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Abstract—Cellular heterogeneous networks (HetNets) can im-
prove capacity by offloading users from congested macro cells
to lightly-loaded small cells through biased association known
as cell range expansion (CRE). However, the offloaded (range-
expanded) users must be protected from macro interference
through time/frequency resource partitioning. In this paper, we
develop an analytical framework to evaluate the performance
gain due to CRE further supported by resource partitioning in
two-tier (macro-pico) networks with multi-channel downlinks, for
example, those based on orthogonal frequency division multiple
access (OFDMA). By exploiting the flexibility in subchannel
allocation offered by OFDMA, frequency-domain resource par-
titioning is proposed in which the macro tier is muted on a
fraction of total subchannels, which are allocated exclusively
to range-expanded pico users. The load perceived by a base-
station is a key factor in determining its interference contribution
over the network and is directly affected by user offloading and
resource partitioning. Thus, the analysis of such systems must
incorporate cell load. While previous studies mostly rely on full-
load assumption, in this paper, we properly characterize cell
load as the function of user density, association bias and resource
partitioning fraction. We then, evaluate the performance in terms
of average user data rate over the entire network, and also
investigate the optimal choice of association bias and resource
partitioning fraction.

Index Terms—Cell load, cell range expansion (CRE), het-
erogeneous networks (HetNet), orthogonal frequency domain
multiple access (OFDMA), Poisson point process (PPP), stochastic
geometry.

I. I NTRODUCTION

Co-channel deployment of non-conventional, low-power
base-stations (BSs) such as picos and femtos within the areas
covered by the existing macro cellular infrastructure is the
most viable solution to meet the unrelenting growth in data
traffic demand [1]–[3]. The resulting mixed network of macro
and low-power BSs is referred to as heterogeneous network
(HetNet) [1]–[3]. The increased capacity is achieved by of-
floading users from the congested macro tier to pico/femto tier
to give them access to a larger fraction of radio resources and
to reduce the macro cellular load so as to serve the remaining
macro users with improved rates. The user offloading however,
may be limited due to transmit power disparities of macro and
pico/femto BSs, thereby limiting the capacity gain.

The macro offloading can be increased by biased association
known as cell range expansion (CRE) [2], [3], in which a user
is offloaded to a small cell if the received power from it is
less than that from a macro cell by at most some amount
known as association bias. Such offloaded users are referred

to as range-expanded users. With this technique, the number
of offloaded users can be controlled with the bias value to
obtain a balanced distribution of user loads across the tiers.
However, the load balancing offered by CRE comes at the
cost of severe downlink co-channel interference to range-
expanded users from the macro tier, which must be mitigated
by interference coordination techniques.

The interference coordination in such scenarios can be im-
plemented by resource partitioning [2]–[4], in which a certain
fraction of time or frequency resources is provided exclusively
to small cells by muting the macro-tier transmissions in these
resources. The range-expanded users are then served by the
small cells in these resources, thus isolating them from the
macro tier interference. Simulation results [5]–[8] demonstrate
that CRE with resource partitioning highly enhances the
otherwise limited performance gains from the deployment of
small cells. These interdependent techniques however, must be
jointly tuned for optimal system performance. To this end, the
optimal association bias at the given resource partitioning frac-
tion was investigated for sum capacity and related performance
metrics in [9] through a semi-analytical approach. Analytical
approaches to determine the optimal combination of bias value
and resource partitioning fraction were presented in [10] and
[11] based on per user spectral efficiency and downlink rate
distribution, respectively. However, both assumed fully loaded
network, i.e., all the BSs are simultaneously active all thetime.

The full-load assumption is not applicable for small cells,
unless they are deployed in hot-spots and very large biasing
towards them is introduced. On the other hand, with very large
biasing, macro cells may no longer be fully loaded. Thus,
full-load is not a reasonable assumption to study biasing. The
analytical results in [12] show that biasing has detrimental
impact on the average rate of the overall network in fully
loaded condition. The motivation behind biasing is to improve
the network rate through load balancing, i.e., relieving the
heavily loaded macro cells and better utilizing the resources
of lightly loaded small cells. But if the macro and small cells
are assumed to be always fully loaded, then biasing makes
no sense. Thus, the full-load assumption cannot reflect the
benefits of biasing. Meanwhile, the interference from a BS
is a direct function of its load. For example, the BSs that
receive more load have higher probability of being active ata
given time instant, thus contributing more interference tothe
network. As the load perceived by a BS is significantly affected
by the number of users offloaded to/from and the fraction of
resources allocated, the interference to a given user strongly
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depends on association bias and resource partitioning fraction.
Such effects cannot be captured if the full-load assumption
is used. Thus, an analytical framework for the performance
evaluation of cellular HetNets with biased association and
resource partitioning, while appropriately modeling the cell
load, becomes essential and this paper aims to fulfill this need.

We focus on the downlink performance analysis of two-
tier (macro and pico) HetNets. The spatial distributions ofthe
network nodes in such networks have recently been modeled
using Stochastic Geometry, with each tier modeled by a point
process [13]–[16]. The locations of macro and pico BSs are
thus modeled as independent Poisson point processes (PPPs)in
this paper. The downlink analysis of cellular HetNets usually
assumes a time-shared single channel per cell [10]–[12], [15],
[16]. Thus, only time-domain approach to resource partitioning
has been mainly analyzed [10], [11], [17], [18], in which
the macro tier is periodically muted on certain fraction of
subframes, known as almost blank subframes (ABSFs). In
contrast, we consider a multi-channel downlink, for example
the one based on orthogonal frequency division multiple
access (OFDMA), in which multiple users are simultaneously
served in orthogonal subchannels. In LTE networks, multiple
access in the downlink is established by OFDMA. Due to
the flexibility in subchannel allocation offered by OFDMA,
we propose frequency-domain resource partitioning in which
the macro tier is restricted from using a fraction of total
subchannels so that they are allocated exclusively to range-
expanded pico users.

The main contributions of this paper are summarized as
follows:

1) Based on the proposed multi-channel model, we first
define the load perceived by a BS as a direct function
of the number of associated users and the number of
available subchannels. Such characterization effectively
captures the effect of user density, association bias and
resource partitioning fraction on cell load.

2) Next, we evaluate the performance of the proposed
system in terms of average user data rate that can be
attained over the entire network, while incorporating the
cell load into the analysis.

3) We comprehensively analyze the average rate perfor-
mance under different bias values and resource parti-
tioning fractions and finally investigate their optimal
combination.

