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Abstract—We characterize the performance of energy detector
(ED) over square-law, square-law selection, and switch-and-stay
diversity combining schemes. The exact average probabilities of a
miss (Pm), and a false alarm (P f ) are derived in closed-form. To
derive Pm for versatile Nakagami-m and Rician fading channels,
a twofold approach, using the probability density function (PDF)
and the moment generating function (MGF), is applied. Using the
PDF method, the achievable diversity order over the Nakagami-
m channel is derived. However, this method becomes intractable
when analyzingPm of the aforementioned combiners in Rician
channels, but the MGF method can handle this case. Our analysis
helps to quantify the performance gains of ED due to diversity
reception. Theoretical derivations are verified through numerical
Monte-Carlo simulation results.

Index Terms—Energy Detection, Non-coherent combining,
Square-Law Combining, Switch-and-Stay Combining, Area un-
der the ROC curve, Marcum-Q integrals, Cognitive radio, Spec-
trum sensing

I. I NTRODUCTION

Energy detection to determine the absence or presence of
a of radio signal finds myriads of applications in ultra wide-
band (UWB) [1], [2] and cognitive radio [3]. It is a widely
researched, low-complexity detection mechanism and included
in the IEEE802.15.4a [2] and IEEE802.22 standards [3], [4].
[5].

To improve the performance of the energy detector in
wireless fading, receiver diversity combining schemes have
been widely considered [6]–[19].For example, the maximal
ratio (MR) combiner and selection combining under Rayleigh
fading [14], [18] and shadowing effects [15] are investigated.
In [19], the MR, equal gain (EG) and selection combining
schemes in Rician and Nakagami-m channels are presented.
Diversity reception over cascaded Rayleigh,η − µ andκ− µ
fading channels is studied in [6], [20], [21], respectively. The
receiver operating characteristic (ROC) curves (1−Pm against
P f ) and the area under the ROC curve (AUC) are widely used
to quantify the detector performance [15]–[17], [19], [22].

The ROC and AUC analyses show that coherent MR and
EG combiners achieve remarkable performance improvements
[15], [16], [18], [19]. However, since the philosophy of energy
detection is contingent on low-implementation complexity,
pilot based estimations of channel state information (CSI)
required for MR and EG combining are a drawback [19].
Consequently, low-complexity diversity combining schemes
such as square-law (SL), square-law selection (SLS), and
switch-and-stay (SS) are vital. In [17], [18], the SL, SLS and
SS combining schemes are analyzed for Rayleigh fading. The
result of SL combining is extended to Nakagami fading chan-
nels in [12], [13]. However, in all these works, the achievable
diversity order - an intuitive system performance metric - is not
derived. This gap is addressed in this work. We first evaluate

the exact ED detection probability in Nakagami-m and Rician
fading channels for SL, SLS and SS combining schemes.
To tackle the mathematical complexities of versatile Rician
and Nakagami-m fading channels, a two-fold approach, based
on the moment generating function (MGF) or the probability
density function (PDF), is developed. The MGF method is
useful to evaluate the exact detection probabilities over Rician
fading which appears difficult with the PDF method. Using
the derived results, we then investigate the achievable diversity
of SL, SLS and SS combining schemes in both Nakagami-m
and Rician fading channels. The investigation shows that these
low-complexity diversity combining schemes are robust in
exploiting the multipath diversity and hence achieve significant
performance gains.To the best of our knowledge, the presented
results are neither special cases nor deducible readily from the
previously reported results such as [7], [8], [10], [12]–[19], and
this remark will be further clarified subsequently.

This paper is organized as follows. Section II summarizes
the system model. Sections III, IV and V analyze the per-
formance of energy detection with SL, SLS and SS schemes.
Section VI provides numerical results. The concluding remarks
are given in Section VII.

