and M. S. Alouni, Digital Communication over Fading

Channels. John Wiley & Sons, 2000.

[28] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and

Products, 8th ed. Elsevier, Sep. 2014.
[29] A. Papoulis, Probability, Random Variables, and Stochastic Procceses,

3rd ed. McGraw-Hill, 1991.
[30] E. W. Ng and M. Geller, “A table of integrals of the error functions,”

Journal of Research of the National Bureau of Standards, vol. 73B, Oct.
1969.

Appendix A

Proof of Theorem 1

Replacing Φ with error function and applying its odd

function property in (16) gives,

Pe(γ) =

√
π

2Γ(λ)

∫ ∞

0

1

2
erfc

(

√

νγβ

2

)

(aβt + bβµ log(β))dβ

(25)

Replacing νγβ with 2τ2 and using [ [30], 4.1.11,4.6.9] a

closed-form solution of the integral in (25) is obtained,

Pe(γ) =
a
√
π

(νγ/2)2tΓ(λ)

Γ(t + 3/2)
√
π(2t + 2)

+
2b
√
π

(νγ/2)2µΓ(λ)

Γ(µ + 1/2)

2
√
π

×
(

1

2µ + 2
+

2µ + 1

2
ψ

(

2µ + 1

2

)

)

−
b
√
π

(νγ/2)2µΓ(λ)

× Γ(µ + 3/2)
√
π(2µ + 2)

log(νγ/2) (26)

After some rearrangement of (26) leads to the closed-form

solution using given in (17) of Theorem 2.

Appendix B

Proof of Theorem 2

Applying the second property in (15) over (14) we can write,

Pe(γ) =
1

2Γ(λ)

∫ ∞

0

(

aβt + bβµ log(β)
)

(λ − 1)!e−νγβ
λ−1
∑

m=0

(νγβ)m

m!
dβ

=
a(λ − 1)!

2Γ(λ)

λ−1
∑

m=0

(νγ)m

m!

∫ ∞

0

βt+me−νγβdβ +
b(λ − 1)!

2Γ(λ)

×
λ−1
∑

m=0

(νγ)m

m!

∫ ∞

0

βµ+me−νγβ log(β)dβ (27)

Using [ [28], 3.351.3, 4.352.1], (27) can be rewritten as,

Pe(γ) =
a(λ − 1)!

2Γ(λ)

λ−1
∑

m=0

(νγ)m

m!
Γ(t + m + 1)(νγ)−t−m−1 +

b(λ − 1)!

2Γ(λ)

×
λ−1
∑

m=0

(νγ)m

m!

Γ(µ + m + 1)

(νγ)µ+m+1

(

ψ(µ + m + 1) − log(νγ)
)

(28)

Rearranging (28) gives the closed-form solution given in

Theorem 3.