4) We numerically demonstrate that if the bias value and
resource partitioning fraction are carefully selected, the
rate performance can be highly improved in comparison
to the CRE only system (i.e., no resource partitioning).

5) We show that the optimal combination of association
bias and resource partitioning fraction is strongly de-
pendent on the network load.

We hasten to add that although the stochastic geometry ap-
proach to multi-channel downlink analysis of cellular Het-
Nets has been considered before, for example [19], [20], the
problem of CRE with resource partitioning in multi-channel
environment, while successfully capturing their impact oncell
load is addressed herefor the first time.

The rest of the paper is organized as follows. The net-
work model, user association policy and resource partitioning
scheme are described in Section II. Section III utilizes the
user association probability and cell load derived in Section II
to derive the average user data rate over the entire network.
The special case of no resource partitioning is also analyzed
in section III. Validation of the analytical results through
Monte-Carlo simulation is done in Section IV, along with the
extensive numerical analysis to assess the impact of biasing
and resource partitioning on user data rate. Finally, Section V
concludes the paper.

Notations: Throughout the paper,R2 denotes the two-
dimensional (2-D) Euclidean space and||x−y||, the Euclidean
distance between two pointsx, y ∈ R

2. P(·), E(·) and Exp[1]
denote the probability measure, expectation operator, andunit
exponential distribution, respectively. A homogeneous PPP
of density λ > 0 on R

2 is denoted by a set of points
Φ = {x1, x2, . . .}, wherexi ∈ R

2 is the location of thei-th
point. According to the definition of PPP [21], the numbers of
points in disjoint areasA1, A2, . . . Ak are independent Pois-
son random variables (RVs) with meanλA1, λA2, . . . , λAk,
respectively.

II. SYSTEM MODEL

A. Network and Channel model

We consider an OFDMA based two-tier downlink cellular
HetNet consisting of macro and pico BSs, which are as-
sumed to be spatially distributed inR2 plane as independent
homogeneous PPPsΦm of density λm and Φp of density
λp, respectively. For the macro tier, the PPP model provides
tight lower bounds for performance measures, as tight as
the upper bound results provided by the popular grid model,
when compared to the actual 4G network [22]. However, the
analytical tractability of the PPP model is a key benefit overthe
grid model. Its adoption for the pico tier is justified because
the randomness in pico BS locations is expected. Similarly,
user locations are modeled as an independent PPPΦu with
densityλu. The two network tiers share the same spectrum
which is evenly divided intoL > 1 subchannels1. We consider
flat transmit power spectrum on the downlink2 and thus, the
power per subchannel is kept constant atPm andPp for macro
and pico tiers, respectively. IfPm

max andP p
max are the maximum

allowable transmit powers of macro and pico BSs, respectively,
thenPm = Pm

max/L andPp = P p
max/L.

Independent Rayleigh multipath fading with power-law path
loss is assumed between any BS-user pair. The channel power
gains from the macro BS located atxm ∈ Φm and pico BS
located atxp ∈ Φp to a typical user located, without loss of
generality, at the origin, are thus given byhxm

||xm||−αm and
hxp

||xp||
−αp , respectively, wherehxm

∼ Exp[1] and hxp
∼

Exp[1] are the corresponding fading powers, andαm andαp

are the path-loss exponents of macro and pico tier, respectively.

1A subchannel may refer to one or multiple resource blocks (RBs) in LTE
systems.

2This assumption is consistent with LTE downlink power allocation [23].
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B. User association scheme

The user association scheme is based on biased received
power, i.e., each user is associated with the BS offering the
maximum biased received power [11], [12]. Fading effect
is ignored in the association metric to avoid the ping-pong
handover effect [24]. IfB is the association bias introduced
for pico CRE, a typical user at the origin is associated with
the nearest macro BS only ifPmR−αm

m ≥ PpBR
−αp
p , where

Rm = min
xm∈Φm

‖xm‖ andRp = min
xm∈Φp

‖xp‖ are the distances

from the origin to the nearest macro and pico BSs, respectively.
It is otherwise associated with the nearest pico BS. When
associated with the nearest pico BS, it is registered in its user
list as unbiased userif PpR

−αp
p ≥ PmR−αm

m and asrange-
expanded userif PpR

−αp
p ≤ PmR−αm

m < PpBR
−αp
p . The

nomenclatures for pico users (unbiasedand range-expanded)
have been adopted from [11].

For the given user association scheme, if we randomly pick
a user, it may turn out be a macro user, an unbiased pico user,
or a range-expanded pico user with certain probabilities. The
following lemma expresses these probabilities.

Lemma 1. Let Um, Uo, andUe denote the probabilities that
a randomly chosen user is a macro user, unbiased pico user
and range-expanded pico user, respectively. Then,

Um = 2πλm

∫ ∞

0

re−πλmr2 exp
(

− πλp

(BPp

Pm

)
2

αp
r

2αm
αp

)

dr

(1)

Uo = 2πλp

∫ ∞

0

re−πλpr
2

exp
(

− πλm

(Pm

Pp

)
2

αm
r

2αp
αm

)

dr

(2)

Ue = 2πλp

∫ ∞

0

re−πλpr
2
{

exp
(

− πλm

( Pm

BPp

)
2

αm
r

2αp
αm

)

− exp
(

− πλm

(Pm

Pp

)
2

αm
r

2αp
αm

)}

dr. (3)

Proof: Since the analysis conducted on a typical user
located at the origin is valid for any randomly chosen user
according to Slivnyak’s theorem [21],Um can be derived as

Um = P(PmR−αm
m ≥ PpBR−αp

p )

= ERm

[

P(Rp ≥
(

Pp/PmB)1/αpRαm/αp
m

)]

,

which can be solved by using the probability distributions of
Rm and Rp. We know thatP(Rl > r), l ∈ {m, p}, is the
probability that no points ofΦl lie within a circle of radius
r, centered at the origin. SinceΦl is a PPP with density
λl, we have,F̄Rl

(r) = P(Rl > r) = exp(−πλlr
2). The

probability density function (PDF) ofRl can then be obtained
as fRl

(r) = −dF̄Rl
(r)/dr = 2πλlr exp(−πλlr

2). Similarly,
by using these distributions,Uo and Ue can be obtained as
Uo = P(PpR

−αp
p ≥ PmR−αm

m ) and Ue = P(PpR
−αp
p ≤

PmR−αm
m < PpBR

−αp
p ).

For the special case of equal path-loss exponents, i.e.,
αm = αp = α, the integrals in (1)-(3) can be re-
duced to following simple closed-form expressions by using
∫∞

0
r exp(−βr2)dr = 1/(2β).