II. SYSTEM MODEL AND DIVERSITY RECEPTION

The received signal of single diversity branchy(t) which
contains an unknown deterministic band-limited signals(t)
and noisen(t) or noise only, can be modeled as a binary
hypotheses (H0 andH1) problem, as given in (1)

y(t) = b hs(t) + n(t) : Hb (1)

where h is the complex channel gain andb is a binary
hypothesis indicatorb ∈ {0, 1}. Note that in (1), the block
fading model is considered. This model is of practical interest
because ED is used to obtain a fast (i.e., short duration)
sensing decision [3].The detector decision variableY is a
square sum of2u Gaussian random variables whereu ∈ Z

+

is the time-bandwidth product. The instantaneous signal-to-
noise ratio (SNR) is defined byγ = |h|2Es

N01
whereEs is the

observed energy andN01 is single sided noise power spectral
density. Hence,Y underH0 andH1 are, respectively, central
and non-central chi-square distributed(χ2

2u) with 2u degrees
of freedom and non-centrality parameter2γ. Thus, the PDF
of Y is given by

fY (y) =

{

1
2uΓ(u) y

u−1e−
y
2 : H0

1
2 (

y
2γ )

u−1
2 e−

2γ+y
2 Iu−1(

√
2γy) : H1

, (2)

whereΓ(.) is Gamma function andIn(.) is nth order mod-
ified Bessel function of the first kind. Therefore, the aver-
age miss probability (missed-detection probability)Pm can
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be computed by averaging the conditional miss probability
Pm(γ|h) = 1 − Qu(

√
2γ,

√
λ) whereQu(. , .) is the gener-

alized (uth order) Marcum-Q function andλ is the detector
threshold, with respect to the PDF of the SNRfγ(x) given in
(2) [15], [17], [19]. For brevity, only a summary of the system
model is provided. We refer the reader to [17], [19], [23] for
more details.

As we will show, when several diversity branches of the
form (1) are combined, the overall decision variable will also
be chi-square distributed, but the degrees of freedom and the
PDF of SNR are modified accordingly. Thus, in general, we
encounter an integral involving the Marcum-Q function and
the PDF of resulting SNR of the combiner. For this purpose,
we follow a two fold approach as described below.

A. Average probability of miss-detection – PDF and MGF
based methods

1) PDF based method:The average missed-detection prob-
ability for a diversity combining scheme can be computed
by averaging the conditional miss probabilityPm(γ|h) =
1−Qq(

√
2γ,

√
λ) whereQq(. , .) is the generalized (qth order)

Marcum-Q function with respect to the PDF of the SNRfγ(x)
[15], [17], [19];

Pm,Div = 1−
∫ ∞

0

Qq(
√
2x,

√
λ)fγ(x)dx. (3)

The order of Marcum-Q function, i.e.,q ∈ Z
+ depends on the

diversity combiner and will be specified later.
2) MGF based method:The MGF of γ may be defined

as M(s) = E(e−sγ) where E(.) is the statistical expecta-
tion. Using the contour integral representation of generalized
Marcum-Q function [24],Pm can be expressed as

Pm,Div = 1− e−
λ
2

2πj

∮

∆

M

(

1− 1

z

)

e
λ
2 z

zq(1− z)
dz, (4)

where∆ is a circular contour of radiusr that encloses origin;
0 < r < 1, j =

√
−1 and z ∈ C [19]. The integral in (4)

depends only on the residues at the poles of the integrand
inside the contour∆.

Depending on the fading model and the type of diversity
combining, the evaluation and tractability of integrals (3) and
(4) are different and consequently, the choice between MGF
and PDF based methods varies. For example, it appears that the
case of diversity combining over Rician fading is intractable
via the PDF, whereas the MGF method handles the related
integrals readily. In the discussion below, we follow either the
MGF or the PDF based method and where possible, results
from both methods are provided.

B. Average probability of false-alarm

The channel fading does not affect the detection under noise
only hypothesisH0 (please see (1)). Thus, the average proba-
bility of a false alarmP f,Div = Γ (q, λ/2) /Γ(k) whereΓ(. , .)
represents upper incomplete Gamma function defined by the
integral formΓ(a, x) =

∫∞

x
ta−1e−tdt and Γ(a, 0) = Γ(a)

[17], [19]. For integera, Γ(a) = (a − 1)!. Using series

representation forΓ(1 + a, x) = a! e−x
∑a

i=0
xi

i! , a = 0, 1, ...
[25, eq. 8.352-2],P f can be expressed as

P f,Div =
Γ (q, λ/2)

Γ(q)
(5a)

= e−
λ
2 eq−1 (λ/2) ≥ e−

λ
2 , (5b)

where en(.) is the exponential sum function, i.e.,en (x)
represents the firstn terms of the series representation of
e x. The inequalityP f,Div ≥ e−

λ
2 holds aseq−1 (λ/2) ≥ 1

with equality whenq = 1. Note thatP f,Div is lower bounded
by e−

λ
2 , i.e., the benchmark performance in terms of average

false-alarm probability decays exponentially overλ/2.

