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Abstract—A relay network in which a source wishes to convey
a confidential message to a legitimate destination with the assis-
tance of trusted relays is considered. In particular, cooperative
beamforming and user selection techniques are applied to protect
the confidential message. The secrecy rate (SR) and secrecy
outage probability (SOP) of the network are investigated first,
and a tight upper bound for the SR and an exact formula for the
SOP are derived. Next, asymptotic approximations for the SR and
SOP in the high signal-to-noise ratio (SNR) regime are derived for
two different schemes: i) cooperative beamforming and ii) multi-
user selection. Further, a new concept of cooperative diversity
gain, namely, adapted cooperative diversity gain (ACDG), which
can be used to evaluate security level of a cooperative relaying
network, is investigated. It is shown that the ACDG of cooperative
beamforming is equal to the conventional cooperative diversity
gain of traditional multiple-input single-output networks, while
the ACDG of the multiuser scenario is equal to that of traditional
single-input multiple-output networks.

Index terms—Physical layer security, decode-and-forward
relays, cooperative diversity, cooperative beamforming, large
scale relaying.

I. INTRODUCTION

The broadcasting aspect of wireless networks makes them
vulnerable to malicious attacks of adversaries. In order to
thwart such attacks, wireless security has traditionally relied
on data encryption and decryption algorithms at many layers
of the open systems interconnection (OSI) reference model,
e.g., [1], [2]. Alternatively, an information-theoretic approach
to physical layer security (PLS) exploits the random fading
of wireless channels. Although PLS was first introduced by
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Wyner in his seminal work [3] many years ago, only recently
that it has attracted the wide attention of the academic and
industrial research community in wireless communications.
The emergence of PLS has certainly created the need for new
signal processing methods, channel modeling, and commu-
nication designs. From the information-theoretic perspective,
the secrecy guarantee of wireless networks in the presence of
eavesdroppers mainly relies on a metric called the secrecy rate
(SR), which is the capacity difference between the legitimate
channel, i.e., that of intended user, and malicious channel, i.e.,
that of eavesdropper [4].

To deal with the vulnerability of malicious attacks from
eavesdroppers, numerous studies have been conducted, e.g.,
[5]–[7] and references therein. These studies cover many
different system models of wireless networks such as co-
operative wiretap channels (e.g., [7]–[24]), wiretap channels
without cooperative nodes (e.g., [6], [25]), and cognitive radio
networks (e.g., [5]). However, relays allow the benefits of
range extension and distributed diversity, and thus there is also
a great deal of interest in the exploitation of cooperative nodes
for PLS. Node cooperation in cooperative wireless networks
(CWNs) is thus an effective way to improve PLS [7]–[11]. It
allows single antenna nodes to enjoy the benefits of multiple-
antenna systems and is an attractive low cost solution. So
far, a variety of techniques have been offered to guarantee
reliable transmission via CWNs; for instance, relay selection
techniques [9]–[15] and jamming methods [9], [10], [16]–[18].
Meanwhile, the design of beamforming techniques for commu-
nication reliability via CWNs has been also considered in [9]–
[11] and [15]–[22]. In addition, there are attempts to propose
hybrid schemes combining different techniques, for instance,
there is the combination between relaying for retransmission
and jamming for eavesdropping attacks in [22] and [23].
Furthermore, it is interesting that in [20], the security issue is
also discussed for a large scale multiple-input multiple-output
(MIMO) relaying system to get insight into the limitations
of PLS when the number of relays approaches infinity. In
short, the proposed schemes for improving the security level
in CWNs are relatively diverse. Among the above-mentioned
works on PLS in CWNs, closely related to our work are the
contributions in [19]–[22]. We use cooperative beamforming
or user selection techniques for security enhancement, whereas
[19]–[21] do not account for multiple users. It is also noted
that there are other system models in [24]–[26] similar to our
work. However, [24] does not discuss multiple users, while
[25] does not use cooperative nodes, and [26] does not take
security issue into account. Moreover, [22] and [25] consider



2

either cooperative beamforming or user selection only. To
the best of the authors’ knowledge, previous works have not
investigated the impact of both cooperative beamforming and
user selection on the security level of multiuser cooperative
relaying networks. We are therefore motivated to examine the
security level of such networks when cooperative beamforming
is applied in parallel with user selection.