Um =
λmP

2/α
m

λmP
2/α
m + λp(BPp)2/α

, Uo =
λpP

2/α
p

λmP
2/α
m + λpP

2/α
p

,

Ue =
λp(BPp)

2/α

λmP
2/α
m + λp(BPp)2/α

−
λpP

2/α
p

λmP
2/α
m + λp(Pp)2/α

.

(4)

The probabilities (1)-(4) are also derived in [11] and are given
here for the sake of completeness.

As per the given user association scheme, the set of total
users in the network,Φu can be divided into three subsets:

1) Φ
m
u , the set ofmacro users,

2) Φ
o
u, the set ofunbiased pico users, and

3) Φ
e
u, the set ofrange-expanded pico users,

such thatΦu = Φ
m
u ∪Φ

o
u ∪ Φ

e
u. Since each user inΦu can

belong to exactly one of these three sets, they are disjoint.
The probabilitiesUm, Uo, and Ue can also be interpreted
as the average fraction of users belonging to the setsΦ

m
u ,

Φ
o
u andΦe

u, respectively. For each user-set, we are interested
in the number of users associated with a typical BS to
characterize the typical cell load of each tier and the average
share of radio resources received by a typical user. The actual
locations of users with respect to each other in eachΦ

l
u,

l ∈ {m, o, e} are less important to us. Thus,Φm
u , Φ

o
u and

Φ
e
u can be equivalently modeled as independent PPPs with

densitiesUmλu, Uoλu andUeλu, respectively. In other words,
they can be modeled as thinned versions of the original process
Φu with retention probabilitiesUm, Uo andUe, respectively,
independent of the locations of the users.

Each user inΦm
u is always associated with the nearest

macro BS and each user inΦo
u ∪ Φ

e
u is always associated

with the nearest pico BS. The network can thus be viewed
as a superposition of two independent Voronoi tessellations
of the macro and pico tier, respectively. The Voronoi cells of
each tessellation are disjoint and their sizes are independent
and identically distributed (i.i.d.) random variables (RVs) [25].
Hence, together with the independent scattering property of the
PPP, which states that the number of points of a PPP in disjoint
sets are independent RVs [21], [26], the number of macro
users in different macro Voronoi cells are i.i.d RVs, and so
are the number unbiased pico users and the number of range-
expanded pico users in different pico Voronoi cells. Given
in the following lemma are their probability mass functions
(PMFs), which are essential for calculating the typical cell
load of each tier and the average share of radio resources
received by a typical user, later in this paper.

Lemma 2. Let Nm be the number of users associated with a
randomly chosen macro BS, andNo and Ne be the number
of unbiased and range-expanded users of a randomly chosen
pico BS. Their PMFs are given by

P(Nl = n) =
3.53.5Γ(3.5 + n)(Ulλu/λζ(l))

n

Γ(3.5)n!(Ulλu/λζ(l) + 3.5)n+3.5
, n ≥ 0,

∀l ∈ {m, o, e}, (5)

whereλζ(m) = λm andλζ(o) = λζ(e) = λp.

Proof: SinceΦm
u is a PPP of densityUmλu, the number

of macro users in a typical macro Voronoi cell of given areaA
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is Poisson distributed with meanUmλuA. The unconditional
PMF of Nm in (5) is then obtained by averaging over the dis-
tribution of Voronoi cell areaA approximated by the Gamma
distribution, fA(a) = (3.5λm)3.5a2.5 exp(−3.5λma)/Γ(3.5)
[25]. The PMFs ofNo andNe can be similarly obtained.

C. Resource Allocation and Partitioning

For any range-expanded pico user inΦe
u, the average

received power from its nearest macro BS is greater than that
from the serving pico BS. The range-expanded users thus need
to be protected from high-power macro interference. If each
macro BS leaves a set ofLr subchannels unutilized out of
the totalL subchannels, each pico BS can serve its range-
expanded users in these macro-interference free subchannels.
Each macro BS thus allocatesL − Lr = Lc number of
subchannels to serve its users. The unbiased users in each pico
cell are also served in the same set ofLc subchannels sinceLr

macro-interference free subchannels are reserved exclusively
for its range-expanded users.

Let the set ofLr macro-interference free subchannels re-
served exclusively for range-expanded users be denoted by
Sr and the set ofLc common subchannels shared by the
macro and pico tiers be denoted bySc. The subchannels in
each BS are allocated to individual users according to one
subchannel per user and they are uniformly and independently
selected from the available set. However, if the number of
users associated with a BS is greater than the number of
subchannels available, the resources are time-shared equally
among the users. This is basically frequency- and time-
domain round-robin scheduling, which gives equal share of
resources to all the users. This simple scheduling algorithm
leads to analytical tractability and provides important insights
on system parameters. Sophisticated scheduling algorithms
like max-rate and proportional fair schedulars, which add
significant complexities to the analysis will be consideredin
future work. The current analysis serves as a lower bound on
the performance of these sophisticated algorithms.

We assume that each BS has saturated downlink transmis-
sion queue for each associated user and thus, each user always
has data to receive from its serving BS. While some BSs
may have more users than the available subchannels, some
may have less. Thus, depending upon the number of users
associated with it, a BS, may or may not be active on all of
its available subchannels. In the following lemma, we derive
the probability that a typical BS of each tier is active on a
given subchannel.

Lemma 3. Let pm be the probability that a randomly chosen
macro BS is active on a given subchannel from the setSc.
Similarly, let po and pe be the probabilities that a randomly
chosen pico BS is active on a given subchannel from the set
Sc andSr, respectively. Then,

pl = 1−
3.53.5

Γ(3.5)

1

Lκ(l)

Lκ(l)−1
∑

n=0

[

(Lκ(l) − n)Γ(3.5 + n)

n!

×
(Ulλu/λζ(l))

n

(Ulλu/λζ(l) + 3.5)3.5+n

]

, ∀l ∈ {m, o, e} (6)

whereλζ(m) = λm, λζ(o) = λζ(e) = λp, Lκ(m) = Lκ(o) = Lc

andLκ(e) = Lr.

Proof: If the number of users associated with a typical
macro cell is less thanLc (i.e.Nm < Lc), the probability that
a subchannel ofSc is used in the cell isNm/Lc. However, if
Nm ≥ Lc, all the subchannels ofSc are used in the cell with
probability1. Thus,pm can be expressed as

pm =

Lc−1
∑

n=0

n

Lc
P(Nm = n) +

∞
∑

n=Lc

P(Nm = n)

= 1−

Lc−1
∑

n=0

(

1−
n

Lc

)

P(Nm = n) (7)

The final expression forpm is then obtained by substituting
the PMF ofNm in the above equation. The probabilitiespo
andpe can be similarly obtained.

