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Abstract—Ambient backscatter, a new communication technol-
ogy, can permit battery-free devices to communicate with other
devices through reflecting the ambient radio frequency signals.
One challenge for ambient backscatter communication system
is to recover the backscattered information bits hidden in the
received signals. Existing solutions are mainly based on energy
detector and thus provide poor performance at low signal noise
ratio (SNR). To solve this problem, a detection algorithm based
on statistical covariances is suggested in this paper. Specifically,
we calculate the distributions of two covariance-based statistics,
design the detection rule, and then derive the closed-form
expressions for detection probability and bit error rate (BER).
It is found that our proposed algorithm outperforms the energy
detector at low SNR regions. Finally, the simulation results are
provided to corroborate our theoretical studies.

I. INTRODUCTION

Radio frequency identification (RFID), one key technology
for Internet of Things (IoTs), attracts increasing interest from
both academic world and industry circles [1]. One typical
RFID system consists of a reader and a tag [2]. The reader first
generates an electromagnetic wave, and the tag receives and
backscatters the wave with modulated information bits to the
reader. Clearly, the communication pattern for RFID system
is backscattering instead of radiating the signals.

The radio backscatter communication could be traced back
to World War II [2], and the first paper about backscatter
communication was presented by Harry Stockman in 1948
[3]. From then on, the rapid progress in integrated circuits and
the dropping cost of tags boost the fast development of RFID
technology. In academia, extensive studies about backscatter
communication have focused on channel fading and modelling
[4], coding methods [5], link budgets [6] and multi-antenna
techniques [7].

One well-known limitation for RFID applications is the
communication range. The backscattered wave will suffer
from a round-trip path loss, and therefore cannot be deployed
in long-distance applications [4], [6], [7]. Meanwhile, it is
energy-consuming for RFID systems, due to the energy com-
pensation for the round-trip path loss at the reader.

To avoid this shortcoming, ambient backscatter, a new type
of backscatter communication, was introduced by researchers
at University of Washington in 2013 [8]. Different from
traditional RFID, the tags in ambient backscatter communi-

Fig. 1. The system model consisting of one reader and one tag

cation systems are battery-free devices powered by ambient
radio frequency (RF) signals, e.g., cellular signals, wireless
fidelity (Wi-Fi) and television (TV) radio. The battery-free
tags are able to transmit 1 and 0 bit by switching the antenna
impedance to reflect the ambient signals or not. Next, the read-
er will utilize some algorithms to detect the two transmission
statuses of the tag.

Existing detection algorithms for ambient backscatter sys-
tem are mainly based on energy detector [8], [9], [10], which
generally works well at high SNR, and produces high detection
error at low SNR. Both the practical hardware implementation
in [8] and the theoretical analysis in [10] further verified this
for ambient backscatter systems.

In this paper, we propose a promising detection algorithm
based on statistical covariances for ambient backscatter com-
munication systems, and compute the probability of detection
and bit error rate (BER). We also compare its detection
performance with energy detector and show that the proposed
algorithm outperforms the energy detector at low SNR.

The rest of the paper is organized as follows: Section II
builds up the mathematical model for ambient backscatter sys-
tems and briefly illustrates energy-based detection algorithm.
Section III introduces the new detector based on statistical
covariances, and Section IV conducts performance analysis
for the proposed detector. In Section V, the simulation results
are presented to evaluate performances of those above two
algorithms. Finally, the conclusions are provided in Section
VI.



II. SYSTEM MODEL

As shown in Fig. 1, our ambient communication system
consists of one RF source, one backscatter tag and one reader.
The reader and the backscatter tag are equipped with single
antenna. We denote the channel between the RF source and
the reader as h, the channel between the RF source and the
backscatter tag as g, and the channel between the backscatter
tag and the reader as f . In this paper, we consider h, g and f
are constants in one time slot. Assume the transmission bits
transmitted from the tag to the reader in the nth time slot as
B(n).