To evaluate the secure performance of a CWN, typical
metrics such as secrecy rate (SR) [8]–[10] and secrecy outage
probability (SOP) [11], [13]–[15], [20] are usually considered.
Besides these two metrics, there is also another metric used to
qualify the secure performance in the literature [12], which
is defined in a similar way to traditional diversity gain. It
is well known that traditional space/time/frequency diversity
techniques are not concerned with security issues [27]. As
such, the concept of traditional diversity gain seems inap-
propriate for studying security aspects of wireless networks.
To help quantify the secure performance, [12] first introduced
the notion of intercept event (i.e., when SR is negative), and
then presented a new concept of cooperative diversity gain
(we shall call it adapted cooperative diversity gain (ACDG)),
which relies on the intercept probability of the intercept event.
To be more precise, the ACDG defines the rate of decrease of
the intercept probability with the increase of relative channel
power gain of destination on a log-log scale. This new concept
reveals that the secure performance increases with the ACDG.
Due to the similarity of the ACDG to the conventional notion
of diversity as well as the relevance of the ACDG to secure
networks, we are motivated to examine it thoroughly.

In this paper, we evaluate the secure performance of a CWN
in the presence of an eavesdropper. We divide our system
model into two scenarios, namely, i) a system model with
a single relay and multiple users, and ii) a system model with
multiple relays and a single user. In both cases, the presence
of an eavesdropper, which is another known user but not a
desired destination, is assumed. The first case corresponds to
a virtual SIMOSE (i.e., single-input multiple-output channel
in the presence of a single eavesdropper), then the second
scenario is seen as virtual MISOSE (i.e., multiple-input single-
output in the presence of a single eavesdropper). Finding exact
expressions for the ergodic SRs for the general case of multiple
relays and multiple destinations is difficult. To circumvent
this difficulty, we derive upper bounds on the quantities and
asymptotic expressions at high transmit power. In addition,
we analyze the ergodic SR of the proposed network for the
case of large numbers of relays. We then derive the SOPs for
the SIMOSE and the MISOSE cases. Finally, we borrow the
concept of [12] to introduce the ACDG, and thereby quantify
the secure performance of the proposed system. Furthermore,
we show that the ACDG of a virtual SIMOSE (or MISOSE)
system is equal to the diversity gain of a SIMO (or MISO)
system. In particular, the ACDG reveals it is more compatible
with secure networks than conventional diversity gain because
security is taken into account.

The remainder of this paper is organized as follows. Section
II describes a CWN with multiple relays, multiple destinations,
and a single eavesdropper. In Section III, we present upper
bounds on the ergodic SR and its approximation at high
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Fig. 1. System model of a relay network consisting of a source, a set R
of M relays, a set D of N users, and an eavesdropper. Each terminal is
equipped with a single-antenna. R performs cooperative beamforming, while
D exploits user selection.

transmit power. Moreover, we analyze the ergodic SR of the
proposed system with very large numbers of relays. In Sections
IV and V, the SOPs and the ACDGs are respectively derived.
Some numerical examples are presented in Section VI, and
conclusions are drawn in VII.

Notation: [·]T and [·]† denote the transpose operator and
Hermitian operator, respectively. ∥ · ∥ denotes the Euclidean
norm. E {·} denotes expectation. CN (µµµ,Σ) denotes the com-
plex Gaussian distribution with mean µµµ and covariance matrix
Σ. Exp (r) denotes the exponential distribution with rate r.
Erl (k, r) denotes the Erlang distribution with shape k and
rate r. The functions En(z) and 2F1(a, b; c; z) denote the
exponential integral function of order n [28, Eq. (5.1.4)] and
the hypergeometric function [29, Eq. (9.14.2)], respectively.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cooperative relay network
consisting of a single source, a set of M trusted relays, a set of
N destinations, and one eavesdropper. All the nodes are single-
antenna devices operating in the half-duplex mode. For nota-
tional simplicity, let S represent the source, Rm represent the
mth relay (m = 1, . . . ,M), Dn represent the nth destination
(n = 1, . . . , N), and E represent the eavesdropper. Also, let
R = {R1, . . . ,RM} represent the set of all relays preselected
for forwarding the source signal, and D = {D1, . . . ,DN}
represent the set of all destinations. We assume that both D and
E are far enough from S but close enough to R so that they
are only capable of receiving the signal retransmitted from R.
Additionally, the channel state information of the R-Dn link as
well as the R-E link is assumed to be available at R (e.g., [9]–
[11]). Next, we assume that each relay Rm ∈ R is successful
in demodulating and decoding the signal received during the
first time slot (i.e., the DF protocol [30]), and all relays (i.e.,
the set R) perform collaborative beamforming (e.g., see [19],
[22], [24] and [31]). R then forwards a weighted version of
the retransmitted signal to D during the second time slot. The
retransmitted signal is also intercepted by the malicious node
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E. Thus, the signals received at a certain Dn and E during the
second time slot are, respectively, given by

yDn =
√
PRwhRDnx+ nDn , (1)

yE =
√
PRwhREx+ nE , (2)

where x is the signal retransmitted by R (assuming that
E{x} = 0 and E

{
|x|2
}

= 1), w = [w1, . . . , wM ] is the
beamforming vector, hRDn = [hR1Dn , . . . , hRMDn ]