III. D ETECTION WITH SQUARE-LAW (SL) COMBINING

The SL concept may prove useful in two scenarios where
the individual energy measurements are available to the com-
biner through (i) multipath propagation (ii) through spatially
scattered user energy measurements reported to a fusion center
[26]. In the distributed setup (scenario (ii)), we consider that
the measurements are i.i.d. which is a realistic assumption
for the equidistant users. However, the fusion center needs
instantaneous individual user energy measurements as wellas
CSI estimates, which leads to large control channel overheads.
Therefore, in scenarios (i) and (ii), non-coherent combiners
which exploit the diversity gain without the need for CSI are
more preferable.

The SL combiner adds the individual energy measurements
without compensating for the channel gains and thus does
not need CSI. The output decision variable is thus defined
by YSL =

∑L
i=1 Yi where L is the number of diversity

branches andYi is the decision variable of thei-th branch
(i = 1, . . . , L). Under H0 and H1, YSL is χ2

2Lu and
χ2
2Lu(2γSL) distributed respectively. The output SNR of the

combiner γSL =
∑L

i=1 γi and γi denotes the SNR of the
ith indexed branch. Thus the average false-alarm probability
for SL combining (P f,SL) can be obtained by replacingq
by Lu in (5), i.e., P f,SL = Γ(Lu,λ/2)

Γ(Lu) . Moreover, miss-
detection probability can be obtained after replacingq by Lu
and evaluating the integrals in (3) and (4) as follows.

A. Nakagami-m Fading - PDF based method

The PDF of a GammaG(α, δ) random variable is given by
f(x) = 1

δαΓ(α) x
α−1e−x/δ, x ≥ 0, where the shape parameter

α > 0 and the scale parameterδ > 0. When the received
signal amplitude follows Nakagami-m fading, the SNR in each
branchγi is a G(m, γ̄/m) random variable wherēγ is the
average SNR, andm ≥ 1

2 is the fading severity index. In this
case,γSL is a G(Lm, γ̄/m) random variable.

Using (3) and the alternative representation ofQu(. , .) [27,
eq. 4.63], the average miss probability over SL (Pm,SL,Nak)
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can be expressed as

Pm,SL,Nak =1−
(

m

γ̄

)Lm
1

Γ(Lm)

×
∫ ∞

0

γLm−1 e−
mγ
γ̄ QLu

(

√

2γ,
√
λ
)

dγ,

(6a)

=

(

m

γ̄

)Lm
e−

λ
2

Γ(Lm)

∞
∑

n=Lu

(

λ

2

)
n
2

×
∫ ∞

0

γLm−n
2 −1 e−(1+m

γ̄
)γ In

(

√

2λγ
)

dγ.

(6b)

Evaluating (6b) by [25, eq. 6.643-2] and using the relation
between Whittaker function and Hypergeometric function
1F1(.; .; ) [25, eq. 9.220-2],Pm,SL,Nak can be expressed as
in (7) whereβ = γ̄

γ̄+m .

Pm,SL,Nak = (1− β)
Lm

e−
λ
2

∞
∑

n=Lu

1

n!

(

λ

2

)n

(7)

× 1F1

(

Lm;n+ 1;
λβ

2

)

The1F1(.; .; .) is a special case of generalized Hypergeometric
function given in (8)

vFw(a1, a2, ..., av;b1, b2, ..., bw;x)

=

∞
∑

n=0

(a1)n(a2)n...(av)n
(b1)n(b2)n...(bw)n

xn

n!
, (8)

where(.)n denotes the Pochhammer symbol;(a)n = Γ(a+n)
Γ(a)

[28]. By expanding1F1(.; .; .) in (7) using (8) and constructing
the Hypergeometric function of two variables of the form given
in (9) [28, pp. 25],Pm,SL,Nak is derived as in (10).

Φ2(µ, ν; ρ;x, y) =

∞
∑

m=0

∞
∑

n=0

(µ)m(ν)n
(ρ)m+n

xm

m!

yn

n!

| x |< ∞, | y |< ∞ (9)

Pm,SL,Nak =(1− β)
Lm

e−
λ
2

[

Φ2

(

Lm, 1; 1;
λβ

2
,
λ

2

)

(10)

−
Lu−1
∑

n=0

1

n!