Remark. As we explained earlier, the number of users
associated with different macro cells are independent. Thus,
the probability that any randomly chosen macro BS is active
on a given subchannel from the setSc, which is pm, is
independent of any other macro BS. Similarly, the probabilities
po andpe of any arbitrary pico BS are independent of any other
pico BS.

We refer topm as the load of a typical macro cell. It can also
be interpreted as the probability that a typical macro BS is con-
tributing to network interference because a typical user being
served on a subchannel receives interference from only those
BSs which are active on that particular subchannel. While the
authors in [27] used mean statistic of the number of users
associated with a typical BS to approximate this probability
by min

(

Average number of users
Total number of frequency resource blocks available, 1

)

, we derive
the exact probability in this paper. Similarly,po and pe are
referred to as the loads of a typical pico cell in two different
groups of frequency resourcesSc andSr, respectively. We can
observe that user density, association bias and the degree of
resource partitioning directly affect the cell load.

Having derived the cell loads, the signal-to-interference-
and-noise ratio (SINR) of a typical useru located at the
origin when it belongs toΦl

u, denoted by SINRl, for each
l ∈ {m, o, e} can be computed as

SINRm=
PmhbmD−αm

m

Pm

∑

xm∈Ψm\bm

hxm
||xm||−αm +Pp

∑

xo∈Ψo

hxo
||xo||

−αp + σ2
,

(8)

SINRo=
PphboD

−αp
o

Pm

∑

xm∈Ψm

hxm
||xm||−αm +Pp

∑

xo∈Ψo\bo

hxo
||xo||

−αp + σ2
,

(9)

SINRe =
PphbeD

−αp
e

Pp

∑

xe∈Ψe\be

hxe
||xe||

−αp + σ2
, (10)

where bl is the serving BS at a distanceDl from the user
u when it belongs toΦl

u and σ2 is the noise power. If the
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useru is being served on a subchannel from the setSc (i.e.
when it is either a macro user or an unbiased-pico user),Ψm

andΨo are the sets of macro and pico BSs respectively, that
are active on that particular subchannel. The setsΨm and
Ψo are independent thinnings of the the original PPPsΦm

andΦp, respectively, with retention probabilitiespm andpo,
respectively. Hence, they are independent PPPs with densities
pmλm andpoλp, respectively. Similarly,Ψe is the set of active
pico BSs on the subchannel the useru being served from the
setSr (i.e. whenu is a range-expanded pico user) and is also
a PPP with densitypeλp.

III. AVERAGE USER DATA RATE

The motivation behind CRE supported by resource partition-
ing in cellular HetNets is to provide high data rate to users
through load balancing. Thus, the performance metric chosen
in this paper is the average user data rate that can be attained
over the entire network.

Theorem 1. The average data rate per unit bandwidth of a
typical useru is given by

R̄ =
∑

l∈{m,o,e}

Ul Tl E [log2(1 + SINRl)], (11)

whereUl = P(u ∈ Φ
l
u), which is given by Lemma 1, andTl

is the average time share of frequency resources received by
the useru when it belongs toΦl

u.

Proof. With adaptive transmission scheme so that the Shannon
bound can be achieved and treating interference as noise [22],
the data rate per unit bandwidth of a typical useru, conditioned
on u belonging toΦl

u, is given by

Rl = tl log2(1 + SINRl), ∀l ∈ {m, o, e}, (12)

where tl is the fraction of time the useru is served on a
subchannel. LetN ′

l be the number of other users in the cell
to which the useru belongs. If the total number of users is
no greater thanLκ(l) (i.e. N ′

l + 1 ≤ Lκ(l)), whereLκ(m) =
Lκ(o) = Lc andLκ(e) = Lr, the useru can exclusively occupy
a subchannel without time sharing and thus,tl = 1. Otherwise,
the subchannels are time-shared equally among the total users
and thus,tl = Lκ(l)/(N

′
l + 1).

The average data rate per unit bandwidth of the useru ∈ Φ
l
u

is R̄l = E[Rl] = E[tl log2(1 + SINRl)]. Since the number of
users associated with a BS determines its probability of being
active on a certain subchannel (Lemma 3), the total interfer-
ence received by the useru, and thus its SINR depend on the
number of users associated with the cells other than the serving
cell in the network.tl, however is the function of number of
users in the serving cell. As we discussed in II-B, the number
of users in different cells are independent, which implies that
tl and SINRl are independent. Thus,E[tl log2(1 + SINRl)] =
Tl E[ log2(1+SINRl)], whereTl = E[tl]. According to the law
of total expectation, the overall data rate of a typical useru is
then given byR̄ =

∑

l∈{m,o,e} Ul R̄l. By using Lemma 4 and
5, which deriveTl = E[tl] and the average spectral efficiency
E [log2(1 + SINRl)], respectively, the final expression for the
average user data rate is obtained.

In the following Lemma, we deriveTl, which is required to
compute the average user data rate in (11).

Lemma 4. The average time-share of frequency resources,Tl

received by a typical useru whenu ∈ Φ
l
u is given by

Tl =
Lκ(l)λζ(l)

Ulλu

(

1−
(

1 + 3.5−1Ulλu/λζ(l)

)−3.5
)

−
3.53.5

Γ(3.5)

Lκ(l)
∑

n=1

Γ(3.5 + n)
(

Ulλu/λζ(l)

)n−1
(Lκ(l) − n)

n! (Ulλu/λζ(l) + 3.5)3.5+n
,

∀l ∈ {m, o, e}, (13)

whereλζ(m) = λm, λζ(o) = λζ(e) = λp, Lκ(m) = Lκ(o) = Lc

andLκ(e) = Lr.

Proof. The proof is given in Appendix A.

To finally compute the average user data rate in (11), we
now derive the average link spectral efficiencyE [log2(1 +
SINRl)].

Lemma 5. The average link spectral efficiencyE [log2(1 +
SINRl)] of the useru when it belongs toΦl

u, denoted byCl

is given by

Cl =
1

ln 2

∫ ∞

0

F̄l(t)

1 + t
dt, ∀l ∈ {m, o, e}, (14)

whereF̄l(t) = P(SINRl ≥ t) is the conditional complementary
cumulative distribution function (CCDF) of the SINR of the
useru when it belongs toΦl

u, and is given by(15)-(17) for
eachl ∈ {m, o, e}.