T is the
R-Dn channel gain vector, and hRE = [hR1E , . . . , hRME ]

T

is the R-E channel gain vector, nDn is additive white Gaussian
noise (AWGN) at Dn, and nE is AWGN at E. Note that
hRmDn ∼ CN (0,ΩRD), hRmE ∼ CN (0,ΩRE), nD ∼
CN (0, N0), and nE ∼ CN (0, N0).

To proceed, we assume that all relays in R collaborate with
each other to design the beamforming vector w. Meanwhile,
all destinations in D also collaborate to select a certain
Dn as a representative of D in order to receive the signal
from R. Admittedly, the integration of these two cooperative
techniques will help improve significantly the security level
of the proposed system thanks to the increase in diversity at
R and D. Regarding the use of the beamforming scheme, the
beamforming vector w is designed according to the channel
between R and D∗, in which D∗ is the selected D that has the
strongest link between R and itself. Mathematically, we have

D∗ = arg max
Dn∈D

∥hRDn∥2, (3)

∥hRD∗∥2 = max
Dn∈D

∥hRDn∥2, (4)

w = h†
RD∗/∥hRD∗∥. (5)

Let Θ be the instantaneously received SNR at D∗ for the
signal retransmitted by R in the second time slot. We obtain
from (1) that

Θ = γR|whRD∗ |2 = γR∥hRD∗∥2 (6)

where γR = PR/N0. Let Xn = γR∥hRDn∥2 =∑M
m=1 γR|hRmDn |2 be a sum of independent and identi-

cally distributed (i.i.d.) exponential variables, then Xn ∼
Erl
(
M, 1

γRΩRD

)
. By definition of Θ, we have Θ =

maxn=1,...,N Xn. Thus, the cumulative distribution function
(CDF) and the probability density function (PDF) of Θ can
be readily deduced from [32] as follows:

FΘ(θ) =

[
1−

M−1∑
m=0

e
− θ
γRΩRD

m!

(
θ

γRΩRD

)m
]N

, (7)

and

fΘ(θ) = N

[
1−

M−1∑
m=0

e
− θ
γRΩRD

m!

(
θ

γRΩRD

)m
]N−1

×

[
M−1∑
m=0

(
θ

γRΩRD
−m

)
e
− θ
γRΩRD

m!

θm−1

(γRΩRD)
m

]
.

(8)

Similarly, let Φ be the instantaneously received SNR at the
eavesdropper for the signal retransmitted by R in the second
time slot. We obtain from (2) that

Φ =

(√
γRh

†
REhRD∗

∥hRD∗∥

)(√
γRh

†
RD∗hRE

∥hRD∗∥

)
︸ ︷︷ ︸

Z

= |Z|2. (9)

It is apparent that SNR appears in (9) as a function of two
random vectors hRD∗ and hRE . Conditioning on hRD∗ , we
have

Z |hRD∗ ∼ CN

(
0,

√
γRh

†
RD∗

∥hRD∗∥
ΩREI

√
γRhRD∗

∥hRD∗∥

)
⇔ Z |hRD∗ ∼ CN (0, γRΩRE) (10)

leading to Φ |hRD∗ ∼ Exp
(

1
γRΩRE

)
as a result. 1 Note that

Φ |hRD∗ is equivalent to Φ |Θ and Θ is a function of hRD∗

only. Thus, we shall use Φ |Θ in place of Φ |hRD∗ .

III. ERGODIC SECRECY RATE

In this section, we will study the ergodic SR for the system
proposed in Section II. However, analyzing the general case
with M ≥ 2 and N ≥ 2 is difficult. In order to simplify
our analysis, we shall mainly examine the following three
scenarios:

• SIMOSE: M = 1 and N ≥ 2.
• MISOSE: M ≥ 2 and N = 1.
• Large scale MIMOSE: M → ∞ and finite N .

For the first two cases, we derive tight upper bounds as well
as asymptotic expressions for the ergodic SR. Moreover, exact
expression for the ergodic SR is found in the third case.