(

λ

2

)
n
2

1F1

(

Lm;n+ 1;
λβ

2

)

]

The convergence of the infinite series in (7) is evident from
(10). Although Φ2(., .; .; ., .) can easily be implemented in
software packages, the series truncation is necessary. Theerror
in truncating (7) byN terms|ESL| can be upper bounded as

|ESL| < (1− β)
Lm

1F1

(

Lm;N + 1;
λβ

2

)

(

1− Γ(N + 1, λ
2 )

N !

)

. (11)

This bound is derived by using the monotonically decreasing
property of1F1

(

Lm;n+ 1; λβ
2

)

over n for given values of

L,m, λ, γ̄ and [25, eq. 8.352-4]. The|ESL| in (11) is used

to find the minimum number of terms required in calculating
Pm,SL,Nak to a given accuracy figure (Table I).

The special case ofL = 1 (i.e., no-diversity reception) (10)
simplifies to [19, eq. (8)]. It should be noted that, the PDF of
the SNR for maximal ratio (MR) combinerγMR is also the
same asG(Lm, γ̄/m). However, the decision statistic under
H1 with MR combining ofL i.i.d. branches isχ2

2u(2γMR),
i.e., q = u [19]. For this reason, it is easily seen that the SL
combiner miss-detection probability is neither a special case
nor deducible from that of the MR combining (cf. [19, eq.
(25)]).

At large SNR γ̄ values,Pm,SL,Nak can be approximated
using (10) as

Pm,SL,Nak ≈
{

mLme−
λ
2

[

Φ2

(

Lm, 1; 1;
λ

2
,
λ

2

)

(12)

−
Lu−1
∑

n=0

1

n!

(

λ

2

)
n
2

1F1

(

Lm;n+ 1;
λ

2

)

]}

γ̄−Lm

= gSL,Nak(m,u, λ, L) γ̄−Lm (13)

wheregSL,Nak(m,u, λ, L) is the term inside the curly brack-
ets which depends on parametersm,u, λ and L. Hence
Pm,SL,Nak approaches0 in the order ofLm on average SNR
γ̄. Thus,Lm can be defined as thediversity orderor detection
diversity gain. Thus, SL combining inL path Nakagami-m
fading channel has a diversity order ofLm and the Nakagami-
m fading (with no-diversity combining) has a diversity order
of m.

B. Nakagami-m Fading - MGF based method

The application of MGF based method to evaluate miss-
detection probability under Nakagami-m fading gives an alter-
native analytical expression forPm,SL,Nak and can be used
to verify the result (10) derived from the PDF. Moreover, we
show that, under certain special cases, the MGF based result
can be used to evaluate the AUC as well.

The MGF of theG(Lm, γ̄/m) is

MγSL,Nak
(s) =

(

1 +
γ̄s

m

)−Lm

, m ≥ 1

2
, Lm ∈ Z. (14)

Using (4),Pm,SL,Nak can be written as

Pm,SL,Nak = 1− (1− β)
Lm

e−
λ
2 × 1

2πj

∮

∆

f(z)dz (15)

wheref(z) = e
λ
2

z

(z−β)Lm zL(u−m) (1−z)
. The contour integral in

(15) is evaluated for integer values ofLm. We assume that
the function f(z) has a pole of orderk ≥ 1 at z = z0.
We count the residues corresponding to the poles inside the
contour|z0| < 1. The residue of the poles atz = z0 of order
k ≥ 1 is given by

Res(f ; z0, k) =
1

(k − 1)!

dk−1

dzk−1
[f(z)(z − z0)

k]
∣

∣

∣

z=z0
. (16)
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Whenu > m, integrand in (15) hasLm poles atβ andL(u−
m) poles at0. Thus, from residue calculus,Pm,SL,Nak can
be calculated as

Pm,SL,Nak = 1− (1− β)
Lm

e−
λ
2 (17)

[Res(f ;β, Lm) + Res(f ; 0, L(u−m))].

When u ≤ m, poles at0 disappear. ThusPm,SL,Nak is
obtained by evaluating residues atβ only.

