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Abstract—Cellular heterogeneous networks (HetNets) can im- to as range-expanded users. With this technique, the number
prove capacity by offloading users from congested macro cell of offloaded users can be controlled with the bias value to
to lightly-loaded small cells through biased association KOwn — opiain 5 palanced distribution of user loads across the. tier
as cell range expansion (CRE). However, the offloaded (range .
expanded) users must be protected from macro interference However, the load bal_ancmg offered ‘F’y CRE comes at the
through time/frequency resource partitioning. In this paper, we COSt of severe downlink co-channel interference to range-
develop an analytical framework to evaluate the performane expanded users from the macro tier, which must be mitigated
gain due to CRE further supported by resource partitioning in  py interference coordination techniques.
two-tier (macro-pico) networks with multi-channel downlinks, for The interference coordination in such scenarios can be im-

example, those based on orthogonal frequency division mugtte e ) . .
access (OFDMA). By exploiting the flexibility in subchannel plemented by resource partitioning [2]-{4], in which a et

allocation offered by OFDMA, frequency-domain resource pa  fraction of time or frequency resources is provided exvlelgi
titioning is proposed in which the macro tier is muted on a to small cells by muting the macro-tier transmissions irséhe
fraction of total subc_hannels, which are aIIoca_ted exclusely resources. The range-expanded users are then served by the
to range-expanded pico users. The load perceived by a base-gmg|| cells in these resources, thus isolating them from the
station is a key factor in determining its interference contibution . . .
over the network and is directly affected by user offloading ad macro tier 'nt?rference' S'mu'at_"?” r.eSUItS_ [5]-[8] dersivate
resource partitioning. Thus, the analysis of such systems mst that CRE with resource partitioning highly enhances the
incorporate cell load. While previous studies mostly rely a full-  otherwise limited performance gains from the deployment of
load assumption, in this paper, we properly characterize dé small cells. These interdependent techniques howevet, meus
load as the function of user density, association bias and seurce  qintly tuned for optimal system performance. To this e, t
partitioning fraction. We then, evaluate the performance n terms . L . : e
of average user data rate over the entire network, and also ‘?F’“ma' qssomgﬂon bias at the g'Ver,' resource partitgfriac-
investigate the optimal choice of association bias and resme tion was investigated for sum capacity and related perfaoea
partitioning fraction. metrics in [9] through a semi-analytical approach. Analgti
Index Terms—Cell load, cell range expansion (CRE), het- approaches to det_e_rmi_ne the optimal combination o_f biaseval
erogeneous networks (HetNet), orthogonal frequency domai and resource partitioning fraction were presented in [1@] a
multiple access (OFDMA), Poisson point process (PPP), stuestic  [11] based on per user spectral efficiency and downlink rate
geometry. distribution, respectively. However, both assumed fullgded
network, i.e., all the BSs are simultaneously active alltime.

The full-load assumption is not applicable for small cells,
unless they are deployed in hot-spots and very large biasing
Co-channel deployment of non-conventional, low-poweaowards them is introduced. On the other hand, with verydarg
base-stations (BSs) such as picos and femtos within the arbesing, macro cells may no longer be fully loaded. Thus,

covered by the existing macro cellular infrastructure is thull-load is not a reasonable assumption to study biasimg T
most viable solution to meet the unrelenting growth in datnalytical results in [12] show that biasing has detrimenta
traffic demand [1]-[3]. The resulting mixed network of macrémpact on the average rate of the overall network in fully
and low-power BSs is referred to as heterogeneous netwéwkded condition. The motivation behind biasing is to inyaro
(HetNet) [1]-[3]. The increased capacity is achieved by ofhe network rate through load balancing, i.e., relieving th
floading users from the congested macro tier to pico/ferato tiheavily loaded macro cells and better utilizing the resesirc
to give them access to a larger fraction of radio resourcds auf lightly loaded small cells. But if the macro and small sell
to reduce the macro cellular load so as to serve the remaingrg assumed to be always fully loaded, then biasing makes
macro users with improved rates. The user offloading howeveo sense. Thus, the full-load assumption cannot reflect the
may be limited due to transmit power disparities of macro ariménefits of biasing. Meanwhile, the interference from a BS
pico/femto BSs, thereby limiting the capacity gain. is a direct function of its load. For example, the BSs that
The macro offloading can be increased by biased associatieneive more load have higher probability of being activa at
known as cell range expansion (CRE) [2], [3], in which a usgjiven time instant, thus contributing more interferenceéhe
is offloaded to a small cell if the received power from it ismetwork. As the load perceived by a BS is significantly atect
less than that from a macro cell by at most some amoumy the number of users offloaded to/from and the fraction of
known as association bias. Such offloaded users are refenesburces allocated, the interference to a given usergiron
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depends on association bias and resource partitioninidrac  The rest of the paper is organized as follows. The net-
Such effects cannot be captured if the full-load assumptierork model, user association policy and resource partitipn
is used. Thus, an analytical framework for the performanseheme are described in Section Il. Section Il utilizes the
evaluation of cellular HetNets with biased association anter association probability and cell load derived in Sectl
resource partitioning, while appropriately modeling thall ¢ to derive the average user data rate over the entire network.
load, becomes essential and this paper aims to fulfill thisine The special case of no resource partitioning is also andlyze
We focus on the downlink performance analysis of twgh section lll. Validation of the analytical results thrdug
tier (macro and pico) HetNets. The spatial distributionshef Monte-Carlo simulation is done in Section 1V, along with the
network nodes in such networks have recently been modeRxiensive numerical analysis to assess the impact of liasin
using Stochastic Geometry, with each tier modeled by a poiitd resource partitioning on user data rate. Finally, et
process [13]-[16]. The locations of macro and pico BSs agencludes the paper.
thus modeled as independent Poisson point processes ([RPPs)Notations. Throughout the papefR? denotes the two-
this paper. The downlink analysis of cellular HetNets ulsualdimensional (2-D) Euclidean space dhd—y||, the Euclidean
assumes a time-shared single channel per cell [10]-[12], [1distance between two pointsy € R2. P(-), E(-) and Exp1]
[16]. Thus, only time-domain approach to resource partitig denote the probability measure, expectation operatoruaitd
has been mainly analyzed [10], [11], [17], [18], in whictexponential distribution, respectively. A homogeneoud® PP
the macro tier is periodically muted on certain fraction odf density A > 0 on R2 is denoted by a set of points
subframes, known as almost blank subframes (ABSFs). = {x,z2,...}, wherex; € R? is the location of the-th
contrast, we consider a multi-channel downlink, for examppoint. According to the definition of PPP [21], the numbers of
the one based on orthogonal frequency division multipf@ints in disjoint areasi;, As,... Ay are independent Pois-
access (OFDMA), in which multiple users are simultaneouson random variables (RVS) with meam, AA,, ..., A Ay,
served in orthogonal subchannels. In LTE networks, m@tiptespectively.
access in the downlink is established by OFDMA. Due to
the flexibility in subchannel allocation offered by OFDMA,
we propose frequency-domain resource partitioning in twhic Il. SYSTEM MODEL
the macro tier is restricted from using a fraction of total