If the noise is ignored (i.e., the network is interference
limited) and the path-loss exponents are assumed equal (αm =
αp = α), then F̄m(t), F̄o(t) and F̄e(t) can be simplified to
(18)-(20).

Proof. The proof is given in Appendix B.

These conditional SINR distributions can also be interpreted
as conditional coverage probability asP(SINRl > τ) is the
probability that a randomly chosen user can achieve the target
SINR τ under the condition that the user belongs toΦ

l
u.

Unlike the SINR distribution in [11], in this paper, it is also
dependent on user density and the degree of resource parti-
tioning, apart from association bias. In the full-load model,
the impact of biasing on SINR distribution is only due to the
associated users’ geometry (i.e., with biased association, only
very good geometry users are served by macro cells while pico
users now also include worse geometry users). In this paper,
biasing also affects the interference power through cell load.
Thus, the impact of biasing on SINR distribution is better
captured than [11]. The SINR distribution of unbiased pico
users is also dependent on association bias unlike the one
in [11] as the interference from macro tier to unbiased pico
users depends on biasing. These claims will be verified through
numerical results in Figure 2.

The special case of no resource partitioning will be ad-
dressed next so that the average data rate with resource parti-
tioning can be compared against the no resource partitioning
case, subsequently quantifying the gain.
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F̄m(t) =
2πλm

Um

∫ ∞

0

r exp

{

−tP−1
m σ2rαm− πλmr2

(

1 +
2pm

(αm − 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

αm
,

1

1 + 1/t

])

−πλp

(

PpP
−1
m

)2/αp
r2αm/αp

(

B2/αp +
2po

(αp − 2)

B2/αp

(1 +B/t)
2F1

[

1, 1, 2−
2

αp
,

1

1 +B/t

])}

dr, (15)

F̄o(t) =
2πλp

Uo

∫ ∞

0

r exp

{

−tP−1
p σ2rαp − πλpr

2

(

1 +
2po

(αp − 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

αp
,

1

1 + 1/t

])

−πλm

(

PmP−1
p

)2/αm
r2αp/αm

(

1 +
2pm

(αm − 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

αm
,

1

1 + 1/t

])}

dr, (16)

F̄e(t) =
2πλp

Ue

∫ ∞

0

r exp

{

−tP−1
p σ2rαp − πλpr

2

(

1 +
2pe

(αp − 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

αp
,

1

1 + 1/t

])

−πλm

(

PmP−1
p

)2/αm
r2αp/αm

}{

exp
(

−πλm

(

PmP−1
p

)2/αm
r2αp/αm(B−2/αm − 1)

)

− 1
}

dr. (17)

F̄m(t) = U−1
m

{

1 +
2pm

(α − 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

α
,

1

1 + 1/t

]

+
λp

λm

(

Pp

Pm
B

)2/α

×

(

1 +
2po

(α− 2)

1

(1 +B/t)
2F1

[

1, 1, 2−
2

α
,

1

1 +B/t

])}−1

, (18)

F̄o(t) = U−1
o

{

1 +
λm

λp

(

Pm

Pp

)2/α

+
2

(α − 2)

1

(1 + 1/t)

× 2F1

[

1, 1, 2−
2

α
,

1

1 + 1/t

]

(

po +
λmpm
λp

(

Pm

Pp

)2/α
)}−1

, (19)

F̄e(t) = U−1
e





{

1 +
2pe

(α− 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

αp
,

1

1 + 1/t

]

+
λm

λp

(

Pm

PpB

)2/α
}−1

−

{

1 +
2pe

(α− 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

αp
,

1

1 + 1/t

]

+
λm

λp

(

Pm

Pp

)2/α
}−1



 . (20)

A. Special Case: No resource partitioning

If no resource partitioning is applied, the pico users need not
be categorized as unbiased and range-expanded users because
they are served from the same pool of totalL subchannels in
each pico cell. LetUp denotes the probability that a randomly
chosen user is a pico user. Then,

Up = 1− Um,

whereUm is the probability that a randomly chosen user is
a macro user, and is derived in Lemma 1. The total users in
the network can thus be divided into two sets:Φ

m
u , the set of

macro users, andΦp
u, the set of pico users.Φm

u andΦ
p
u are

independent PPPs of densitiesUmλu andUpλu, respectively.
With no resource partitioning, each macro BS can access

all the available subchannels in the system to serve its users
(i.e., a total ofL subchannels). Meanwhile, in each pico cell, as
explained earlier, the users (either unbiased or range-expanded
users) are served from the same pool ofL subchannels. The
cell loads of a typical macro BS and a typical pico BS, denoted

by pm andpp, respectively, are thus given by

pj = 1−
3.53.5

Γ(3.5)

1

L

L−1
∑

n=0

[

(L− n)Γ(3.5 + n)

n!

×
(Ujλu/λj)

n

(Ujλu/λj + 3.5)3.5+n

]

, ∀j ∈ {m, p}. (21)

In any cell, either a macro or a pico cell, if the total associated
users are less thanL, all the users can exclusively occupy a
subchannel, otherwise the subchannels have to be time shared
among the users. The average time shares received by a typical
macro user and a typical pico user, denoted byTm and Tp,
respectively, are given by

Tj =
Lλj

Ujλu

(

1−

(

1 + 3.5−1Ujλu/λj

)−3.5)

−
3.53.5

Γ(3.5)

L
∑

n=1

Γ(3.5 + n) (Ujλu/λj)
n−1

(L− n)

n! (Ujλu/λj + 3.5)3.5+n
,

∀j ∈ {m, p}. (22)
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The average user data rate per unit bandwidth for the case
with no resource partitioning can finally be expressed as

R̄ = UmTmCm + UpTpCp, (23)

whereCj = E [log2(1+SINRm) andCp = E [log2(1+SINRp)
are the spectral efficiencies of a typical useru located at
the origin when it belongs toΦm

u andΦ
p
u, respectively. The

corresponding SINRs are given by

SINRm=
PmhbmD−αm

m

Pm

∑

xm∈Ψm\bm

hxm
||xm||−αm +Pp

∑

xp∈Ψp

hxp
||xp||

−αp + σ2
,

(24)

SINRp=
PphbpD

−αp
p

Pm

∑

xm∈Ψm

hxm
||xm||−αm +Pp

∑

xp∈Ψp\bp

hxp
||xp||

−αp + σ2
,

(25)

where bj is the serving BS at a distanceDj from u when
u ∈ Φ

j
u, j ∈ {m, p}. Ψm and Ψp are the sets of macro

and pico BSs respectively, that are active on the subchannel
the useru is being served and they are PPPs with densities
pmλm and ppλp, respectively. As in Lemma 5, the spectral
efficiencies can be derived as

Cj =
1

ln 2

∫ ∞

0

F̄j(t)

1 + t
dt, ∀j ∈ {m, p}, (26)

where,F̄m(t) and F̄p(t) are given by (27)-(28).
When the network is interference limited (i.e., the noise is

ignored) andαm = αp = α, the simplified expressions for
F̄m(t) and F̄p(t) can be obtained as (29)-(30)

Remark: The results for the case of neither biasing nor
resource partitioning can be found by substitutingB = 1 in
the above results.

