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Abstract—Here we address the problem of outage characteriza-
tion of a single-cell multiple-user multiple-input-multiple-output
(MU-MIMO) network with matched-filter (MF) precoding at the
base-station (BS). In particular, we derive an exact expression
for the outage probability of any user. This expression is valid
for an arbitrary number of BS antennas and mobile users.
Since the expression contains an infinite sum, a tight truncation
error bound has been derived to facilitate precise numerical
evaluations. Furthermore, asymptotic expressions are provided
for high BS transmit power and massive MIMO scenarios.

Index Terms—Massive MIMO, MF precoding, MIMO,
multiple-user network, outage probability.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems exploit
spatial diversity not only to increase throughput but also to
enhance the reliability of the wireless channel [1]. As MIMO
evolves from 3GPP (High-Speed Packet Access plus and Long
Term Evolution) to fifth generation (5G) wireless, the number
of antennas at a BS is expected to increase dramatically from a
few (conventional MIMO) to tens and even hundreds (massive
MIMO) of times the number of active users [2]. Due to
the multiple-user downlink, inter-user interference critically
affects both the sum-rate and outage of multiple-user MIMO
(MU-MIMO) systems. To alleviate this, the BS employs
matched-filter (MF) precoding [3]. In MF precoding, the BS
pre-multiplies the downlink symbols of each user by the
Hermitian of the channel vector between the user and BS. MF
precoding offers low computational complexity, robustness,
and high asymptotic performance for massive MIMO systems
[4].

Performance analysis of MU-MIMO systems with linear
precoding is extensive Since exact performance characteriza-
tion is often intractable with a few exceptions, limiting results
and approximations are common. It turns out that such ap-
proximations are often valid for certain parameter values (e,g.,
number of antennas and users) only [5]–[10]. Also, for small-
scale MU-MIMO systems, performance has been analyzed in
the high-SNR regime, because of the analytical complexity
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of the signal-to-interference plus noise ratio (SINR) [5], [6].
The block-error probability is investigated for linear receivers
in [5]. The SINR distribution, outage and diversity gain are
approximately analyzed for different linear precoders in [6],
[7]. In contrast, for large-scale or massive-MIMO systems, an
asymptotic deterministic equivalence model may be applied by
considering a large number of transmit antennas. By applying
the law of large numbers, the overall effect is modeled in terms
of number of antennas and slow fading gains in which the
instantaneous flat-fading effect diminishes. Since this model
has been developed specifically to analyze the sum-rate [8],
[9], it does not help analyze the outage probability of multiple-
user downlink with flat-fading. An analytical method is thus
proposed to study the outage probability by preserving the flat-
fading randomness in [10], in which only the user-interference
is treated as random.

In this paper, we consider a single-cell MU-MIMO system
over independent Rayleigh channels with MF precoding. In
particular, we characterize the system outage by deriving
an exact expression for the cumulative distribution function
(CDF) of the SINR. This new expression has the flexibility to
accommodate an arbitrary number of BS antennas as well as
mobile users. Moreover, insightful asymptotic expressions are
derived for high transmit power and massive MIMO scenarios.

II. MULTIPLE-USER MIMO (MU-MIMO) SYSTEM

We consider a single-cell MU-MIMO system, which has a
BS with L antennas and K single-antenna users. The BS-to-
user k channel is hk = [hk,1, · · · , hk,L], k = 1, . . . ,K. All
entries are of hk’s are independent and identically distributed
(iid) CN (0, 1), circularly symmetric complex Gaussian with
zero-mean and unit-variance. The BS has perfect channel state
information (CSI) in order to implement the MF precoding.
Moreover, independent data symbols xk, (k = 1, . . . ,K) are
energy normalized (e.g., E|xk|2 = 1) for the K users. With
MF precoding, the received signal at user k is given by [10]
yk =

√
P
KLhkh

†
kxk +

√
P
KL

∑K
j=1,j 6=k hkh

†
jxj + nk, where

P is BS transmit power and nk is the additive noise at user k,
which is CN (0, 1) and is iid across different users. Now the
SINR of user k may be expressed as

γk =
ω|hkh†k|2

1 + ω
∑K
j=1,j 6=k |hkh

†
j |2

(1)

where ω = P
KL . Since further analysis of the SINR seems

an arduous task, here we focus on obtaining an equivalent
expression for γk. To this end, noting that hkh

†
j |hk ∼



2

CN
(
0, ||hk||2

)
, we can write an equivalent representation of

SINR as (i.e., γk and Z have the same distribution)

Z =
ωX2

1 + ωXY
(2)

where X = ||hk||2 and Y =
∑K−1
j=1 |yj |2 are independent

random variables (rv’s). Moreover, yj ∼ CN (0, 1), j =
1, . . . ,K − 1, are also independent. To the best of our knowl-
edge, (2) is a new representation for the SINR of user k.