The tag is able to receive the RF signals from the RF
source, and at the same time communicate with the reader
by backscattering the signal or not. When the backscatter
tag reflects the signal to the reader, B(n) is equal to 1; and
when there is no reflection, B(n) is set as 0. Thus, the signal
received by the reader can be written as

y(n) =

{
hs(n) + w(n), B(n) = 0,

hs(n) + ηfgs(n) + w(n), B(n) = 1,
(1)

where w(n) is the zero-mean additive white Gaussian noise
(AWGN) at the reader with the variance σ2

w, and η is the
amplitude attenuation when the signal transmits inside the
tag. Note that the date rate of B(n) should be much smaller
than that of s(n), i.e., B(n) remains unchanged during the
consecutive samples s(n) in one time slot.

The main duty of the reader is to recover B(n) from the
received signal y(n). To address this issue, the existing energy
detector will first calculate the decision statistic as

Y =

{
1
Ns

∑Ns

n=1 |hs(n) + w(n)|2, B(n) = 0,
1
Ns

∑Ns

n=1 |(h+ ηfg)s(n) + w(n)|2, B(n) = 1.
(2)

Assume that s(n) is a Gaussian random process with
variance σ2

s . According to central limit theorem, the statistic
Y approximates as the Gaussian random variable:

B(n) = 0 : Y ∼ N(σ2
w + h2σ2

s ,
2(σ2

w + h2σ2
s)

2

Ns
), (3)

B(n) = 1 :

Y ∼ N(σ2
w + (h+ ηfg)2σ2

s ,
2(σ2

w + (h+ ηfg)2σ2
s)

2

Ns
). (4)

The detection probability P e
d and the false alarm probability

P e
fa could be found as

P e
d = P (T > γe|H1) = Q

γe − σ2
w − (h+ ηfg)2σ2

s√
2(σ2

w+(h+ηfg)2σ2
s)

2

Ns

 ,

(5)

P e
fa = P (T > γe|H0) = Q

γe − σ2
w − h2σ2

s√
2(σ2

w+h2σ2
s)

2

Ns

 . (6)

where Q(x) = 1√
2π

∫ +∞
x

e−
u2

2 du.

The threshold γe is set to meet the false alarm probability
P e
fa request as

γe =

√
2(σ2

w + h2σ2
s)

2

Ns
Q−1(P e

fa) + σ2
w + h2σ2

s . (7)

Assume B(n) = 1 and B(n) = 0 are equally probable, the
BER could be expressed as

P e
e =

1

2
P e
fa +

1

2
(1− P e

d ). (8)

Since energy detector performs poorly at low SNR [11],
we introduce a new promising algorithm based on statistical
property to overcome this shortcoming in the next section.

III. STATISTICAL COVARIANCE BASED DETECTION
ALGORITHM

In this section, we first exploit the statistical covariances
property of the received signal y(n), and next obtain a new
way to recover the reflected information B(n), and finally
testify its feasibility.

A. Processes of the detection algorithm

We could perform the algorithm by three steps. The first
step is to calculate the autocorrelations of the received signal
as

λ(l) =
1

Ns

Ns−1∑
m=0

y(m)y(m− l), l = 0, 1, ..., L− 1, (9)

where Ns is the number of available samples, and L is the
number of consecutive samples.

Next step is to construct the approximated matrix R̂y of the
statistical covariances matrix Ry as

R̂y =


λ(0) λ(1) . . . λ(L− 1)
λ(1) λ(0) . . . λ(L− 2)

...
...

. . .
...

λ(L− 1) λ(L− 2) . . . λ(0)

 . (10)

The third step is to derive the following two statistics as

C1(Ns) =
1

L

L∑
n=1

L∑
m=1

|rnm|, B(n) = 1, (11)

C0(Ns) =
1

L

L∑
n=1

L∑
m=1

|r′nm|, B(n) = 0, (12)

where rnm is the element at the nth row and the mth column
in the covariances matrix R̂y when B(n) = 1, and r′nm refers
to the element with the same pattern in R̂

′
y when B(n) = 0.