In order to proceed, we first recall that the channel capacities
of the links R-D∗ and R-E in nat/s/Hz are, respectively, given
by

CD∗ = ln (1 + Θ) , (11)
CE = ln (1 + Φ) . (12)

Thus, the achievable SR in nat/s/Hz can be defined as [4]

C∆ (Θ,Φ) = [CD∗ − CE ]
+
=

[
ln

(
1 + Θ

1 + Φ

)]+
(13)

where [x]+ = max{0, x}.
The ergodic SR of the proposed system in the general case

(i.e., for a MIMOSE system) is given by

⟨C∆⟩ = EΘ

{
EΦ|Θ {C∆ (Θ,Φ) |Θ = θ}

}
= EΘ

{∫ θ

0

ln

(
1 + θ

1 + ϕ

)
fΦ|Θ (ϕ) dϕ

}
= A− B, (14)

1Let x ∼ CN (µµµ,Σ). If A is a non-random matrix and b is a non-
random vector, then y = Ax + b yields a circularly symmetric complex
y ∼ CN

(
Aµµµ+ b,AΣA†) [27, Appendix A].
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where the term A can be expressed as

A , EΘ

{
ln(1 + θ)FΦ|Θ (θ)

}
= EΘ

{
ln(1 + θ)

(
1− e−θ/(γRΩRE)

)}
= EΘ {ln(1 + θ)} − EΘ

{
ln(1 + θ)e−θ/(γRΩRE)

}
, (15)

and the term B can be expressed as

B , EΘ

{∫ θ

0

ln (1 + ϕ) fΦ|Θ (ϕ) dϕ

}

= EΘ

{∫ θ

0

ln (1 + ϕ)
e−ϕ/(γRΩRE)

γRΩRE
dϕ

}

= e1/(γRΩRE)

[
E1

(
1

γRΩRE

)
− EΘ

{
E1

(
1 + θ

γRΩRE

)}]
− EΘ

{
ln(1 + θ)e−θ/(γRΩRE)

}
(16)

where the last equality is obtained with the help of [29, Eq.
(4.331.2)].

Substituting (15) and (16) into (14), we obtain

⟨C∆⟩ = EΘ {ln(1 + θ)} − e1/(γRΩRE)E1 (1/(γRΩRE))

+ e1/(γRΩRE) EΘ {E1 ((1 + θ)/(γRΩRE))} . (17)

Unfortunately the expectation EΘ

{
E1

(
1+θ

γRΩRE

)}
in (17)

cannot be found in a closed-form. We therefore aim at finding
an upper bound on the ergodic SR as follows:

⟨C∆⟩ ≤ EΘ {ln(1 + θ)} − e1/(γRΩRE)E1

(
1

γRΩRE

)
+ e1/(γRΩRE) EΘ {E1 (θ/(γRΩRE))}

, ⟨C∆⟩upper (18)

where the inequality follows from the fact that E1 (x) =∫∞
x

e−u

u du is a decreasing function.

Lemma 1. At high γR, the asymptotic expression for the
ergodic SR, defined as ⟨C∆⟩∞, is also that of the upper bound.
In other words, we have

⟨C∆⟩∞ , lim
γR→∞

⟨C∆⟩ = lim
γR→∞

⟨C∆⟩upper. (19)

Proof. See Appendix A.

A. SIMOSE Wiretap Channel

In this subsection, we present an upper bound on and an
asymptotic expression for the ergodic SR for the SIMOSE
case. These results are given in Theorem 1 and Corollary 1.

Theorem 1. In the case of SIMOSE, an upper bound on the
ergodic SR is given by

⟨C∆⟩upper

=
N∑

n=1

(
N

n

)
(−1)n−1

{
e

1
γRΩRE ln

(
1 + n

ΩRE

ΩRD

)

+ e
n

γRΩRD E1

(
n

γRΩRD

)
− e

1
γRΩRE E1

(
1

γRΩRE

)}
.

(20)

Proof. When M = 1, the PDF of Θ in (8) reduces to

fΘ(θ) =

N∑
n=1

(
N

n

)
(−1)n+1 n

γRΩRD
e
− nθ
γRΩRD . (21)

Then, the expected values in (18) can be, respectively, calcu-
lated as follows:

EΘ {ln(1 + θ)}

=

N∑
n=1

(
N

n

)
(−1)n+1

∫ ∞

0

ln(1 + θ)
ne

− nθ
γRΩRD

γRΩRD
dθ

=
N∑

n=1

(
N

n

)
(−1)n+1e

n
γRΩRD E1

(
n

γRΩRD

)
, (22)

and

EΘ {E1 (θ/ (γRΩRE))}

=
N∑

n=1

(
N

n

)
(−1)n+1

∫ ∞

0

E1

(
θ

γRΩRE

)
ne

− nθ
γRΩRD

γRΩRD
dθ

=

N∑
n=1

(
N

n

)
(−1)n+1 ln

(
1 + n

ΩRE

ΩRD

)
. (23)

Finally, substituting (22) and (23) into (18) yields (20).