III. OUTAGE PROBABILITY

The outage probability is the probability that the SINR
of user k falls below a certain predetermined threshold γ.
Therefore, we write Po = Pr[γk ≤ γ]. Now we have

Po = 1−
L−1∑
n=0

(
γ
ω

)n
2 e−
√
γ
ω

n!
+

e−
√
γ
ω

(L− 1)!

×
K−2∑
n=0

n∑
i=0

∞∑
j=0

(−1)j
(
n
i

)
(n+ j)!

γj+nn!j!

( γ
ω

)L+n+j
2

×Ψ

(
j + n+ 1;L+ n+ 1− i;

(
1

γ
+ 1

)√
γ

ω

)
(3)

where ω = P
KL and Ψ (·; ·; ·) is the Tricomi confluent

hypergeometric function [11, Eq. (9.211.4)]. The proof is in
Appendix A. While this result holds for any MIMO system, it
is especially suitable for massive MIMO as the indices of the
last three summations (i.e., n, i and j) do not depend on L.

A. Truncation Error
Since (3) contains an infinite sum, truncation to a finite

number of terms T , i.e.,
∑∞
j=0 ≈

∑T
j=0, is necessary for nu-

merical calculations. To determine T to ensure the numerical
accuracy requirements, we bound the truncation error as

|εT | ≤
e−
√

γ
ω

(
γ
ω

)L
2

1F1

(
1;T + 2; 1√

γω

)
(L− 1)!(T + 1)!(γω)

T+1
2

×
K−2∑
n=0

n∑
i=0

(
n
i

)
(n+ T + 1)!

n!(γω)
n
2

×Ψ

(
n+ T + 2;L+ n+ 1− i;

(
1 +

1

γ

)√
γ

ω

)
(4)

where 1F1(·; ·; ·) is the Kummer confluent hypergeometric
function [11]. The proof is in Appendix B.

B. High Transmit Power
Due to the interference, increasing the BS transmit power

may not have the intended effect of reducing outage. To further
investigate, we approximate outage of user k for large P as

Po ≈ 1−
L−1∑
n=0

e−
√

γ
ω

(
γ
ω

)n
2

n!
+
e−( 1

γ+1)
√

γ
ω

(L− 1)!

K−2∑
n=0

L+n−1∑
i=0

(L+ n− 1)!
(
γ
ω

) i
2

n!i!γn
(

1
γ + 1

)L+n−i (5)

≈ 1−
L−1∑
n=0

(K + n− 2)!

(K − 2)!n!

γn

(1 + γ)K+n−1
. (6)
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Fig. 1. Relative error vs number of terms when P = 10 dBm and γ = 5 dB.

The proof is in Appendix C. While (5) is a function of P , (6)
is independent of P , thus it gives the outage-floor value.

C. Massive MIMO

In the massive MIMO setting at the BS (i.e., L� K), we
can approximate (3) as

Po ≈ 1−
L−1∑
n=0

n∑
i=0

(K + i− 2)!
(
n
i

)
γne
− γ
P
K

(K − 2)!n!(1 + γ)K+i−1
(
P
K

)n−i . (7)

The proof is in Appendix C. The other important massive
MIMO setting occurs when L,K → ∞ such that L/K →
η > 0. To gain further insights, we focus on analyzing Z in
light of stochastic convergence of rv’s. As such, we write Z =
ηP X

L
X
L /
(
1 + P X

L
Y
K

)
where K = L/η. Noting X/L a.s.−−→ 1,

Y/K
a.s.−−→ 1, and continuous mapping theorem [12], we have

Z
a.s.−−→ ηP

1 + P
(8)

where a.s. denotes almost sure convergence. This surprisingly
simple result shows that, asymptotically, the SINR becomes a
deterministic quantity. Therefore, extra attention is needed in
setting the outage threshold of a massive MIMO system.

Remark: While the channels from the BS antennas to
user k are statistically identical, the channels of different
users may be non-identical. In this case, the rv Y in (2)
becomes a sum of independent and non-identical exponential
rvs. Moreover, for independent and non-identical |yk|2 ∼
Exp(λk) with λk ≥ 0, λk 6= λj ∀k 6= j, the probability
density function (PDF) of Y =

∑K−1
k=1 |yk|2 takes the form∑K−1

k=1 ak (λ1, . . . , λK−1) e−y , where ak(·) is the Lagrange
basis polynomial. Since this PDF has a similar structure to that
in (9), the above analytical framework can readily be extended
to the non-identical case as well.