subchannels so that they are allocated exclusively to ran Network and Channel model

expanded pico users. We consider an OFDMA based two-tier downlink cellular
The main contributions of this paper are summarized &etNet consisting of macro and pico BSs, which are as-
follows: sumed to be spatially distributed ®? plane as independent

1) Based on the proposed multi-channel model, we ﬁrtgpmogeneous PPP®,, of density A, and &, of density

define the load perceived by a BS as a direct functio)_i?’ respectively. For the macro tier, the PPP model provides

of the number of associated users and the numbertlﬂ‘ht lower bounds for performance measures, as tight as

available subchannels. Such characterization effegtivd/'® UPPer bound resuits provided by the popular grid model,
captures the effect of user density, association bias aWHen _compared to the actual 4G netvyork [22]. Hovyever, the
resource partitioning fraction on cell load analytical tractability of the PPP model is a key benefit dkier

2) Next, we evaluate the performance of the propos@&id model. Its adoption for the pico tier is justified beoaus

system in terms of average user data rate that can tgg randomness in pico BS Iocatiops is expected. Si.milarly,
attained over the entire network, while incorporating thiSer” locations are modeled as an independent ®pRvith
cell load into the analysis. ensity \,. The two network tiers share the same spectrum

3) We comprehensively analyze the average rate perfgfljich is ev_enIy divided intd, > 1 subchann%Fs We consider
mance under different bias values and resource parqﬁt transmit power spectrum on the downfinaind thus, the

tioning fractions and finally investigate their optimalPCWer Per subchannel is kept constanl;,atande for macro

combination. and pico tiers, respectively. By and Phax are the maximum
4) We numerically demonstrate that if the bias value arfiloWable transmit powers of macro and pico BSs, respdgtive

— m — D

resource partitioning fraction are carefully selectee, then P = Pra/ L a“?' By = P_maX/L' ) .

rate performance can be highly improved in comparison Independent Rayleigh multipath fading Wlth power-law path

to the CRE only system (i.e., no resource partitioningb‘?s_s is assumed between any BS-user pair. The chc_';mnel power
5) We show that the optimal combination of associatiop@ins from the macro BS located af, € ®,, and pico BS

bias and resource partitioning fraction is strongly ddocated atz, € @, to a typical user located, without loss of

pendent on the network load. generality, at the origin, are thus given by, ||z,,||~*" and
. ha,||xp|| =, respectively, wheré, , ~ Exp[l] and h,, ~
We hasten to add that although the stochastic geometry #p[1] are the corresponding fading powers, ang and ay

proach to multi-channel downlink analysis of cellular Hety e the path-loss exponents of macro and pico tier, respbgti
Nets has been considered before, for example [19], [20], the

problem of CRE_ with resource partltlo_an Ir.] r_nUItI-Channel 1A subchannel may refer to one or multiple resource blockssjRB LTE
environment, while successfully capturing their impactcefl  systems.
load is addressed hefer the first time. 2This assumption is consistent with LTE downlink power aditien [23].



B. User association scheme Am P2 )\pr/o‘

U = 5 o — )
The user association scheme is based on biased received ), PY/“ + A\p(BP,)?/ Am P + /\Z,Pg/“

power, i.e., each user is associated with the BS offering the A\, (BP )Q/Q A\ p2/e
maximum biased received power [11], [12]. Fading effectU, = 2/2 P - Q/QP P :
is ignored in the association metric to avoid the ping-pong APt @+ Mp(BBp)? Ay Pl @ + Xy (Pp)2/
handover effect [24]. IfB is the association bias introduced (4)

for pico CRE, a typical user at the origin is associated witfhe probabilities (1)-(4) are also derived in [11] and aneegi

the nearest macro BS only #,, R, > P,BR,“?, where here for the sake of completeness.

R, = mig lzm || and R, = mig |lzp| are the distances As per the given user association scheme, the set of total
T € Tm €

from the origin to the nearest macro and pico BSs, respégtive/Se's in the networkp,, can be divided into three subsets:

It is otherwise associated with the nearest pico BS. Whenl) @', the set ofmacro users

associated with the nearest pico BS, it is registered inses u  2) @7, the set ofunbiased pico use_rsand

list as unbiased useif P,R,"" > P, R;®» and asrange-  3) @i, the set ofrange-expandgd pico users

expanded useif P,R,"* < P,R;* < P,BR,"". The such that®, = @ U ®2 U $¢. Since each user i®,, can

nomenclatures for pico useranpiasedand range-expanded belong to exactly one of these three sets, they are disjoint.

have been adopted from [11]. The probabilitiesUm,_Uo, and U, can als_o be interpreted
For the given user association scheme, if we randomly piéR the average fraction of users belonging to the d&fs

a user, it may turn out be a macro user, an unbiased pico u®#, @nd ®;, respectively. For each user-set, we are interested

or a range-expanded pico user with certain probabilitiése Tin the number of users associated with a typical BS to

following lemma expresses these probabilities. characterize the typical cell load of each tier and the ayeera
share of radio resources received by a typical user. Thalactu