To facilitate the analysis of the asymptotic expression for
the ergodic SR, we now state Proposition 1, which will be
applied to the proof of Corollary 1.

Proposition 1. If a and b are finite numbers, then

L(a, b) , lim
γ→∞

[E1 (a/γ)− E1 (b/γ)] = ln(b/a). (24)

Proof. Using the Taylor series expansion for the function
E1(x) [29, Eq.(8.214.2)] (note that E1(x) = −Ei(−x)), we
rewrite E1 (x) = −E − lnx−

∑∞
k=1

(−x)k

k!k where E is Euler’s
constant [29, Eq. (8.367.1)]. Then we have the resulting limit

L(a, b) = lim
1
γ→0

[
ln (b/γ)− ln (a/γ) +

∞∑
k=1

(−1)k

k!k

(
bk − ak

)
γk

]
= lim

1
γ→0

[ln (b/γ)− ln (a/γ)] = ln(b/a). (25)

Corollary 1. In the case of SIMOSE, an asymptotic expression
for the ergodic SR is given by

⟨C∆⟩∞ =
N∑

n=1

(
N

n

)
(−1)n−1 ln

(
1 +

ΩRD

nΩRE

)
. (26)

Proof. Following Lemma 1, at high γR, the asymptotic ex-
pression for the ergodic SR is given by

⟨C∆⟩∞ = lim
γR→∞

⟨C∆⟩upper

=

N∑
n=1

(
N

n

)
(−1)n−1

{
ln

(
1 + n

ΩRD

ΩRE

)

+ lim
γR→∞

[
E1

(
n

γRΩRD

)
− E1

(
1

γRΩRE

)]
︸ ︷︷ ︸

L
(

n
ΩRD

, n
ΩRE

)

}
.

(27)
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Finally, applying Proposition 1 to the limit on the RHS of
(27), we arrive at (26) and complete the proof.

B. MISOSE Wiretap Channel

Similar to the previous subsection, we now present an upper
bound on and an asymptotic expression for the ergodic SR for
the MISOSE case through Theorem 2 and Corollary 2.

Theorem 2. In the case of MISOSE, an upper bound on the
ergodic SR is given by

⟨C∆⟩upper

= e
1

γRΩRE ln

(
1 +

ΩRE

ΩRD

)
+ C1(γR) +

M−1∑
m=1

1

m!
C2(γR)

+ e
1

γRΩRE

M−1∑
m=1

(
ΩRE

ΩRD +ΩRE

)m

×

[
1

1 + ΩRD
ΩRE

1

m+ 1
2F1

(
1,m+ 1;m+ 2;

1

1 + ΩRD
ΩRE

)

− 1

m
2F1

(
1,m;m+ 1;

1

1 + ΩRD
ΩRE

)]
(28)

where

C1(γR) , e
1

γRΩRD E1

(
1

γRΩRD

)
− e

1
γRΩRE E1

(
1

γRΩRE

)
(29)

and

C2(γR) ,
1

(γRΩRD)
m

[
1

γRΩRD
I
(

1

γRΩRD
,m

)

−mI
(

1

γRΩRD
,m− 1

)]
(30)

where the function I(α,m) ,
∫∞
0
θm ln(1+ θ)e−αθdθ, m ∈

N is calculated in Appendix B.

Proof. When N = 1, the PDF of Θ in (8) reduces to

fΘ(θ) =
M−1∑
m=0

e
− θ
γRΩRD

m! (γRΩRD)
m

(
θm

γRΩRD
−mθm−1

)
. (31)

Thus, the expected values in (18) can be, respectively, calcu-
lated as follows:

EΘ {ln(1 + θ)}

=
1

γRΩRD

∫ ∞

0

ln(1 + θ)e
− θ
γRΩRD dθ

+
M−1∑
m=1

1

m! (γRΩRD)
m

∫ ∞

0

(
θm

γRΩRD
−mθm−1

)
× ln(1 + θ)e

− θ
γRΩRD dθ

(a)
= e

1
γRΩRD E1

(
1

γRΩRD

)
+

M−1∑
m=1

1

m! (γRΩRD)
m

×

[
1

γRΩRD
I
(

1

γRΩRD
,m

)
−mI

(
1

γRΩRD
,m− 1

)]
,

(32)

and

EΘ {E1 (θ/ (γRΩRE))}

=

M−1∑
m=0

1

m! (γRΩRD)
m

∫ ∞

0

E1

(
θ

γRΩRE

)
×
(

θm

γRΩRD
−mθm−1

)
e
− θ
γRΩRD dθ

(b)
= ln

(
1 +

ΩRE

ΩRD

)
+

M−1∑
m=1

(
ΩRE

ΩRD +ΩRE

)m

×

[
1

1 + ΩRD
ΩRE

1

m+ 1
2F1

(
1,m+ 1;m+ 2;

1

1 + ΩRD
ΩRE

)

− 1

m
2F1

(
1,m;m+ 1;

1

1 + ΩRD
ΩRE

)]
(33)

where (a) follows from Proposition 2 (see Appendix B);
and (b) is obtained by using [29, Eq. (6.228.2)]. Finally,
substituting (32) and (33) into (18) yields (28).