Note thatf(z) and consequently the residues in (17) consist
of exponential and rational functions only. Therefore, unlike
(10) which involves special functions such as1F1(.; .; .), the
Pm,SL,Nak in (17) yields a simpler expression of rationals
and exponentials only. As an illustrative example, detector
performance under Rayleigh fading channel withu = 1 can
be shown to have simple expression, i.e., whenL = 1,m =
1, u = 1, the average probability of a miss (Pm,Ray,1) can be
written as

Pm,Ray,1 = 1− e−
λ

2(1+γ̄) = 1− (P f,1)
1

1+γ̄ , (18)

whereP f,1 = e−
λ
2 denotes theP f whenu = 1 (please see

(5)). As u = 1 corresponds to the benchmark performance
of the detector [17], [19], the relationship given in (18)
fully characterizes the optimum detector performance under
Rayleigh fading.

The AUC represents the probability that the detector decides
on the correct decision more likely than the incorrect decision
[16]. The AUC provides a single figure of merit of detection
capability which allows us to compare the performances of
different detection mechanisms. However, if the ROC curves
of two detectors cross each other, the AUC values themselves
might fail to provide a fair comparison. In such cases, the ROC
analysis or alternatively the partial-AUC (i.e. the area within
two false alarm thresholds0 ≤ P 1

f ≤ P 2
f ≤ 1) is necessary.

We refer the reader to [16] and references therein for more
details. As the partial-AUC measure appears intractable in
closed-form analysis, in [16], numerical techniques are pro-
posed. To elaborate the evaluation of partial-AUC in closed-
form, in the following, we utilize the MGF method result
obtained above.

Mathematically, the partial-AUC for the two false alarm
thresholds0 ≤ P 1

f ≤ P 2
f ≤ 1 is defined asA(γ̄) =

∫ P 2
f

P 1
f

P d(γ̄) dP f whereP d(γ̄) = 1 − Pm and the total-AUC

is given by the limitsP 1
f = 0 andP 2

f = 1. Thus, from (18),
the partial-AUC over Rayleigh fadingARay can be easily be
obtained as

ARay =
1

ξ

[

(

P 2
f

)ξ −
(

P 1
f

)ξ
]

(19)

whereξ = 2+γ̄
1+γ̄ . Hence, the total-AUC is1+γ̄

2+γ̄ .
C. Rician Fading - MGF based method

For the performance with the SL combiner in Rician fading
channels, we find that the PDF based method intractable.
Therefore, we try the MGF method. The MGF of the output
SNR of a SL combinedL i.i.d. Rician branches is given by

MγSL,Ric
(s) =

[

1 +K

(1 +K + sγ̄)

]L

exp

[

− KL γ̄ s

(1 +K + sγ̄)

]

,

(20)

whereK is the Rice factor. Using (4) withk = Lu, the average
probability of a miss over SL combining under Rician fading
Pm,SL,Ric can be derived as

Pm,SL,Ric = 1−
[

θr(1 +K)

γ̄

]L

e−(
λ
2 +KLθr) (21)

× 1

2πj

∮

∆

e(
ar

z−θr
+λ

2 z)

(z − θr)L (1− z) zL(u−1)
dz

whereθr = γ̄
(γ̄+K+1) and ar = KLθr(1 − θr). It is easy to

verify that the special case of Rayleigh fading, i.e., (21) with
K = 0 reduces to (15) withm = 1. Applying Laurent series

expansion to the term
exp( ar

z−θr
)

(z−θr)L
whenK 6= 0 and integrating

terms by Residue theorem,Pm,SL,Ric when u > 1 can be
derived as

Pm,SL,Ric = 1−
[

θr(1 +K)

γ̄

]L

e−(
λ
2 +KLθr) (22)

∞
∑

n=0

anr
n!

[

1

(L(u− 1)− 1)!

dL(u−1)−1

dzL(u−1)−1

(

e
λ
2 z

(z − θr)n+L(1− z)

)

+
1

(n+ L− 1)!

dn+L−1

dzn+L−1

(

e
λ
2 z

zL(u−1)(1− z)

)]

.