IV. SIMULATION AND NUMERICAL RESULTS

In this section, we present numerical analysis and validation
of our analytical results. Unless otherwise stated, we choose
L = 20, λm = 1BS/km2, Pm

max = 46 dBm, P p
max = 30 dBm,

σ2 = −109 dBm, αm = 3.5 and αp = 4. The degree of
resource partitioning is expressed by the fractionµ = Lr/L.

The average user data rate (11) is validated in Figure 1
via Monte Carlo simulations on a square window of20 ×
20 km2. We can observe that the analytical results match the
simulation results quite well. The small gaps are mainly due
to the approximation for cell areas distribution.

Before numerically analyzing the average user data rate,
we first analyze the conditional coverage probabilities (15)-
(17) so that the data rate trends can be better understood.
We can observe in Figure 2 that the coverage probability of
unbiased pico user increases with the increase in bias. Thisis
because, when more macro users are offloaded to pico tier,
the cell loadpm of macro tier decreases and so does the
interference from macro tier. Similarly, for macro user and
range-expanded pico user, apart from users’ geometry, the
variation in the coverage probability with bias is mainly due
to the change inpm andpe. The coverage probability of each
user type decreases as user density increases because more BSs
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Fig. 1. Validation of the analytical result for average userdata rate (11) via
Monte Carlo simulations for different values of user density λu, pico cell
densityλp, and association bias and resource partitioning fraction(B, µ).
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Fig. 2. Impact of association biasB, user densityλu and resource partitioning
fractionµ on conditional coverage probabilities of macro user and both types
of pico user (unbiased and range-expanded):λp = 4λm, τ = 0.5.

become active to serve the increased number of users which
directly affect the interference. We can observe that resource
partitioning fractionµ directly impact the coverage probability.
As µ decreases, more subchannels become available for macro
users and unbiased pico user, which decreasespm and po,
consequently increasing the coverage probabilities of macro
and unbiased pico users due to decrease in interference. The
coverage probability of range-expanded user on the other hand
decreases due to increase inpe.

In Figure 3, the average user data rate of biased association
with and without resource partitioning is compared against
that of unbiased association in different load conditions.In
our model, the network load is directly proportional to user
density. The user data rate decreases with increasing load due
to increase in interference and decrease in the users’ shareof
resources. In biased association without resource partitioning,
the SINR of offloaded users degrades. However, in a lightly
loaded network, they are offloaded to BSs offering the higher
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F̄m(t) =
2πλm

Um

∫ ∞

0

r exp

{

−tP−1
m σ2rαm− πλmr2

(

1 +
2pm

(αm − 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

αm
,

1

1 + 1/t

])

−πλp

(

PpP
−1
m

)2/αp
r2αm/αp

(

B2/αp +
2pp

(αp − 2)

B2/αp

(1 +B/t)
2F1

[

1, 1, 2−
2

αp
,

1

1 +B/t

])}

dr, (27)

F̄p(t) =
2πλp

Up

∫ ∞

0

r exp

{

−tP−1
p σ2rαp − πλpr

2

(

1 +
2pp

(αp − 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

αp
,

1

1 + 1/t

])

−πλm

(

PmP−1
p

)2/αm
r2αp/αm

(

B−2/αm+
2pm

(αm − 2)

B−2/αm

(1 + 1/(Bt))
2F1

[

1, 1, 2−
2

αm
,

1

1 + 1/(Bt)

])}

dr. (28)

F̄m(t) = U−1
m

{

1 +
2pm

(α − 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

α
,

1

1 + 1/t

]

+
λp

λm

(

Pp

Pm
B

)2/α

×

(

1 +
2pp

(α− 2)

1

(1 +B/t)
2F1

[

1, 1, 2−
2

α
,

1

1 +B/t

])}−1

, (29)

F̄p(t) = U−1
p

{

1 +
2pp

(α − 2)

1

(1 + 1/t)
2F1

[

1, 1, 2−
2

α
,

1

1 + 1/t

]

+
λm

λp

(

Pm

PpB

)2/α

×

(

1 +
2pm

(α− 2)

1

(1 + 1/(Bt))
2F1

[

1, 1, 2−
2

α
,

1

1 + 1/(Bt)

])}−1

. (30)
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Fig. 3. Effect of CRE with and without resource partitioningon user data
rate, as user density is varied:λp = 4λm

share of resources and thus the user data rate improves
compared to unbiased association. But when the network is
heavily loaded, the decrease in SINR dominates and unbiased
association outperforms biasing. The SINR degradation of
offloaded users can be compensated by resources partitioning.
The resource partitioning fraction of0.2, for example, is shown
to outperform no resource partitioning scenario in terms of
average user data rate in Figure 3 in any load condition.

Since resource partitioning costs macro tier its available
resources, the resource partitioning fractionµ must be coor-
dinated within the network for optimal user data rate. The
optimal pair (B, µ) for the given network parameters is
investigated in Figure 4. It is found to be strongly dependent on
user density (i.e., network load). Forλu = 30λm, the optimal

pair is (29dB, 0.45), while for λu = 100λm, the optimal pair
is (30dB, 0.1).

With resource partitioning, for the given value ofµ, the
average link spectral efficiencyCm of a typical macro user
increases with the increase in bias because more macro users
with low SINR (users far from the serving macro BS) are
offloaded to pico cells, and the interference from other macro
cells also decreases due to the decrease in macro cell load.
Note that the interference from pico tier is invariant to bi-
asing because the pico cell load in the resource groupSc is
independent of bias. Meanwhile, the share of radio resources
received by macro users also increases. Thus, the contribution
of macro users towards the average data rate increases with
the increase in bias. But after a certain association bias, it
eventually decreases due to the decreasing fraction of macro
users. Similarly, the contribution from range-expanded pico
users initially increases with increase in bias due to the
increasing fraction of range-expanded users, but eventually
decreases after a certain bias due to the decrease in average
link spectral efficiencyCe and the increase in number of users
sharing the resources. The decrease inCe is due to the fact that
more users with low SINR (users far from the prospective pico
BS) are associated with the pico cell, and in the meantime, the
interference from other pico cells increases due to increase in
pico cell load in the resource groupSr. On the other hand,
the fraction of unbiased pico users is invariant to biasing
and hence, so is the share of radio resources received by
unbiased users. However, with increasing bias, the contribution
to average data rate from these unbiased users significantly
increases because of the decreasing macro-tier interference
as a result of the decrease in macro cell load. Overall, the
average data rate initially increases with the increase in bias,
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Fig. 4. Average user data rate vs. association biasB for different values of
resource partitioning fractionµ in lightly loaded (a) and heavily loaded (b)
network conditions:λp = 4λm, αm = αp = 4, σ2 = 0.

but decreases beyond a certain association bias and hence, the
optimal bias exist.