Corollary 2. In the case of MISOSE, an asymptotic expression
for the ergodic SR is given by

⟨C∆⟩∞

= ln

(
1 +

ΩRD

ΩRE

)
+

M−1∑
m=1

1

m

+
M−1∑
m=1

(
ΩRE

ΩRD +ΩRE

)m

×

[
1

1 + ΩRD
ΩRE

1

m+ 1
2F1

(
1,m+ 1;m+ 2;

1

1 + ΩRD
ΩRE

)

− 1

m
2F1

(
1,m;m+ 1;

1

1 + ΩRD
ΩRE

)]
(34)

Proof. Again following Lemma 1, at high γR, we have
⟨C∆⟩∞ = limγR→∞⟨C∆⟩upper. Upon examining (28), we can
see that taking the limit of ⟨C∆⟩upper relies only on taking the
limits of the expressions C1(γR) and C2(γR). These limits are
calculated as follows:

lim
γR→∞

C1(γR)

= lim
γR→∞

[
e

1
γRΩRD E1

(
1

γRΩRD

)
− e

1
γRΩRE E1

(
1

γRΩRE

)]
= lim

γR→∞

[
E1

(
1

γRΩRD

)
− E1

(
1

γRΩRE

)]
= L

(
1

ΩRD
,

1

ΩRE

)
(a)
= ln (ΩRD/ΩRE) (35)
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where (a) follows Proposition 1. And

lim
γR→∞

C2(γR)

(b)
= lim

γR→∞

{
m∑

k=0

m!

(m− k)!

m−k∑
h=1

(h− 1)!

(−γRΩRD)m−k−h

−m
m−1∑
k=0

(m− 1)!

(m− k − 1)!

m−k−1∑
h=1

(h− 1)!

(−γRΩR)m−k−h−1

}

= m! +
m−2∑
k=0

m!(m− k − 1)!

(m− k)!
+

m−2∑
k=0

m!

(m− k − 1)!

× lim
γR→∞

[
(m− k − 2)!

(
−1

(m− k)γRΩRD
− 1

)

+
m−k−2∑
h=1

(h− 1)!

(−γRΩRD)m−k−h−1

(
−1

(m− k)γRΩRD
− 1

)]

= m! +
m−2∑
k=0

m!(m− k − 1)!

(m− k)!
+

m−2∑
k=0

m!(m− k − 2)!(−1)

(m− k − 1)!

= m! +m!

(
−1 +

m∑
k=1

1

k

)
−m!

m−1∑
k=1

1

k

= (m− 1)! (36)

where (b) is obtained by first substituting (70) from Appendix
B into (29) and then simplifying the expression. Finally, taking
the limit of (28) with the aid of (35)–(36), we readily obtain
the desired result (34).

C. Analysis for Large Scale MIMOSE Relaying Systems

Unlike both SIMOSE and MISOSE scenarios discussed
above, in this subsection we consider a limiting scenario with
a very large number of relays (i.e., M → ∞) and a moderate
number of users (i.e., finite N ) to get insight into the ergodic
SR of the proposed system [20].

Based on this large-scale MIMO relaying system in the
presence of eavesdropper, we now derive the ergodic SR and
state the following theorem:

Theorem 3. For the proposed system, when the number of
relays is very large, i.e. M → ∞, the ergodic SR converges
to

⟨C⟩lar = ln(1 +MγRΩRD)− e
1

γRΩRE E1

(
1

γRΩRE

)
+ e

1
γRΩRE E1

(
1 +MγRΩRD

γRΩRE

)
. (37)

Proof. Similarly as in [33], we apply the law of
large numbers [34] to (4) so as to reach the limit
1
M ∥hRDn∥2

asym→ E
{
|hRmDn |2

}
= ΩRD where

asym→ denotes
the convergence as M → ∞. As a result, D∗ can be selected
arbitrarily from the set D of finite N users because the fact
that D∗ = argmaxDn∈D ∥hRDn∥2

asym→ argmaxDn∈D ΩRD

for all n = 1, . . . , N . Therefore, we obtain the convergence
of Θ as

Θ = γR∥hRD∗∥2 asym→ γRMΩRD. (38)

Applying the Lindeberg-Levy central limit theorem, we have

h†
RD∗hRE√

M

dist→ CN (0,ΩRDΩRE) (39)

where
dist→ denotes convergence in distribution as M → ∞.