Whenu = 1, the poles at0 disappear and therefore,Pm,SL,Ric

can be obtained by setting the value of the first derivative in
(22) to0. The special case of Rician fading (without diversity
combining) can be obtained by settingL = 1 in (22). For
givenL, u values,Pm,SL,Ric in (22) is a function of rationals
and exponentials only. It appears difficult to derive the error
result in truncating the infinite series in (22). Using the derived
result in (22), the diversity order of the Rician fading channel
with SL combining will be discussed in Section VI.

IV. D ETECTION WITH SQUARE-LAW SELECTION (SLS)
COMBINING

The SLS diversity combiner picks up the branch with
the highest value in decision variable, i.e.,YSLS =
maximum(Y1, Y2, ..., YL), whereL is the number of branches
in the combiner. Note this combiner does not require CSI and
hence is a potential solution for application scenarios discussed
in Section III.

When the branch statistics are independent, the false-alarm
probability for the SLS combinerP f,SLS can be expressed as

P f,SLS = Pr {YSLS > λ|H0} (23)

= 1−
L
∏

j=1

Pr {Yj < λ|H0}

= 1−
(

1− P f

)L

whereP f is given in (5) withq = 1.
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A. Nakagami-m and Rician fading - PDF and MGF based
methods

The average miss probability of SLS combiningPm,SLS

over independent fading branches is derived as

Pm,SLS =

∫ γ1=∞

γ1=0

...

∫ γL=∞

γL=0

L
∏

i=1

{

1−Qu

(

√

2γi,
√
λ
)}

fγi
(γi) dγi

=

L
∏

i=1

{

1−
∫ ∞

0

Qu

(

√

2γi,
√
λ
)

fγi
(γi) dγi

}

=

L
∏

i=1

Pm,i,

whereγi is the instantaneous SNR in theith indexed branch,
fγi

(γi) is the PDF of γi and Pm,i denotes the average
probability of a miss of theith independent path andi ∈
{1, 2, . . . , L}. Hence, the miss probability with SLS combin-
ing over Nakagami-m fading (Pm,SLS,Nak) and Rician fading
(Pm,SLS,Ric) can be obtained by (24) after substituting the
miss probability over the respective fading channels. For this
purpose, MGF and PDF based methods’ results derived in (10),
(17) (for Nakagami-m fading) and in (22) (for Rician fading)
with the substitutionL = 1 are used. Also note that (24) is
valid for non-identical branch statistics.

At large SNR γ̄ values, the average probability of a miss
over SLS combining in Nakagami-m fading (Pm,SLS,Nak) can
be approximated by

Pm,SLS,Nak ≈
{[

mme−
λ
2

(

Φ2

(

m, 1; 1;
λ

2
,
λ

2

)

(24)

−
u−1
∑

n=0

1

n!

(

λ

2

)
n
2

1F1

(

m;n+ 1;
λ

2

)

)

]L}

γ̄−Lm

= gSLS,Nak(m,u, λ, L) γ̄−Lm (25)

where gSLS,Nak(m,u, λ, L) is the term inside the curly-
brackets. Thus,L branch SLS combiner has a diversity order
of Lm over Nakagami-m channel. The diversity order of the
Rician fading channel with SLS combining will be discussed
in Section VI.

V. DETECTION WITH SWITCH-AND-STAY (SS)
COMBINING

The dual branch SS combiner, switches to the other branch,
if the SNR of the currently connected branch falls below
a predetermined threshold value (γT ) and stays with that
branch, irrespective of whether the branch SNR is below or
aboveγT . This implementation is simpler than the dual branch
selection combining considered in [14], [19]. Therefore, in the
following, we investigate the diversity benefit offered by SS
combining over Nakagami-m fading.

A. Nakagami-m Fading - PDF based method

The PDF of output SNR of the SS combining scheme
(γSS) is given in [27, eq. 9.276], and thus the average miss

TABLE I
M INIMUM NUMBER OF TERMS REQUIRED TO EVALUATE THE INFINITE

SERIES EXPRESSIONS TO A FIVE FIGURE ACCURACY(Ñ )

u 1 5 1 1 1 1

P f,SL 0.01 0.01 0.01 0.01 0.0001 0.01

| ESL | SNR(dB) 10 10 20 10 10 10

L 2 2 2 2 2 4

m 1 1 1 4 1 1

Ñ 17 35 12 13 25 18

u 1 5 1 1 1 1

P f,SS 0.01 0.01 0.01 0.01 0.0001 0.01
∣

∣ESS,I1

∣

∣ SNR(dB) 10 10 20 10 10 10

m 1 1 1 4 1 1

γT (dB) 5 5 5 5 5 10

Ñ 14 25 10 10 21 14

SNR(dB) 5 5 10 10 15 15

| ESS,I2 | m 1 4 1 4 1 4

Ñ 41 21 120 54 369 155

probability is Pm,SS = 1 − (I1 + I2) where I1 and I2 are
defined by the integral forms as in (26a) and (26b) respectively.