We assume

C(Ns) =

{
C0(Ns), B(n) = 0,
C1(Ns), B(n) = 1.

(13)

Since the ratio C(Ns)
C0(Ns)

corresponds to different results when

B(n) is different, we could employ the ratio C(Ns)
C0(Ns)

to detect
the presence of the reflected signal. The next section will prove
its feasibility for ambient backscatter systems.



B. The feasibility of the proposed algorithm

For convenience of expression, we rewrite the sampled
signals received by the reader as y(n) = r(n) +w(n), where
r(n) is defined as

r(n) =

{
hs(n), B(n) = 0,

(h+ ηfg)s(n), B(n) = 1.
(14)

When the number of the available signal samples is large
enough, Zeng and Liang have concluded the expectation of
above statistics as [12]

lim
Ns→∞

E(C(Ns)) =
2σ2

r

L

L−1∑
l=1

(L− l)|αl|+ σ2
r + σ2

w, (15)

where σ2
r denotes the power of signal r(n), and αl is the

normalized correlation among the Ns signal samples, which
is expressed as

αl =
E[r(n)r(n− l)]

σ2
r

. (16)

The expression (15) could be simplified as

lim
Ns→∞

E(C(Ns)) =
2

NsL

L−1∑
l=1

(L− l)|
Ns∑
n=1

r(n)r(n− l)|

+ σ2
r + σ2

w. (17)

Compared with the scenario (Scenario 0) where the
backscatter tag does not reflect the signal, in the counterpart
scenario (Scenario 1), the reader could access one more path
signal from the tag. Thus, we have

σ2
r1 > σ2

r0, (18)

where σ2
r1, σ2

r0 represent the power of received signal r(n)
for B(n) = 1 and B(n) = 0, respectively. And σ2

w remains
equal in two different scenarios, so the problem is to prove
whether the first term of the expression (17) in scenario 1 is
greater than the one in scenario 0 or not. When B(n) = 1,
we have

|
Ns∑
n=1

r(n)r(n− l)| = (h+ ηfg)2|
Ns∑
n=1

s(n)s(n− l)|. (19)

When B(n) = 0, we have

|
Ns∑
n=1

r(n)r(n− l)| = h2|
Ns∑
n=1

s(n)s(n− l)|. (20)

Since the signal sample s(n) is definitely correlated for the
following three reasons: (1) the oversampled signal, (2) the
propagation channel, and (3) the originally correlated signal
[12], so |

∑Ns

n=1 s(n)s(n− l)| is not equal to zero. When the
expression (19) divides the expression (20), we have the ration
(1 + ηfg

h )2. In this case, if ηfg
h > 0 or ηfg

h < −2, we have

the value of |
∑Ns

n=1 r(n)r(n− l)| in scenario 1 is bigger than
the one in scenario 0. Then, we are able to conclude that

2

NsL

L−1∑
l=1

(L− l)|
Ns∑
n=1

r1(n)r1(n− l)|

>
2

NsL

L−1∑
l=1

(L− l)|
Ns∑
n=1

r0(n)r0(n− l)|. (21)

From expressions (17), (18), and (21), when the available
number of the signal samples is large enough and ηfg

h > 0

or ηfg
h < −2, we have E(C1(Ns)) > E(C0(Ns)). Since

the authors in [12] conclude E(C1(Ns)) ≈ C1(Ns) and
E(C0(Ns)) ≈ C0(Ns), we can write our detection algorithm
as, if there is no reflected signal, C(Ns)

C0(Ns)
≈ E(C0(Ns))

E(C0(Ns))
= 1; and

if the signal is present, C(Ns)
C0(Ns)

≈ E(C1(Ns))
E(C0(Ns))

> 1. Therefore,

the ratio C(Ns)
C0(Ns)

could be exploited to detect the presence of
the reflected signal and the proposed algorithm fits ambient
backscatter systems.