Lemma 1. Let Uy, U, and U, denote the probabilities that |ocations of users with respect to each other in eddh
a randomly chosen user is a macro user, unbiased pico US€E {m, o,e} are less important to us. Thu®™, ®° and
and range-expanded pico user, respectively. Then, ¢ can be equivalently modeled as independent PPPs with
o ) BPA 2 2am densitied/,, A\, U, A, andU.\,,, respectively. In other words,
U =21, / re” ™ exp ( — wAp(—”) o r?)dr they can be modeled as thinned versions of the original gsoce
0 P ®,, with retention probabilitied/,,,, U, and U, respectively,
- ) independent of the locations of the users.
U, = 27T)\p/ re—™\r’ exp(_w\m(P_m)m “—P)dr Each user in®”" is always associated with the nearest
0 P, macro BS and each user @9 U ®¢ is always associated
(2) with the nearest pico BS. The network can thus be viewed
2 Py \ oo 20p as a superposition of two independent Voronoi tessellation
Ue = 2”)‘17/0 re Y {eXP ( — TAm (B—pp) ) of the macro and pico tier, respectively. The Voronoi cefls o
2, each tessellation are disjoint and their sizes are independ
) e ) }dr. (3) and identically distributed (i.i.d.) random variables G}\25].
Hence, together with the independent scattering propéttyeo
Proof: Since the analysis conducted on a typical us&PP, which states that the number of points of a PPP in disjoin
located at the origin is valid for any randomly chosen uségts are independent RVs [21], [26], the number of macro
according to Slivnyak’s theorem [21]],, can be derived as users in different macro Voronoi cells are i.i.d RVs, and so
are the number unbiased pico users and the number of range-
Up =P(PnR,™ > P,BR; ") expanded pico users in different pico Voronoi cells. Given
- 1/ap pam/a in the following lemma are their probability mass functions
=Er., {P(Rp 2 (PP/P’”B) " E p)} ’ (PMFs), which are essential for calculating the typicall cel
which can be solved by using the probability distributioris ¢°ad of each tier and the average share of radio resources
R,, and R,. We know thatP(R, > r), | € {m,p}, is the received by a typical user, later in this paper.

probability that no points ofp, lie within a circle of radius Lemma 2. Let V,,, be the number of users associated with a
r, centered at the origin. Sinc®,; is a PPP with density randomly chosen macro BS, add, and N, be the number

Ai, we have,Fg,(r) = P(R; > r) = exp(—mAr?). The of unbiased and range-expanded users of a randomly chosen
probability density function (PDF) oR; can then be obtained pico BS. Their PMFs are given by

as fr,(r) = —dFg,(r)/dr = 2x\rexp(—mA;r?). Similarly,

by using these distributiond/, and U, can be obtained as P(N; = n) = 3,53~5F(3.5—|—7”L)(Ul/\u//\c(l))n 0

U, = P(PPR;% > P,R;°") and U, = ]P’(PPR;% < T(3.5)n! (Ui /Ac) + 35t =

PyRm < P,BR, ™). L] Vi € {m,o0,e}, (5)
For the special case of equal path-loss exponents, i

am = o, = «, the integrals in (1)-(3) can be re-

duced to following simple closed-form expressions by using Proof: Since®!" is a PPP of density/,,\,,, the number

Iy~ rexp(—=pBr?)dr = 1/(2p). of macro users in a typical macro Voronoi cell of given area

P

—exp(—ﬂ'/\m(Pp

'\/?/Here/\c(m) =\ and /\C(O) = /\C(e) = Ap-



is Poisson distributed with medii,, A, A. The unconditional where: () = Am, A¢(o) = Ac(e) = Aps Li(m) = Li(o) = Le
PMF of N, in (5) is then obtained by averaging over the disand L.y = L,

tribution of Voronoi cell aread approximated by the Gamma
distribution, fa(a) = (3.5\,,)%%a%% exp(—3.5\,a)/T(3.5)
[25]. The PMFs ofN, and N, can be similarly obtained.m

Proof: If the number of users associated with a typical
macro cell is less thaf. (i.e. N,,, < L.), the probability that
a subchannel of. is used in the cell isV,,/L.. However, if
N,, > L., all the subchannels &, are used in the cell with

C. Resource Allocation and Partitioning probability 1. Thus,p,, can be expressed as
For any range-expanded pico user ¢, the average Lo—1 0o
received power from its nearest macro BS is greater than that  , — Z ﬂp(]vm =n)+ Z P(N,, = n)
. . _ Lc
from the serving pico BS. The range-expanded users thus need n—0 n="L.
to be protected from high-power macro interference. If each Le—1
macro BS leaves a set df, subchannels unutilized out of =1— Z (1 - ﬁ) P(N,, = n) (7
the total . subchannels, each pico BS can serve its range- n—0 Le

expanded users in these macro-interference free subdsanng,g final expression fop,, is then obtained by substituting

Each macro BS thus allocates — L, = L. number of o pME of N, in the above equation. The probabilities
subchannels to serve its users. The unbiased users in &ach Bhdp, can be similarly obtained. m

cell are also served in the same sefpfsubchannels sinck, Remark. As we explained earlier, the number of users

macro-interference free subchannels are reserved evelysi 55sociated with different macro cells are independentsThu
for its range-expanded users. the probability that any randomly chosen macro BS is active
Let the set ofL, macro-interference free subchannels rg;, 4 given subchannel from the s&t, which is p.,, is
served exclusively for range-expanded users be demtedir‘?@fependent of any other macro BS. Similarly, the probti
S- and the set ofL.. common subchannels shared by thg anqp, of any arbitrary pico BS are independent of any other
macro and pico tiers be denoted Sy. The subchannels in pico BS.
each BS are allocated to individual_ users accqrding to oneye refer top,, as the load of a typical macro cell. It can also
subchannel per user and they are uniformly and indeperydenl, interpreted as the probability that a typical macro B®is
selected from the available set. However, if the number g{hyting to network interference because a typical usénge
users associated with a BS is greater than the numbersgfyed on a subchannel receives interference from onlethos
subchannels available, the resources are time-sharedyequass which are active on that particular subchannel. Whie th
among the users. This is basically frequency- and timgyinors in [27] used mean statistic of the number of users

domain round-robin scheduling, which gives equal share Qfsqciated with a typical BS to approximate this probapbilit
resources to all the users. This simple scheduling algarit Average number of users t}) we derive
e ’