I1 =

(

1−
Γ(m, mγT

γ̄ )

Γ(m)

)

(

m

γ̄

)m
1

Γ(m)
(26a)

∫ ∞

0

γm−1 e−
mγ
γ̄ Qu(

√

2γ,
√
λ) dγ

I2 =

(

m

γ̄

)m
1

Γ(m)

∫ ∞

γT

γm−1 e−
mγ
γ̄ Qu(

√

2γ,
√
λ) dγ

(26b)

By means ofQu(. , .) [27, eq. 4.63], [25, eq. 9.220-2] and [25,
eq. 6.643-2] and constructing theΦ2(., .; .; ., .) given in (9),I1
can be calculated for integerm ≥ 1 as

I1 =

(

1−
Γ(m, mγT

γ̄ )

Γ(m)

){

1− e−
λ
2 (1− β)

m

[

Φ2

(

m, 1; 1;
λβ

2
,
λ

2

)

−
u−1
∑

n=0

(

λ

2

)n 1F1

(

m;n+ 1; λβ
2

)

Γ(n+ 1)

]}

,

where β = γ̄
γ̄+m . Similar to (11), the error result in trun-

cation of I1 by N terms |ESS,I1 | can be upper bounded
as |ESS,I1 | < {1 − [Γ(m, mγT

γ̄ )/Γ(m)]} |ESL,L=1| where
|ESL,L=1| is the |ESL| when L = 1 given by (11). Using
the alternative representation ofQu(., .) in [27, eq. 4.74], [25,
eq. 8.352-2] and [25, eq. 3.351-2], for integerm ≥ 1, I2 is
evaluated as

I2 =
(1− β)

m

Γ(m)

∞
∑

n=0

βn

n! (n+ u− 1)!

× Γ

(

n+m,
γT
β

)

Γ

(

n+ u,
λ

2

)

.



6

The error result in truncating theI2 by N terms |ESS,I2 | is
upper bounded as

|ESS,I2 | ≤ (1− β)m

[

1F0 (m; ;β)−
N
∑

n=0

(m)n β
n

n!

]

. (27)

The bound |ESS,I2 | is derived by using the inequality
Γ(n, x) ≤ Γ(n) and constructing the Hypergeometric function
of the form 1F0(.; .; .) which is a special case ofpFq(.; .; .)
with p = 1, q = 0 given in (8). At a given instance, the SS
detector operates on a single branch. Thus, the average false
alarm probability is the same as (5), i.e.,P f,SS = Γ(u,λ/2)

Γ(u) .
At high SNR (i.e. lim γ̄ → ∞), we have

limγ̄→∞ Γ(m, mγT

γ̄ ) = Γ(m) and thus limγ̄→∞ I1 = 0.
Furthermore, from (6a) and (26b), we note that
I2 < 1 − Pm,Nak where Pm,Nak is the probability of
missed-detection over Nakagami-m channel without diversity
reception, i.e., (6) withL = 1. Hence,

Pm,SS ≈ 1− I2 > Pm,Nak (28)

Therefore, at high SNR, we observe that the SS combiner has a
diversity order ofm over the Nakagami-m channel. However,
analyzing its performance over Rician fading channels appears
intractable.

VI. N UMERICAL AND SIMULATION RESULTS

Derived analytical expressions (average probability of a
miss, average probability of a false alarm and error bounds)
can easily and directly be evaluated in software packages such
as Mathematica. The minimum number of terms (Ñ ) required
to calculate the error bounds|ESL|, |ESS,I1 | and |ESS,I2 | to
an accuracy of10−5 is given in Table I. From Table I, one
can observe that reasonably low number of terms evaluates the
average miss probability ofPm to a high accuracy. The results
of the MGF and PDF methods are numerically equivalent.
Monte-Carlo (MC) simulations are provided to verify the
theoretical derivations.