IV. PERFORMANCE ANALYSIS

In this section, we first derive the distributions of the statis-
tics C1(Ns) and C0(Ns), and then calculate the expressions
of the detection probability and BER.

A. Statistics computation

The authors in [12] conclude that the distribution of the
statistic C(Ns) closes to the Gaussian distribution when the
signal appears. The expectation of C(Ns) is given in (17). The
variance, another element to decide the Gaussian distribution,
is derived by the following computations. Firstly, we could
obtain the expectation of the |λ(l)|2 as

E(|λ(l)|2) = 1√
2π∆l

∫ ∞

−∞
|u|2e−

(u−θl)
2

2∆l du, (22)

where θl and ∆l denote the expectation E(λ(l)) and the
variance var(λ(l)) of λ(l), respectively [12]. We employ the
simplified raw absolute moments of Gaussian variable from
[13] and then have

E(|λ(l)|2) = ∆l2
Γ( 32 )√

π
1F1(−1;

1

2
;−1

2
(
θ2l
∆l

)), (23)

where Γ(x) =
∫∞
0

e−ttx−1dt is a Gamma function, and 1F1 is
the confluent hypergeometric function [14], which is defined
as

1F1(a; b; z) =

∞∑
n=0

a(n)zn

b(n)n!
, (24)

where:

a(0) = 1, (25)

a(n) = a(a+ 1)(a+ 2)...(a+ n− 1). (26)



We can obtain E(C1(Ns)) as

E(C1(Ns)) = E

[
1

L

L∑
n=1

L∑
m=1

|rnm|

]

= E[λ(0) +
2

L

L−1∑
l=1

(L− l)|λ(l)|]

= E(λ(0)) +
2

L

L−1∑
l=1

(L− l)E(|λ(l)|). (27)

Similarly, E(C1(Ns)
2) can be expressed as

E(C1(Ns)
2) = E[λ(0)2 +

4

L
λ(0)

L−1∑
l=1

(L− l)|λ(l)|

+
4

L2
(

L−1∑
l=1

(L− l)|λ(l)|)2]

= E[λ(0)2] +
4

L
E(λ(0))

L−1∑
l=1

(L− l)E(|λ(l)|)

+
4

L2

L−1∑
l1=1

L−1∑
l2=1

(L− l1)(L− l2)E(|λ(l)|)2

+
4

L2

L−l∑
l=1

(L− l)2E(|λ(l)|2) (l1 ̸= l2). (28)

Based on equations (27) and (28), we can obtain the
variance of C1(Ns) as

var(C1(Ns)) = E(C1(Ns)
2)− E(C1(Ns))

2

=
4

L2

L−1∑
l=1

(L− l)2(E(|λ(l)|2)− E(|λ(l)|)2) + var(λ(0)).

(29)

Similarly, we could also have E(C0(Ns)) and var(C0(Ns)).

B. Detection probability, BER and associated threshold

By substituting (23) and computation results from [12],
equations (27) and (29) could be rewritten as

E(C1(Ns)) = σ2
r + σ2

w +
2σ2

r

L

L−1∑
l=1

(L− l)|αl|, (30)

var(C1(Ns)) =
2σ2

w

Ns
(2σ2

r + σ2
w)

+
4

L2

L−1∑
l=1

(L− l)2(∆l2
Γ( 32 )√

π
1F1(−1;

1

2
;−1

2
(
θ2l
∆l

))

− (

√
2

πNs
(σ2

r + σ2
w)(2− e−

τ2
l
2 ) + |θl|(1− 2Q(τl)))

2),

(31)

Similarly, we can have the expressions of the expectation and
variance of C0(Ns), i.e., E(C0(Ns)) and var(C0(Ns)). Thus,

the false alarm probability P c
fa is obtained as

P c
fa = P (C(Ns) > γcC0(Ns)|B(n) = 0)