. - . . . min -
leads to analytical tractability and provides importarsigts y Total number of frequency resource blocks availl

C . .. the exact probability in this paper. Similarly, and p. are
on system parameters. Sophisticated scheduling algcmthm . ; . ,
like max-rate and proportional fair schedulars, which a ferred to as the loads of a typical pico cell in two différen

significant complexities to the analysis will be consideied groups of frequency resource’s and 5,., respectively. We can

future work. The current analysis serves as a lower bound 8Rserve that user den_S|ty, association bias and the degree o
resource partitioning directly affect the cell load.

the performance of these sophisticated algorithms. . . : .
b P 9 Having derived the cell loads, the signal-to-interference

We assume that each BS has saturated downlink transmisa . tio (SINR) of a tvpical located at th
sion queue for each associated user and thus, each usesahfa '-:Olsr?er:a'tlobélon s) tc(;Iﬂa d)(/apr:g?eduzm S(I)l(\:l?{eforaeacr?
has data to receive from its serving BS. While some B {om w : 9 u y

{m,o0,e} can be computed as

may have more users than the available subchannels, s me

may have less. Thus, depending upon the number of us m B P hy,, D, ™

associated with it, a BS, may or may not be active on all _Pm Z ha, [T ||~ +szhm o]~ + o2
its available subchannels. In the following lemma, we deriv zme\ym\bmm = °

the probability that a typical BS of each tier is active on a 8)

given subchannel.

Lemma 3. Let p,, be the probability that a randomly chosen Pyhy, D, "

p'tbo
macro BS is active on a given subchannel from the&et SINROZP Z o ||Tm|| "% + P, Zh [|lzo| |~ +o2
Similarly, letp, and p. be the probabilities that a randomly " Em i Pl toli™e

chosen pico BS is active on a given subchannel from the set m € To€Wo\bo )
S. and S,., respectively. Then,
_ P,hy D7
3585 1 L”(z”: "MLy — n)D(3.5+n) SINR. = — 1: —, (10)
PP TT(E5) L n! » O hacllzcll ™ o
n=0 ze€We\be

Ui/ Acy)”
(Ul)\u//\c(l) + 3.5)3:5+n

}, Vi € {m,o,e} (6) where b; is the serving BS at a distande; from the user
u when it belongs to®! ando? is the noise power. If the



userwu is being served on a subchannel from the Sefi.e. In the following Lemma, we derivé;, which is required to

when it is either a macro user or an unbiased-pico ugef), compute the average user data rate in (11).

and ¥, are the sets of macro and pico BSs respectively, that .
. : emma 4. The average time-share of frequency resourégs,

are active on that particular subchannel. The skts and received by a tvpical user whenu € ®! is qiven b

W, are independent thinnings of the the original PRPs yalyp u!S 9 y

and ®,, respectively, with retention probabilitigs,, and p,, LoayAea . _35

respectively. Hence, they are independent PPPs with gensit T = U, (1 - (1 +3.5 Ul/\u//\C(l)) )

DPmAm andp,A,, respectively. Similarly®. is the set of active

5 Lr@ n—1
pico BSs on the subchannel the usebeing served from the ~ 3:5° I(35+n) (UM/Awy) (L —n)
setS, (i.e. whenu is a range-expanded pico user) and is also  I'(3.5) o ! (UiAu/Acy + 3.5)3:5+n ’
a PPP with density. . Vi€ {m,o,e}, (13)
[1l. AVERAGE USER DATA RATE the;;e/\C(m) z Amy Ac(o) = A¢(e) = Aps Lin(m) = Li(o) = Le
... an rk(e) — Lire
The motivation behind CRE supported by resource partition- ()

ing in cellular HetNets is to provide high data rate to usefdroof. The proof is given in Appendix A. O
through load balancing. Thus, the performance metric ahose

S X >~ To finally compute the average user data rate in (11), we
in this paper is the average user data rate that can be attalﬂ y P g (11)

6w derive the average link spectral efficien®&ylog,(1 +

over the entire network. SINR))]
Thgorem L T_he average data rate per unit bandwidth of g o3 5 The average link spectral efficien®@/[log,(1 +
typical useru is given by SINR)] of the useru when it belongs tab!, denoted byC;
R= Y U/TEog(l+SINR), (11) s given by
le{m,o,e} © 77

C = 1 Fl—(t)dt, Vi e {m,o,e}, (14)
whereU; = P(u € ®!), which is given by Lemma 1, arid In2 J, 1+t
is the average time share of frequency resources received\PiyereF;(t) = P(SINR > t) is the conditional complementary
the useru when it belongs tap,. cumulative distribution function (CCDF) of the SINR of the

Proof. With adaptive transmission scheme so that the Shanrigifr v when it belongs tab;,, and is given by(15)-(17) for
bound can be achieved and treating interference as noige [F2CN! € {0, ¢}.
the data rate per unit bandwidth of a typical useconditioned  |f the noise is ignored (i.e., the network is interference

on u belonging to®!,, is given by limited) and the path-loss exponents are assumed eqa(
R = tilogy(1+ SINR), Vi € {m,0,¢},  (12) ?fa):(;g)' then Fin(t), Fo(t) and Fe(t) can be simplified to

wheret; is the fraction of time the uses is served on a

subchannel. LefV; be the number of other users in the cel

to which the user, belongs. If the total number of users is These conditional SINR distributions can also be integatet

no greater thar,.;y (i.e. N/ +1 < L,;)), whereL, .,y = as conditional coverage probability #&SINR, > 7) is the

Ly = LeandL, ) = L, the usewn can exclusively occupy probability that a randomly chosen user can achieve thetarg

a subchannel without time sharing and thiys- 1. Otherwise, SINR 7 under the condition that the user belongsip.