It can be observed from Figure 4 that for the case with
resource partitioning, the optimal bias increases with increas-
ing µ because more resources are reserved for the offloaded
users. Forλu = 30λm (lightly loaded network), the optimal
bias lies in the range of19 dB and above asµ increases
from 0.1, whereas, it lies in the range of30 dB and above
for λu = 100λm (heavily loaded network).

With no resource partitioning (i.e.,µ = 0), the contribution
from macro users to average user data rate varies with bias
in the same way as in the case of resource partitioning. The
contribution from pico users however, has a different variation
as both the unbiased and range-expanded users are now served
from the same pool ofL subchannels. The average link
spectral efficiencyCp of a randomly selected pico user (either
unbiased or range-expanded) initially drops as more users with

poor SINR (users with higher average received power from
the nearest macro BS as compared to the nearest pico BS)
are associated with the pico cell. But, beyond a certain bias,
the decreasing macro-tier interference causesCp to improve.
If the increasing fraction of pico users dominates the initial
drop in Cp and the decreasing share of radio resources, the
contribution from pico users to average data rate increaseswith
increasing bias. Otherwise, it may drop initially, but eventually
increases asCp improves. When the number of pico users
sharing the resources become large, the contribution towards
the average user rate subsequently decreases. The initial drop
in the contribution from pico users towards average user data
rate is the reason for the initially low rate of increase in the
average user data rate forλu = 100λm in Figure 4.

The optimal bias values forλu = 30λm andλu = 100λm

are found to be39 dB and29 dB, respectively, in Figure 4 with
µ = 0. Thus, with no resource partitioning, the optimal bias
decreases with increasing user density as large bias valueswill
make the pico cells overly congested with poor SINR users in
a heavily loaded network.

The variation of average user data rate with resource par-
titioning fraction µ for the given bias value is plotted in
Figure 5. As previously explained while analyzing conditional
coverage probabilities in Figure 2, the cell loadspm and po
increase with increasingµ. The average spectral efficiency of
a typical macro user thus decreases with increasingµ due to
the increasing interference from macro and pico tier as a result
of the increasing cell load, and so does the average spectral
efficiency of a typical unbiased pico user. This, together with
the decrease in the average share of radio resources received by
users, causes the average data rate of both macro and unbiased
pico users to decrease with increasingµ. On the other hand,
as more subchannels are available for range-expanded pico
users with increasingµ, their average data rate increases. The
net result is the initial increase in the average data rate with
increasingµ and the subsequent decrease beyond a certain
value ofµ. With full-load assumption, the spectral efficiency
would be independent ofµ and data rate would vary only due
to the change in the users’ share of radio resources.

As observed in Figure 5, in a lightly loaded network
(λu = 30λm), the optimal resource partitioning fraction shifts
towards higher values as association bias increases, whereas
in a heavily loaded network (λu = 100λm), it shifts towards
lower values. This shows that in a heavily loaded network,
when a large number of macro users are offloaded to pico
cells, allocating more resources to serve these offloaded users
will rather highly degrade the rate of remaining macro users
and unbiased pico users instead of improving the average data
rate. Thus, lower resource partitioning fraction is desirable.

In Figure 6, we analyze how small cell density affects the
optimal choices of association bias and resource partitioning
fraction. It is clearly visible from the figure that irrespective
of the user density and association bias, the average user data
rate always increases with the increase in pico cell density
as the number of users served by each BS decreases and
thus users get access to larger fraction of resources. With
no resource partitioning, whether the network is lightly or
heavily loaded, the optimal bias is found to increase as pico
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Fig. 5. Average user data rate vs. resource partitioning fractionµ for different
values of association biasB in lightly loaded (a) and heavily loaded (b)
network conditions:λp = 4λm, αm = αp = 4, σ2 = 0.

cell density increases. The optimal bias increased from39
dB to 42 dB for λu = 30λm and 29 dB to 36 dB for
λu = 100λm when λp changed from4λm to 6λm. With
resource partitioning, the optimal pair(B, µ) changed from
(29dB, 0.45) to (36dB, 0.4) for λu = 30λm and (30dB, 0.1)
to (33dB, 0.2) for λu = 100λm asλp increased from4λm to
6λm. Whenλp further increased to8λm, the optimal pairs for
λu = 30λm andλu = 100λm were found to be(38dB, 0.3)
and(34dB, 0.25) , respectively (not shown in the figure). Thus,
as in the case with no resource partitioning, the optimal bias
increases with increasing pico cell density in both lightlyand
heavily loaded network conditions. The optimalµ, however
decreases with increasing pico cell density in a lightly loaded
network.
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Fig. 6. Effect of pico cell densityλp on the optimal choices of association
biasB and resource partitioning fractionµ in lightly loaded (a) and heavily
loaded (b) network conditions:αm = αp = 4, σ2 = 0.

V. CONCLUSION

We developed an analytical framework to evaluate the
downlink performance of cellular HetNets with CRE and
resource partitioning in a multi-channel environment, while
taking cell load into account. The incorporated cell load model
effectively captures the impact of user offloading and re-
source partitioning on network interference. The performance
is evaluated in terms of average user data rate that can be
achieved over the entire network. We observed that if CRE
is supported by resource partitioning, the average user data
rate can be highly boosted. However, the bias valueB and
resource partitioning fractionµ must be carefully tuned. With
the optimal pair(B, µ), the gain can be as high as115%.
Our analysis showed that the optimal pair must be updated in
accordance with the changing network load.
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APPENDIX

A. Proof of Lemma 4

We have,

tl =

{

1 if N ′
l + 1 ≤ Lκ(l)

Lκ(l)

(N ′

l
+1) otherwise.