Employing two convergence properties (38)–(39), we obtain
the convergence of Φ as

Φ = γR
|h†

RD∗hRE |2

∥hRD∗∥2
dist→ Ψ ∼ Exp

(
1

γRΩRE

)
. (40)

Finally, the ergodic SR of the proposed system with very large
M is derived as

⟨C⟩lar = lim
M→∞

EΘ,Φ

{[
ln

(
1 + Θ

1 + Φ

)]+}

= EΨ

{[
ln

(
1 + γRMΩRD

1 + Ψ

)]+}

= ln(1 +MγRΩRD)

(
1− e

−M
ΩRD
ΩRE

)
− 1

γRΩRE

∫ MγRΩRD

0

ln(1 + ψ)e
− ψ
γRΩRE dψ. (41)

Applying integration by parts to the integral in the last equality
and then manipulating the RHS, we easily arrive at (37) and
complete the proof.

Observation: It is clear that Corollaries 1 and 2 provide
better insight into the influence of the ratio ΩRD/ΩRE on
the ergodic SR. Of course, the asymptotic expressions for
the ergodic SR strictly depend on this ratio when γR is very
large. Meanwhile, Theorem 3 gives us a relatively compact
expression of the ergodic SR in the MIMOSE case with large
M and moderate N .

IV. SECRECY OUTAGE PROBABILITY

In this section, we present the SOP, which is defined as
the probability that the instantaneous SR is below a threshold
value ϵ. The SOP will be derived for two cases: SIMOSE
systems and MISOSE systems.

The SOP of the proposed system in the general case (i.e.,
for a MIMOSE system) is given by

Pout = P {C∆(Θ,Φ) < ϵ} = P

{
1 + Θ

1 + Φ
< eϵ

}
= 1− P

{
Φ ≤ e−ϵ(1 + Θ)− 1

}
= 1−

∫ ∞

eϵ−1

FΦ|Θ
(
e−ϵ(1 + θ)− 1

)
fΘ(θ)dθ (42)

where the last equality follows from the fact that
FΦ|Θ (e−ϵ(1 + θ)− 1) = 0 where θ ≤ eϵ − 1. On recalling
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that Φ|hRD∗ ↔ Φ|Θ leads to Φ|Θ ∼ Exp
(

1
γRΩRE

)
, we can

proceed to formulate (42) as

Pout = 1−
∫ ∞

eϵ−1

[
1− e−(e

−ϵ(1+θ)−1)/(γRΩRE)
]
fΘ(θ)dθ

= 1−
∫ ∞

eϵ−1

fΘ(θ)dθ

+

∫ ∞

eϵ−1

e−(e
−ϵ(1+θ)−1)/(γRΩRE)fΘ(θ)dθ

= FΘ (eϵ − 1) + e(1−e−ϵ)/(γRΩRE)G(ϵ) (43)

where the integral G(ϵ) is defined as

G(ϵ) ,
∫ ∞

eϵ−1

e−θe−ϵ/(γRΩRE)fΘ(θ)dθ. (44)

A. SIMOSE Wiretap Channel

Theorem 4. In the case of SIMOSE, the SOP can be written
as

Pout =
(
1− e

1−eϵ
γRΩRD

)N
+

N∑
n=1

(
N

n

)
(−1)n+1 n

γRΩRD

×
(

e−ϵ

γRΩRE
+

n

γRΩRD

)−1

e
(1−eϵ)n
γRΩRD .

(45)

Proof. When M = 1, the CDF of Θ in (7) reduces to

FΘ(θ) =
[
1− e

− θ
γRΩRD

]N
. (46)

Moreover, by substituting (21) into (44), G(ϵ) can be
calculated as follows:

G(ϵ) =
N∑

n=1

(
N

n

)
(−1)n+1 n

γRΩRD

×
∫ ∞

eϵ−1

e
−θ

(
e−ϵ

γRΩRE
+ n
γRΩRD

)
dθ

=
N∑

n=1

(
N

n

)
(−1)n+1 n

γRΩRD

×
(

e−ϵ

γRΩRE
+

n

γRΩRD

)−1

e
−(eϵ−1)

(
e−ϵ

γRΩRE
+ n
γRΩRD

)
.

(47)

Finally, using (46) and substituting (47) into (43), we arrive
at the SOP shown in (45).