the subchannels are time-shared equally among the toted use Unlike the SINR distribution in [11], in this paper, it is als

and thust; = L,y /(N/ + 1). dependent on user density and the degree of resource parti-
The average data rate per unit bandwidth of the user®!,  tioning, apart from association bias. In the full-load migde

is R; = E[R;] = E[t;log,(1 + SINR))]. Since the number of the impact of biasing on SINR distribution is only due to the

users associated with a BS determines its probability afdeiassociated users’ geometry (i.e., with biased associjatiuly

active on a certain subchannel (Lemma 3), the total interfefery good geometry users are served by macro cells while pico

ence received by the user and thus its SINR depend on theusers now also include worse geometry users). In this paper,

number of users associated with the cells other than théngervbiasing also affects the interference power through ceitilo

cell in the networkt;, however is the function of number of Thus, the impact of biasing on SINR distribution is better

users in the serving cell. As we discussed in 1I-B, the numbeaptured than [11]. The SINR distribution of unbiased pico

of users in different cells are independent, which impliestt users is also dependent on association bias unlike the one

t; and SINR are independent. ThuE[t; log,(1+ SINR;)] = in [11] as the interference from macro tier to unbiased pico

T, E[log,(14+SINR,)], whereT; = E[t;]. According to the law users depends on biasing. These claims will be verified girou

of total expectation, the overall data rate of a typical us& numerical results in Figure 2.

then given byR = Zle{m,o,e} U, R;. By using Lemma 4 and The special case of no resource partitioning will be ad-

5, which deriveT; = E[;] and the average spectral efficiencglressed next so that the average data rate with resourde part

E [log, (1 + SINR;)], respectively, the final expression for thdioning can be compared against the no resource partigonin

average user data rate is obtained. 0 case, subsequently quantifying the gain.

f’roof. The proof is given in Appendix B. O
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5oy 2T [T 1 2 ap 2 2pe 1 2 1
Ft) = U /0 TGXP{ e e 1Jr(oap—z) (1+1/t)2F1 11,2 o, 141/t
—TAm (Pmprl)g/am 7’20‘17/0"“} {exp (—77)\m (Pmprl)Q/am 20/ m (sz/o‘m - 1)) - 1} dr. a7
2p 1 2 1 N, (P, \
— =1 m _Z v [ 2P
Fn(t) = U {1+(a—2)(1+1/t)2F1 {1’1’2 oz’l—i—l/t}—’—)\m (P B)
2p, 1
X(”<a—2><1+3/t>2F1 {1’1’2 1+B/tD} (18)
_ A [P\ 2 1
F,(t)=U;"! 1+—m<—m> +
®) { A, \ P, (a—2) (1+1/t)
—1
2 1 Ambm [P\
X oIy {1712—5,@} <Po+ » (E) ) (19)

) B 2p 1 2 1 A P, 2/
B ) . Im o[ Zm
=0 {1+ iy [ )+ 3 (7E) }

-1
e 1 2 1 Am [ P\
—q1 mniLyL2-— ——- — | — . 20
fetgmEt 1 e 1 () 20
A. Special Case: No resource partitioning by p,, andp,, respectively, are thus given by
If no resource partitioning is applied, the pico users nesd n 3535 1 L1 (L —n)T(3.5+n)
be categorized as unbiased and range-expanded usersédecaug; = 1_F 3.5) 7 { ol
they are served from the same pool of tatakubchannels in ' n=0 '
each pico cell. Let/,, denotes the probability that a randomly % (UjAu/N)" ] Vi
. ! , € ,D}- 21
chosen user is a pico user. Then, (Ujdu/Aj +3.5)3:5+n jefmp} (1)
U —1-U In any cell, either a macro or a pico cell, if the total asstada
,=1—

users are less thah, all the users can exclusively occupy a
whereU,, is the probability that a randomly chosen user isubchannel, otherwise the subchannels have to be timedshare
a macro user, and is derived in Lemma 1. The total usersdmong the users. The average time shares received by altypica
the network can thus be divided into two selg”, the set of macro user and a typical pico user, denotedZhy and 7},
macro users, an@?, the set of pico users”" and ®? are respectively, are given by
independent PPPs of densiti&s, A\, andUp,\,,, respectively. Ly 3.5

With no resource partitioning, each macro BS can accessy); = (1 — <1 +3-51Uj/\u//\j> )

all the available subchannels in the system to serve itssuser Jhu
(i.e., a total ofL subchannels). Meanwhile, in each pico cell, as 3 53 5 (3.5 +n) (Ujdu/X)" 1 (L —n)
explained earlier, the users (either unbiased or rangereied Z n! (U;Au/Aj + 3.5)35+7 ’

users) are served from the same poollo§ubchannels. The =
cell loads of a typical macro BS and a typical pico BS, denoted vje{m,p}. (22)



The average user data rate per unit bandwidth for the c¢ .
with no resource partitioning can finally be expressed as ] —6— Analytical

_ 8 —— Simulation {
R =UnTpCr + Up,T,Ch, (23)

whereC; = E [log,(14+SINR,,,) andC,, = E [log,(1+SINR,)
are the spectral efficiencies of a typical userlocated at
the origin when it belongs t@®;" and ®?, respectively. The
corresponding SINRs are given by

o (10 dB, 0.2)

4+ i

Average user data rate (bps/Hz)

—a =
SINR,, = P, D" ) WP
— — 2’ (2 dB, 0.4)
P § P | [T || am"'PpE hprxp” “+o 2F 4
T €W \bm zp€W), A =4\
1 L L L P \m L L L L L
(24) 510 20 30 40 50 60 70 8 90 100 110 120
Py D;ap AL
SINR, = v

—Qm —Q 2’
P Z hzm | |17m|| + Pp thp | |IP|| Pto Fig. 1. Validation of the analytical result for average udata rate (11) via
TmE€¥m, z,€¥,\bp Monte Carlo simulations for different values of user densit,, pico cell
(25) density \,, and association bias and resource partitioning fractiBn).

where b; is the serving BS at a distand®; from « when

u e ®, 5 € {m,p} ¥, and ¥, are the sets of macro 1

and pico BSs respectively, that are active on the subchan

the useru is being served and they are PPPs with densiti

PmAm and ppA,, respectively. As in Lemma 5, the spectra

efficiencies can be derived as
1 [T EQ®)
7 2 Jy 1+t

where, F,,,(t) and F,(t) are given by (27)-(28).