= P (C0(Ns) <
1

γc
C(Ns)|B(n) = 0)

≈ P (C0(Ns) <
1

γc
E(C0(Ns))|B(n) = 0)

= P

(
C0(Ns)− E(C0(Ns))√

var(C0(Ns))
<

( 1
γc − 1)E(C0(Ns))√

var(C0(Ns))

)

≈ 1−Q

{
( 1
γc − 1)E(C0(Ns))√

var(C0(Ns))

}
. (32)

Therefore, for a given P c
fa, we can obtain the threshold as

γc =
E(C0(Ns))

E(C0(Ns)) +Q−1(1− P c
fa)
√

var(C0(Ns))
. (33)

Accordingly, the probability of detection P c
d can be ex-

pressed as

P c
d = P (C(Ns) > γcC0(Ns)|B(n) = 1)

= P (C0(Ns) <
1

γc
C(Ns)|B(n) = 1)

≈ P (C0(Ns) <
1

γc
E(C1(Ns))|B(n) = 1)

= P

(
C0(Ns)− E(C0(Ns))√

var(C0(Ns))

<

1
γcE(C1(Ns))− E(C0(Ns))√

var(C0(Ns))

)

≈ 1−Q

{
1
γcE(C1(Ns))− E(C0(Ns))√

var(C0(Ns))

}
. (34)

Finally, in the case of equally possible B(n) = 1 and
B(n) = 0, the expression of BER P c

e can be found as

P c
e =

1

2
P c
fa +

1

2
(1− P c

d ). (35)

V. SIMULATION RESULTS

In this section, we corroborate our proposed studies by
simulation results. We assume the number of available samples
Ns as 5000, and the smoothing factor L as 5. The channel
parameters are set as h = 0.5, g = 0.5, and f = 0.5, and
they meet the condition ηfg

h > 0. The amplitude attenuation η
inside the tag is 0.1. The noise variance is defined as σ2

w = 1.
And the autocorrelation values of the RF singles is set as
λ(1) = 0.1, λ(2) = 0.2, λ(3) = 0.3 and λ(4) = 0.4. Assume
s(n) is zero-mean Gaussian distribution with variance σ2

s , and
σ2
s = SNR × σ2

w.
Fig. 2 depicts the curves of BER versus the increasing SNR

from -4dB to 3dB. It can be seen that both BERs of two
detection algorithms decrease when SNR increases. Besides,
it is found that the proposed algorithm outperforms the energy
detector at low SNR regions.

Fig. 3 gives the curves of probability of detection versus
SNR for two different detections. It can be readily checked
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Fig. 2. BER curves for two detection algorithms: Pfa = 0.1.
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Fig. 3. Probability of detection curves for two detection algorithms when
SNR increases: Pfa = 0.1.
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Fig. 4. Probability of detection curves for two detection algorithms when
Ns increase: Pfa = 0.1, SNR=-2 dB.

that the probabilities of detection for two different detection
algorithms at higher SNR are bigger than those at lower
SNR. Also, the algorithm based on statistical covariances has
a better performance than the energy detection at low SNR
with the gain as large as 1.5 dB. When SNR is bigger than

one threshold, the probabilities of detection for the proposed
algorithm and the energy based detection algorithm are almost
the same.

In Fig. 4, the curves of detection probability for two
algorithms versus the number of the available samples Ns are
shown. It is illustrated that those two algorithms tend to have
the same performance when Ns is big enough. However, the
proposed algorithm outperforms the energy detection when Ns

is at low.

VI. CONCLUSION

In this paper, a new detection algorithm based on statistical
covariances for ambient backscatter communication system
was proposed. The corresponding performance of the new
detector, e.g., BER and detection probability, was analyzed.
It was shown the suggested algorithm could outperform the
energy detector in terms of the BER and the detection proba-
bility at low SNR with the gain as large as 1.5 dB.
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