(31)

Thus,Tl = E [tl] can be derived as

Tl =

Lκ(l)−1
∑

n=0

P(N ′
l = n) +

∞
∑

n=Lκ(l)

Lκ(l)

n+ 1
P(N ′

l = n)

=

∞
∑

n=1

Lκ(l)

n
P(N ′

l = n− 1)

−

Lκ(l)
∑

n=1

(

Lκ(l)

n
− 1

)

P(N ′
l = n− 1). (32)

We know, the probability that a typical user belongs to a given
cell is directly proportional to the area of the cell. Thus, the
conditional PDF of the area of a Voronoi cell given that a
typical user belongs to it is given byfA′(a) = cafA(a), where
fA(a) is the unconditional PDF andc is a constant such that
∫∞

0 fA′(a)da = 1. The PMF ofN ′
l can then be similarly

derived as in Lemma 2 as

P(N ′
l = n) =

3.53.5Γ(4.5 + n)(Ulλu/λζ(l))
n

Γ(3.5)n!(Ulλu/λζ(l) + 3.5)n+4.5
, n ≥ 0,

∀l ∈ {m, o, e}, (33)

where λζ(m) = λm and λζ(o) = λζ(e) = λp. The final
expression fortl in (13) is obtained by substituting the PMF
of N ′

l in (32), where the first term is further simplified by
usingP(N ′

l = n− 1)/n = λζ(l)/(Ulλu)P(Nl = n), followed
by
∑∞

n=0 P(Nl = n) = 1.

B. Proof of Lemma 5

The average link spectral efficiencyCl of the useru when
u ∈ Φ

l
u, can be expressed as

Cl =
1

ln 2

∫ ∞

0

ln (1 + t)fl(t)dt

= −
1

ln 2

∫ ∞

0

ln (1 + t)dF̄l(t),

wherefl(t) is the conditional PDF of the SINR of the user
u, given thatu ∈ Φ

l
u. The second equality is obtained by

expressingfl(t) in terms of CCDFF̄l(t) = P(SINRl > t)

as fl(t) = − dF̄l(t)
dt . Equation (14) is then obtained by using

integration by parts.
By using the SINR expression (8), the SINR distribution of

the typical useru conditioned onu ∈ Φ
m
u can be derived as

follows:

F̄m(t) = P

(

PmhbmD−αm
m

Ibm,m + Ibm,o + σ2
> t

)

, (34)

whereIbm,m = Pm

∑

xm∈Ψm\bm
hxm

||xm||−αm andIbm,o =

Pp

∑

xo∈Ψo
hxo

||xo||
−αp . By utilizing the fact thathbm ∼

Exp(1) and the independence betweenIbm,m andIbm,o, F̄m(t)
can be further expressed as

F̄m(t) =

∫ ∞

0

exp
(

−tσ2P−1
m rαm

)

LIbm,m

(

tP−1
m rαm

)

× LIbm,o

(

tP−1
m rαm

)

fDm
(r)dr, (35)

whereLIbm,m
(·) andLIbm,o

(·) are the Laplace transforms of
Ibm,m andIbm,o, respectively, andfDm

(r) is the PDF of the
distanceDm between the useru and the serving BSbm. The
cumulative distribution function (CDF) ofDm, FDm

(r) =
P(Dm ≤ r) can be expressed as

FDm
(r) =P(Rm ≤ r|u ∈ Φ

m
u ) =

P(Rm ≤ r, u ∈ Φ
m
u )

P(u ∈ Φm
u )

=
1

Um

∫ r

0

P

(

Rp ≥
(BPp

Pm

)1/αp

Rαm/αp
m

∣

∣

∣
Rm = y

)

× fRm
(y) dy. (36)

After using the distributions ofRp andRm, which are derived
in the proof of Lemma 1, the required PDFfDm

(r) can be
obtained as

fDm
(r) =

dFDm
(r)

dr

=
2πλm

Um
re−πλmr2 exp

(

− πλp

(BPp

Pm

)
2

αp
r

2αm
αp

)

.

(37)

The Laplace transformLIbm,l
(s) = E [exp(−sIbm,l)], ∀l ∈

{m, o} at s = t/Pmrαm can be derived as

LIbm,l

(

t

Pm
rαm

)

= EΨl

[

∏

xl∈Ψl\bm

E hxl

[

exp
(

−tP−1
m Pζ(l)

× rαmhxl
||xl||

−αζ(l)
)

]

]

, ∀l ∈ {m, o},

(38)

wherePζ(m) = Pm, Pζ(o) = Pp, αζ(m) = αm andαζ(o) =
αp. By using the probability generating functional of PPPΨl

with densityplλζ(l), followed by the expectation with respect
to exponential RVhxl

, we have

LIbm,l

(

t

Pm
rαm

)

=

exp

(

−

∫ ∞

ηl

(

1−
1

1 + tP−1
m Pζ(l)rαmy−αζ(l)

)

2πplλζ(l)y dy

)

,

∀l ∈ {m, o}, (39)

where λζ(m) = λm and λζ(o) = λp; ηm and ηo are the
distances from the useru to the closest interferer in the macro
and pico tier, respectively, given that the useru is served by
the macro BSbm at a distanceDm = r. Thus, ηm = r
and ηo = (BPp/Pm)1/αprαm/αp . Now, with the change in
variables(tP−1

m Pζ(l)r
αm)−2/αζ(l)y2 = u and further simplifi-
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cation, we get

LIbm,l

(

t

Pm
rαm

)

= exp

(

−πplλζ(l)

(

tP−1
m Pζ(l)r

αm
)2/αζ(l)

×

∫ ∞

νl

1

1 + uαζ(l)/2
du

)

,

∀l ∈ {m, o}, (40)

where νm = t−2/αm and νp = (t/B)−2/αp . The integral
in the above equation can be solved in terms of Gauss
Hypergeometric function as [16, eqn. (24)]
∫ ∞

νl

1

1 + uαζ(l)/2
=

2

(αζ(l) − 2)

νl

(1 + ν
αζ(l)/2

l )

× 2F1

[

1, 1, 2−
2

αζ(l)
,

1

1 + ν
αζ(l)/2

l

]

(41)

The final expression for̄Fm(t) in (15) is obtained by substitut-
ing (37) and (40) into (35). The conditional SINR distribution
for unbiased and range-expanded pico user, (16)-(17) can be
similarly derived.

The simplified expressions for̄Fm(t), F̄o(t) and F̄e(t) in
(18)-(20) can be obtained by substitutingσ2 = 0, αm =
αp = α in (15)-(17), and then solving the integrals as
∫∞

0
r exp(−βr2)dr = 1/(2β).
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