When the network is interference limited (i.e., the noise
ignored) andw,, = o, = «, the simplified expressions for
F,(t) and F,(t) can be obtained as (29)-(30) Eap——

Remark: The results for the case of neither biasing nc 065l o -sor 0as
resource partitioning can be found by substitutiBig= 1 in _*_)\U:SO)\m, ue0.1 |range-eYpanded
the above results. 06 — plcq user

5 10 15 20 25 30 35
B (dB)

0.95R

09}

unbiased

0.85 pico user

dt, ¥j € {m,p}, (26)

0.8
0.75

0.7

Conditional coverage probability, P(SINR 271)

IV. SIMULATION AND NUMERICAL RESULTS

. . . . . .Fig. 2. Impact of association bid3, user density\,, and resource partitioning
In this section, we present numerical analysis and vabdatifraction 1 on conditional coverage probabilities of macro user anth byges

of our analytical results. Unless otherwise stated, we sBo®f pico user (unbiased and range-expandeg)= 4Am, 7 = 0.5.

L =20, \,, = 1BS/km?, P, = 46 dBm, Phax = 30 dBm,

o? = —109 dBm, o, = 3.5 and a,, = 4. The degree of

resource partitioning is expressed by the fractios L, /L. become active to serve the increased number of users which
The average user data rate (11) is validated in Figuredirectly affect the interference. We can observe that nesou

via Monte Carlo simulations on a square window 2if x  partitioning fractiory: directly impact the coverage probability.

20km?. We can observe that the analytical results match t& 1 decreases, more subchannels become available for macro

simulation results quite well. The small gaps are mainly dusers and unbiased pico user, which decreasesand p.,

to the approximation for cell areas distribution. consequently increasing the coverage probabilities ofrmac
Before numerically analyzing the average user data ra@d unbiased pico users due to decrease in interference. The

we first analyze the conditional coverage probabilities){15coverage probability of range-expanded user on the othret ha

(17) so that the data rate trends can be better understodegcreases due to increasepin

We can observe in Figure 2 that the coverage probability ofIn Figure 3, the average user data rate of biased association

unbiased pico user increases with the increase in bias.i§hisvith and without resource partitioning is compared against

because, when more macro users are offloaded to pico tthgt of unbiased association in different load conditioms.

the cell loadp,, of macro tier decreases and so does thmur model, the network load is directly proportional to user

interference from macro tier. Similarly, for macro user andensity. The user data rate decreases with increasing load d

range-expanded pico user, apart from users’ geometry, tbeincrease in interference and decrease in the users’ share

variation in the coverage probability with bias is mainlyeduresources. In biased association without resource penititi),

to the change im,,, andp.. The coverage probability of eachthe SINR of offloaded users degrades. However, in a lightly

user type decreases as user density increases because$soréoBded network, they are offloaded to BSs offering the higher



_ 2\ [ 2Dm 1 2 1
F.(t) = il / rexp{—tP,;lagr“m — A1 (1 + P o Fy [1, 1,2 — })
0

U (am —2) (1 +1/1) a1+ 1/t
/o
_ —1\2/ap 200 [ 2/a 2pp B2er _ 3 71
W)\p(Pme) r p(B p+(ap—2)(1+B/t)2Fl 11172 O[p71+B/t d’f’, (27)
_ 2w, [ _ 2p 1 2 1
Fy(t) = =2 —tP;to?ror — (1 L i1,2- = ——
o0 Up /0 TeXP{ p 27 e ( +(ap_2)(1+1/t)2 1{7 ’ O‘p’l""l/t})
- /OMn
_ —1\2/am _2a /om —2/om 2pm B _i 1
TAm (P Py 1) 20 (B +(am_2) (1+1/(Bt))2F1 1,1,2 o TT1/BD dr. (28)
Fot)=U 41422 1 plige-2 1 | N P g\
mA T (a—2)(1+1/)> |77 @ 1+1/t] " Am \ P
2p, 1 2 1 !
X<1+(a—2)(1+3/t)2F1 {1’1’2 a’l—l—B/t])} ’ (29)
E,)=U"¢1+ 2Dr ! A2 L | 2w (L .
P (a—2)(1+1/)> " |77 a'1+1/t] " A, \P,B
2m 1 2 1 -t
x (1 Fl1,1,2-2, —— . 30
( CEDIES Dk { a 1+1/<Bt>] } (30)
4 ; ; ; pair is (29dB, 0.45), while for A, = 100\, the optimal pair
IR is (30dB,0.1).
— e B-104B, =0 ||
* —*—B=0dB,p=0 With resource partitioning, for the given value pf the

average link spectral efficienay,, of a typical macro user
increases with the increase in bias because more macro users
with low SINR (users far from the serving macro BS) are
offloaded to pico cells, and the interference from other macr
cells also decreases due to the decrease in macro cell load.
Note that the interference from pico tier is invariant to bi-
asing because the pico cell load in the resource gisiufs
independent of bias. Meanwhile, the share of radio ressurce
received by macro users also increases. Thus, the coimribut
of macro users towards the average data rate increases with
the increase in bias. But after a certain association bias, i
eventually decreases due to the decreasing fraction ofanacr
users. Similarly, the contribution from range-expandecbpi
users initially increases with increase in bias due to the
increasing fraction of range-expanded users, but evdntual
share of resources and thus the user data rate improMggreases after a certain bias due to the decrease in average
compared to unbiased association. But when the networkjii§k spectral efficiencyC, and the increase in number of users
heavily loaded, the decrease in SINR dominates and unbiagﬁgring the resources. The decreas€.iris due to the fact that
association outperforms biasing. The SINR degradation gfore users with low SINR (users far from the prospective pico
offloaded users can be compensated by resources partfiongis) are associated with the pico cell, and in the meantinee, th
The resource partitioning fraction 0f2, for example, is shown jnterference from other pico cells increases due to ineréas
to outperform no resource partitioning scenario in terms cho cell load in the resource grouf).. On the other hand,
average user data rate in Figure 3 in any load condition. the fraction of unbiased pico users is invariant to biasing
Since resource partitioning costs macro tier its availabdd hence, so is the share of radio resources received by
resources, the resource partitioning fractipnmust be coor- unbiased users. However, with increasing bias, the caritoiy
dinated within the network for optimal user data rate. Thi® average data rate from these unbiased users significantly
optimal pair (B, u) for the given network parameters isincreases because of the decreasing macro-tier intecieren
investigated in Figure 4. It is found to be strongly depettdan as a result of the decrease in macro cell load. Overall, the
user density (i.e., network load). Fay, = 30\,,, the optimal average data rate initially increases with the increasdans, b