How do the low-complexity combining schemes exploit the
diversity in energy detection? What are the performances of
the SL and SLS combining schemes which have the same
diversity order? These questions are answered in the following
discussion. Fig. 1 plots the average miss-detection probability
(Pm) over γ̄ for a fixed average false-alarm probability
P f = 0.1 andu = 2. The detector without diversity combining
requires an average SNR of11.02dB to reach the target
sensing performance specified in cognitive radio standard
IEEE 802.22, i.e.,Pm = P f = 0.1 [3]. The SL, SLS and SS
combining schemes reach the target performance, respectively,
at SNRs7.57dB, 7.97dB and9.40dB. Therefore, the SL, SLS
and SS combining schemes respectively show3.45dB, 3.05dB
and 1.62dB performance gains compared to the no-diversity
fading channel. More importantly, non-coherent SL and SLS
demonstrate more than3dB gains.

Our analysis in Sections III, IV and V reveals that the
diversity orders of ED over Nakagami-m fading channel for
SL, SLS and SS combining schemes are respectivelyLm, Lm
andm (see (12), (24) and (28)). To verify this analysis, Fig. 2
plots thePm over γ̄ for P f = 0.1 and different values ofu.
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Fig. 1. Average miss probability over average SNR (Pm vs. γ̄) in Nakagami-
m fading (P f = 0.1, L = 2,m = 2, u = 2, γT = 5 dB)

One can observe that SL and SLS combining schemes achieve
approximately diversity order of4 for L = 2 and m = 2
while the SS withL = 2 and no-combining schemes have
approximately diversity order of2, regardless of the valueu.
These results clearly agree with our analytical findings. More-
over, observe that for given set of parameters SL combining
achieves the highest performance. Note that lower value ofu
gives better performance [17], [19] and for both SL and SLS
combining schemes, the SNR gap betweenu = 1 andu = 5
is approximately remain constant at around2.3dB. On the
other hand, for SS combining withL = 2 and no-combining
schemes show3.1dB and 2.3dB SNR gap betweenu = 1
andu = 5 curves. Furthermore, from our analytical results in
Sections III and IV for Rician fading channels, one can study
the diversity benefits without performing time-consuming MC
simulations. Fig. 3 plotsPm over γ̄ for P f = 0.1 and different
values ofu and K. The results are similar to that observed
for Nakagami-m fading and SL combining achieves better
performance. As evidenced by Figs. 1, 2 and 3, clearly the
SL combining exploits the multipath diversity in the absence
of CSI, achieving remarkable performance improvements.

To illustrate the diversity gain achieved by SL combining
over different number of faded energy measurements, i.e.,
varyingL, the ROC curves over the Nakagami-m and Rician
fading channels are plotted in Figs. 4 and 5 respectively.
Within the P f interval (0.01, 0.1), the correspondingPm

values are, respectively, around10−3 and 10−4 in Figs. 4
and 5 forL = 4. In a practical setup where multiple faded
energy measurements are available for combining (through
multi-path fading or multiple user measurements reported to
a fusion center), such significant gains are achievable through
SL combining in the absence of CSI at the combiner.

VII. C ONCLUSION

We comprehensively characterize the performance of energy
detection in Nakagami-m and Rician fading channels for
square-law (SL), square-law selection (SLS) and switch-and-
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Fig. 2. Average probability of a miss over average SNR (Pm vs. γ̄) in
Nakagami-m fading (P f = 0.1, L = 2,m = 2, u = {1, 5}, γT = 5 dB)
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Fig. 3. Average probability of a miss over average SNR (Pm vs. γ̄) in Rician
fading (P f = 0.1, L = 2,K = {1, 5}, u = {1, 5})

stay (SS) combining schemes. In particular, their exact miss
and false-alarm probabilities are derived. No diversity recep-
tion is a special case of the derived results. The derivations
are based on the moment generating function (MGF) and
probability density function (PDF). Using the PDF method,
the non-coherent SL and SLS combining schemes are shown
to achieve a diversity order ofLm in Nakagami-m fading
channels, while the SS combiner is shown to gain a diversity
order ofm. The MGF based method can solve several cases
analytically intractable from the PDF based method including
the Rician fading case. The analysis helps to understand
and quantify the energy detector performance improvements
achievable using the low-complexity diversity schemes.
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