IV. NUMERICAL AND SIMULATION RESULTS

We consider L = 8, 64, 256 and K = 4, 16, 32, which may
represent small MIMO, moderate MIMO or massive MIMO.
We calculate the relative error with truncation as |exact -truncated|

exact
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Fig. 2. Outage probability vs transmit power P for three MIMO systems.

Fig. 3. Outage probability vs threshold for P = 10 dBm.

and the relative error with bound as error bound in (4)
exact value . The exact

value is calculated with numerical integration, e.g., Gaussian
quadrature rule, by using (10) and (11). The truncated value for
different T is calculated by using (3). Fig. 1 plots the relative
errors with number of terms T for three MIMO systems when
P = 10 dBm and γ = 5 dB. We have the relative error less
than 10−2, when T ≥ 4, 17, 47 from either plot for three
systems, which confirm the tightness of the bound in (4).

For the remaining numerical examples, we use (4) to
determine T to satisfy |εT | ≤ 10−4. Fig. 2 shows outage
with transmit power P for three MIMO systems with different
thresholds γ. As this figure shows, the analysis (3) matches
perfectly with the simulation. Also the approximations in (5),
(6) and (7) approach the exact values asymptotically in high
P region. Moreover, the massive MIMO approximation in (7)
closely matches with the exact result over the entire P interval
for L � K, e.g., L = 256, K = 32. This confirms the
validity of the analysis. For L = 64, 256 and K = 16, 32,
we compare the approximate outage expression from [10,
Eq. (10)] with (7). The numerical results clearly show that
(7) follows more closely the exact trend than [10, Eq. (10)].
Fig. 3 depicts the system outage behavior as a function of
threshold γ for L

K = 1
2 and L

K = 2 with different (L,K)
pairs when P = 10 dBm. As can be seen from the figure, (7)
serves as a good approximation to the exact system behavior
even when L and K increase simultaneously. Moreover, as
(L,K) increase such that their ratio is constant, the outage
curves tend to achieve more sharp transitions (e.g., at around
−3.42 dB and 2.60 dB for L

K = 1
2 and L

K = 2, respectively),
thereby confirming the deterministic nature of the SINR.
These transitional thresholds are consistent with the theoretical
results given by (8) (i.e., 10 log10(5/11) and 10 log10(20/11)).
Further, [10, Eq. (10)] works for large L and K because it is
based on asymptotic deterministic equivalence for the desired
signal power. However, our approximation (7) achieves higher
accuracy because it utilizes both the law of large numbers and

the exact distribution for both desired and interference powers.

V. CONCLUSION

Exact outage analysis of a single-cell MU-MIMO downlink
with MF precoding has not previously been available. We thus
rigorously derived the exact outage for an arbitrary number of
the BS antennas and of mobile users. We used the derived
expressions to characterize simple outage-floor in the large P
regime and outage behavior of massive MIMO. Our analysis
reveals that massive MIMO outage has deterministic behavior.

APPENDIX

A. Proof of (3)

The sum of N ≥ 1 iid exponential rvs: V =
∑N
i=1 vi

with fvi(x) = e−x, x ≥ 0, ∀vi, is Gamma distributed. The
PDF, fV (v), and the complementary cumulative distribution
function (CCDF), i.e., F̄V (v) = 1− FV (v), are

fV (v) =
vN−1e−v

(N − 1)!
and F̄V (v) =

N−1∑
n=0

vne−v

n!
, (9)

respectively. Since X and Y in (2) are sums of L and K − 1
exponential rv’s, their distributions are special cases of (9).
The CDF of Z in (2), FZ(z) = Pr

[
ωX2

1+ωXY ≤ z
]

is

FZ(z) =

∫ √ z
ω

0

Pr

[
Y ≥ ωx2 − z

ωzx

]
︸ ︷︷ ︸

=1

fX(x)dx

+

∫ ∞
√

z
ω

Pr

[
Y ≥ ωx2 − z

ωzx

]
︸ ︷︷ ︸

=F̄Y
(
ωx2−z
ωzx

)
fX(x)dx.

(10)

Following (9), the first integral gives FX
(√

z
ω

)
. The second

term can be written using (9) as

I(z) =

K−2∑
n=0

∫∞√
z
ω
xL−1e−x

(
ωx2−z
ωxz

)n
e−

ωx2−z
ωxz dx

(L− 1)!n!
. (11)

To facilitate further analysis, the integral in (11) is written as

J(z)
(a)
=
e−
√

z
ω

zn

( z
ω

)L−1
2

∫ ∞
0

un
(
u

√
ω

z
+ 1

)L−1

× e−(1+ 1
z )u

(
1 +

1

u
√

ω
z

+ 1

)n
e
−

u
z

(1+u
√
ω
z ) du

(b)
=
e−
√

z
ω

zn

( z
ω

)L−1
2

n∑
i=0

∞∑
j=0

(−1)j
(
n
i

)
zjj!