Average user data rate (bps/Hz)

Fig. 3. Effect of CRE with and without resource partitioning user data
rate, as user density is variedl; = 4\,



37 , , , , , poor SINR (users with higher average received power from
the nearest macro BS as compared to the nearest pico BS)
are associated with the pico cell. But, beyond a certain, bias
the decreasing macro-tier interference causggo improve.
If the increasing fraction of pico users dominates the ahiti
drop in C, and the decreasing share of radio resources, the
contribution from pico users to average data rate increaghs
increasing bias. Otherwise, it may drop initially, but etexdly
increases ag’, improves. When the number of pico users
sharing the resources become large, the contribution tsvar
the average user rate subsequently decreases. The indl d
in the contribution from pico users towards average usea dat
rate is the reason for the initially low rate of increase ie th
average user data rate fay, = 100\, in Figure 4.

The optimal bias values fak, = 30\, and A\, = 100\,

3.6

w
n

w
IS

w
w

w
[N}

w
H

Average user data rate (bps/Hz)

2.9

s 10 1 5?3 dBZ‘S 0 s w are found to b&89 dB and29 dB, respectively, in Figure 4 with
@ © = 0. Thus, with no resource partitioning, the optimal bias
(@) decreases with increasing user density as large bias vailies

make the pico cells overly congested with poor SINR users in
a heavily loaded network.

The variation of average user data rate with resource par-
titioning fraction . for the given bias value is plotted in
Figure 5. As previously explained while analyzing conditib
coverage probabilities in Figure 2, the cell loggds andp,
increase with increasing. The average spectral efficiency of
a typical macro user thus decreases with increagimye to
the increasing interference from macro and pico tier astres
of the increasing cell load, and so does the average spectral
efficiency of a typical unbiased pico user. This, togethahwi
the decrease in the average share of radio resources rébgive
users, causes the average data rate of both macro and uhbiase
pico users to decrease with increaspagOn the other hand,
as more subchannels are available for range-expanded pico
users with increasing, their average data rate increases. The
net result is the initial increase in the average data ratke wi

(b) increasingu and the subsequent decrease beyond a certain
Fig. 4. Average user data rate vs. association Btafor different values of value of u. With full-load assumption, the spectral efficiency
resource partitioning fractiop. in lightly loaded (a) and heavily loaded (b) would be independent gf and data rate would vary only due
network conditions, = 4Am, am = ap =4, 02 = 0. to the change in the users’ share of radio resources.
As observed in Figure 5, in a lightly loaded network

(A = 30A,,), the optimal resource partitioning fraction shifts
but decreases beyond a certain association bias and heaceydwards higher values as association bias increases, aghere
optimal bias exist. in a heavily loaded network\(, = 100),,), it shifts towards

It can be observed from Figure 4 that for the case wildwer values. This shows that in a heavily loaded network,
resource partitioning, the optimal bias increases witeéas- when a large number of macro users are offloaded to pico
ing 1 because more resources are reserved for the offloadedls, allocating more resources to serve these offloaders us
users. For\, = 30\, (lightly loaded network), the optimal will rather highly degrade the rate of remaining macro users
bias lies in the range of9 dB and above ag: increases and unbiased pico users instead of improving the average dat
from 0.1, whereas, it lies in the range @0 dB and above rate. Thus, lower resource partitioning fraction is ddsea
for A, = 100A.,, (heavily loaded network). In Figure 6, we analyze how small cell density affects the

With no resource partitioning (i.ex, = 0), the contribution optimal choices of association bias and resource paritigpn
from macro users to average user data rate varies with bfection. It is clearly visible from the figure that irrespiee
in the same way as in the case of resource partitioning. Tokethe user density and association bias, the average uter da
contribution from pico users however, has a different eoma rate always increases with the increase in pico cell density
as both the unbiased and range-expanded users are now semgethe number of users served by each BS decreases and
from the same pool ofl. subchannels. The average linkhus users get access to larger fraction of resources. With
spectral efficiency’, of a randomly selected pico user (eitheno resource partitioning, whether the network is lightly or
unbiased or range-expanded) initially drops as more usiths wheavily loaded, the optimal bias is found to increase as pico
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Fig. 5. Average user data rate vs. resource partitioningifna . for different  Fig. 6. Effect of pico cell density,, on the optimal choices of association
values of association bia® in lightly loaded (a) and heavily loaded (b) bias B and resource partitioning fractiom in lightly loaded (a) and heavily
network conditions\, = 4\m, am = ap = 4, 02 = 0. loaded (b) network conditionsy,, = ap =4, 02 = 0.

V. CONCLUSION

cell density increases. The optimal bias increased f83m We developed an analytical framework to evaluate the
dB to 42 dB for A\, = 30\, and 29 dB to 36 dB for downlink performance of cellular HetNets with CRE and
Ay = 100X, when X\, changed fromd\,, to 6\,,. With resource partitioning in a multi-channel environment, lehi
resource partitioning, the optimal paiB, 1) changed from taking cell load into account. The incorporated cell loaddeio
(29dB, 0.45) to (36dB,0.4) for A, = 30\, and (30dB,0.1) effectively captures the impact of user offloading and re-
to (33dB, 0.2) for A, = 100\, as A, increased fromi\,, to source partitioning on network interference. The perfarcea
6. When), further increased t8.,,, the optimal pairs for is evaluated in terms of average user data rate that can be
Ay = 30X, and A\, = 100\, were found to beg38dB,0.3) achieved over the entire network. We observed that if CRE
and(34dB, 0.25) , respectively (not shown in the figure). Thusis supported by resource partitioning, the average usexr dat
as in the case with no resource partitioning, the optimas bisate can be highly boosted. However, the bias valuand
increases with increasing pico cell density in both lighafyd resource partitioning fraction must be carefully tuned. With
heavily loaded network conditions. The optimal however the optimal pair(B, ), the gain can be as high da45%.
decreases with increasing pico cell density in a lightlydied Our analysis showed that the optimal pair must be updated in
network. accordance with the changing network load.
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APPENDIX Exp(1) and the independence betwe) .., andly,, o, Fin(t)

A. Proof of Lemma 4 can be further expressed as

We have, _ o0
F,(t) = / exp (—tUQPnzlro‘m) Lr, . (tP%lro‘m)
1 if N/+1< L, 0 B
"7\ othenwise. (1) X Lo (tP10) fo, (0)dr, (35)
1
Thus, T, = E [t;] can be derived as whereZ;,  (-) andZl;, (-) are the Laplace transforms of
. . I, m andl ., respectively, and'p,, (r) is the PDF of the
paN . X L. . distanceD,,, between the user and the serving B%,,. The
T = Z P(Ny =n) + Z "+ 1]P)(Nl =n) cumulative distribution function (CDF) oD,,, Fp, (r) =
n=0 n=Lrw P(D,, <r) can be expressed as
o~ Li() v
= PN =n—1) P(Ry, < 1,u € &™)
o1 F =P(R,, < M) = m— “
= Do (1) =Bl < rlu € @) =~ g R
— (Lsw ) : I BP,\ Ve
- —1|P(N; =n—-1). 32 = > P o [ =
;1<n (V] ) (32) Um/OIP’(Rp_(Pm) Rom/on|R,, y>
We know, the probability that a typical user belongs to agive X fr. (y) dy. (36)

cell is directly proportional to the area of the cell. Thuse t , o . .
conditional PDF of the area of a Voronoi cell given that éfter using the distributions aft,, and R.,,, which are derived

typical user belongs to it is given b (a) = cafa(a), where N the proof of Lemma 1, the required PDfp,, (r) can be
f4(a) is the unconditional PDF anelis a constant such that°Ptained as

I~ far(a)da = 1. The PMF of N/ can then be similarly dFp, ()
derived as in Lemma 2 as D, (r) = T:
3535F(45 —+ n)(Ul)\u/)\C(l))n 27T)\m A 2 BPp % 2am
P(N! =n) = 0 =——re " exp | — T —=— roor |,
( : n) F(35)n|(Ul)\u/)\<(l) + 3.5)"4%4'57 =5 Um ( p( P ) )

(37)
Vi e {m,o,e}, (33)
The Laplace transfornC;, (s) = E[exp(—sly,, )], VI €

where A¢(m) = Am and Aeo) = Aoy = M. The final .
{m) &) ¢le) i {m,o} ats =t/P,r* can be derived as

expression for; in (13) is obtained by substituting the PMF
of N/ in (32), where the first term is further simplified by

using P(N; =n —1)/n = Acw/(UiAu)P(Ny = n), followed -~ (LTQM) =Eyg, [ IT Ew, {exp (—tP, ' Pey

by > P(Ni=mn)=1. Fm TEW\by,

B. Proof of Lemma 5 X T h | ||| TO) H , VI € {m,o},

The average link spectral efficiency; of the useru when (38)
u € ®!, can be expressed as

00 WherePg(m) = P, PC(O) = Pp, Q¢(m) = Qm and Qo) =
G = ins / In (1 +1) fi(t)dt . By using the probability generating functional of PR
1 0 B with densityp;A¢(;), followed by the expectation with respect
= _ﬁ/ In(1+t)dE(t), to exponential RVh,,, we have
0

where f;(¢) is the conditional PDF of the SINR of the user t
u, given thatu € ®!. The second equality is obtained by ~Ztm. pmr =

expressingf;(t) in terms of CCDFF;(t) = P(SINR, > t) o 1

as fi(t) = —d%t(t). Equation (14) is then obtained by usingexp <—/ (1— — — )ZWpl/\C(l)y dy),

integration by parts. m L+ tPy Pegyramy = *¢®

By using the SINR expression (8), the SINR distribution of vl e {m,o}, (39)

the typical user conditioned onu € ®!* can be derived as

follows: where A¢() = Am and Aoy = Ap; nm @and o, are the
_ P, hy D-%n distances from the userto the closest interferer in the macro
Fn(t)=P (Ib +"}b = T > t) 3 (34) and pico tier, respectively, given that the useis served by

the macro BSh,, at a distanceD,, = r. Thus,n,, = r
wherely,,.m = Pn Y2, cw, \b, MonllZml| "™ andl, . = andn, = (BP,/Py,)'/rrem/e» Now, with the change in
PyY . cw, haollTol| =@, By utilizing the fact thath,, ~ variables(tP,,' Pyro=)~%/*wy? = u and further simplifi-



cation, we get

t
‘Cfbm,z (P_

[12]

o _ a 2/
r m) = exp <_7Tpl/\g(l) (thIPC(Z)T m) fecw

© 1
X/ ﬁdu)’
v 14 u%o

vl € {m,0},  (40)

where v, = t=2/*m and vy, = (t/B)~?/°». The integral
in the above equation can be solved in terms of Gau[slgl
Hypergeometric function as [16, eqn. (24)]

2

[13]

[14]

Vi

/ v [16]
v Luteo2 o (ace) =2) (1 4 <0/
2 1 [17]
X 2F1 1, 1, 2 — s o 72
AW 14y, <"

(41) (8l

The final expression faF,, (t) in (15) is obtained by substitut- (1]
ing (37) and (40) into (35). The conditional SINR distrilmrti

for unbiased and range-expanded pico user, (16)-(17) can be
similarly derived.

The simplified expressions faF,,(t), F,(t) and F.(t) in
(18)-(20) can be obtained by substitutiog = 0, a,,
ap = a in (15)-(17), and then solving the integrals a?ﬂ]
fooo rexp(—pr?)dr = 1/(2p).

[20]
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