×
∫ ∞
0

uj+n
(

1 + u

√
ω

z

)L−1−i−j

e−(1+ 1
z )udu

(c)
=
e−
√

z
ω

zn

n∑
i=0

∞∑
j=0

(−1)j
(
n
i

)
zjj!

( z
ω

)L+j+n
2

×
∫ ∞
0

vj+n(1 + v)L−1−i−je−( 1
z
+1)
√

z
ω
vdv

where (a) follows as u = x −
√

z
ω , (b) follows with the

binomial and power series expansions, and (c) follows as v =√
ω
z u. Finally, we obtain (3) using [11, Eq. (9.211.4)].
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B. Proof of (4)

For T terms, the truncation error of (3) is expressed as

|εT | =
∣∣∣∣ e−
√

γ
ω

(L− 1)!

K−2∑
n=0

n∑
i=0

(
n
i

) (
γ
ω

)L+n
2

γnn!

∞∑
j=T+1

(n+ j)!
(
γ
ω

) j
2

(−1)jγjj!

×Ψ (j + n+ 1;L+ n+ 1− i;β)

∣∣∣∣
where β =

(
1
γ + 1

)√
γ
ω . Let us now focus on simplifying

the inner infinite sum. To this end, we write

ε̂T
(a)
=

∞∑
j=T+1

(−1)j
(
γ
ω

) j
2

γjj!

∫ ∞
0

e−βxxj+n

(x+ 1)i+j−L+1
dx

(b)
=

∞∑
`=0

(−1)`+T+1
(
γ
ω

) `+T+1
2
∫∞

0
e−βxx`+T+1+n

(x+1)i+`+T+2−L dx

γ`+T+1(`+ T + 1)!

(c)
=

(−1)T+1
(
γ
ω

)T+1
2

γT+1(T + 1)!

∫ ∞
0

e−βxxT+1+n

(x+ 1)i+T+2−L

×
∞∑
`=0

(−1)`(1)`

(
x

1+x
1√
γω

)`
`!(T + 2)`

dx

(12)

where (a) follows by using the integral representation of
Ψ (·; ·; ·) function, (b) follows by changing the summation
index as ` = j − T − 1, and (c) follows by using identities
(`+ T + 1)! = (T + 1)!(T + 2)` and (1)` = `!. Nothing that
|(−1)T+1| = |(−1)`| = 1 and x/(x + 1) < 1, we use the
definition 1F1 (a; b; z) =

∑∞
k=0

(a)kz
k

(b)kk! , b 6= 0,−1,−2, . . . ,

and (12) to obtain the upper bound for |ε̂T | as

|ε̂T | ≤
1F1

(
1;T + 2; 1√

γω

)
(
γ
ω

)−T+1
2 γT+1(T + 1)!

∫ ∞
0

e−βxxT+1+n

(x+ 1)i+T+2−L dx︸ ︷︷ ︸
Ψ(n+r+2;L+n+1−i;β)

which completes the proof of (4).

C. Proof of (5), (6), and (7)

For large P , we may write the CCDF term in (10) as

F̄Y

(
ωx2−z
ωzx

)
= F̄Y

(
P
KL

x2

z −1
P
KLx

)
≈ F̄Y

(
x
z

)
; z 6= 0. Then,

we can approximate I(z) in (11) as

I(z) ≈
K−2∑
n=0

∫∞√
z
ω
e−(1+ 1

z )xxL+n−1dx

(L− 1)!n!zn
(13)

in which the integral can be solved using [11, Eq. (3.351.2)].
Now with the aid of (9), (10), and (13), we obtain (5).

For large P , we approximate 1 + ωXY ≈ ωXY and
obtain Z ≈ Z̃ = X

Y . Following (9), the CDF of Z̃,∫∞
0
FX(zy)fY (y)dy, can be written as

FZ̃(z) = 1−
L−1∑
n=0

zn
∫∞

0
yK+n−2e−(1+z)ydy

(K − 2)!n!
. (14)

Now we Use [11, Eq. (3.351.3)] to obtain (6).

For large L, noting that XL → 1 (the law of large numbers),
we obtain the approximation Z =

P
K
X
LX

1+ P
K
X
L Y
≈

P
KX

1+ P
K Y

. We
thus write an approximate CDF of Z as

FZ(z) ≈
∫ ∞

0

FX

(
Kz

P

(
1 +

Py

K

))
fY (y)dy

≈ 1−
L−1∑
n=0

∫∞
0
yK−2

(
1 + Py

K

)n
e−(1+z)ydy

(K − 2)!n!
(
K
Pz

)n
e
Kz
P

(15)

where we have used (9). Now we apply the binomial expansion
followed by [11, Eq. (3.351.3)] to obtain (7).
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