Corollary 3. In the case of SIMOSE, an asymptotic expression
for Pout at high γR (γR → ∞) is obtained by taking the limit
of (45), i.e.,

Pasym
out = lim

γR→∞
Pout

=
N∑

n=1

(
N

n

)
(−1)n+1

(
ΩRD

ΩRE

e−ϵ

n
+ 1

)−1

. (48)

B. MISOSE Wiretap Channel

Theorem 5. In the case of MISOSE, the SOP can be written
as

Pout = 1− e
(1−eϵ)
γRΩRD

M−1∑
m=0

1

m!

(
eϵ − 1

γRΩRD

)m

+ e
(1−e−ϵ)
γRΩRE

M−1∑
m=0

(
1 + e−ϵΩRD

ΩRE

)−m

e−(eϵ−1)β

×

{
m−1∑
i=0

[(
1 + e−ϵΩRD

ΩRE

)−1

− 1

]
[(eϵ − 1)β]i

i!

+

(
1 + e−ϵΩRD

ΩRE

)−1
[(eϵ − 1)β]m

m!

}
. (49)

Proof. When N = 1, the CDF of Θ in (7) reduces to

FΘ(θ) = 1−
M−1∑
m=0

e
− θ
γRΩRD

m!

(
θ

γRΩRD

)m

. (50)

Moreover, by substituting (31) into (44), G(ϵ) can be
calculated as follows:

G(ϵ)

=

M−1∑
m=0

1

m! (γRΩRD)
m

∫ ∞

eϵ−1

(
θm

γRΩRD
−mθm−1

)
e−θβdθ

=
M−1∑
m=0

(
1 + e−ϵΩRD

ΩRE

)−m

e−(eϵ−1)β

×

{
m−1∑
i=0

[(
1 + e−ϵΩRD

ΩRE

)−1

− 1

]
[(eϵ − 1)β]i

i!

+

(
1 + e−ϵΩRD

ΩRE

)−1
[(eϵ − 1)β]m

m!

}
(51)

where β ,
(

e−ϵ

γRΩRE
+ 1

γRΩRD

)
. The second equality is

obtained by applying [29, Eq. (2.33.10)] to the integral and
then using the definition of the incomplete gamma function
[29, Eq. (8.352.4)]. Finally, using (50) and substituting (51)
into (43), we arrive at the SOP shown in (49).

Corollary 4. In the case of MISOSE, an asymptotic expression
for Pout at high γR (γR → ∞) is obtained by taking the limit
of (49), i.e.,

Pasym
out = lim

γR→∞
Pout

= 1−
M−1∑
m=0

1

Ωm
RD

(
e−ϵ

ΩRE
+

1

ΩRD

)−m

×

[
1− 1

ΩRD

(
e−ϵ

ΩRE
+

1

ΩRD

)−1
]
. (52)

Observation: To evaluate the SOP at high γR, we can use
the simple expressions shown in Corollaries 3 and 4 rather
than the exact expressions shown in Theorems 4 and 5.
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V. ADAPTED COOPERATIVE DIVERSITY GAIN

Inspired by the work in [12], in this section, we present
the ACDG for two scenarios: SIMOSE systems and MISOSE
systems. According to [12], the conventional concept of coop-
erative diversity gain is inappropriate to study security issues
in CWNs. Instead, a new concept of cooperative diversity
gain, namely, the ACDG, is defined in a manner similar to
the conventional one.

Before defining the ACDG, we first state that an intercept
event occurs when the channel capacity of the link R-D∗

becomes less than of the link R-E, i.e., CD∗ < CE . The
intercept probability is then given by

Pint , P {CD∗ < CE} = P {Θ < Φ}

= 1−
∫ ∞

0

FΦ|Θ(θ)fΘ(θ)dθ

=

∫ ∞

0

e
− θ
γRΩRE fΘ(θ)dθ. (53)

We next define λ as the ratio of the average channel gain of
the link R-D∗ to that of the link R-E, i.e.,

λ ,
E
{
∥hRD∗∥2

}
E {∥hRE∥2}

=

∑M
m=1 E

{
|hRmD∗ |2

}∑M
m=1 E {|hRmE |2}

=
ΩRD

ΩRE
.

(54)

Based on the intercept probability Pint and the ratio λ, we
finally define the ACDG as

d = − lim
λ→∞

logPint

log λ
. (55)

Herein, the similarity between the concept of the ACDG
and the conventional definition of diversity can be easily
recognized. From the intercept probability point of view, the
correlation between the secure metric Pint and the ratio λ
can be examined. In this way, the ACDG d is viewed as the
key factor that affects the slope of the Pint curve to enhance
communication reliability. In the following, we will examine
the ACDG for two cases: i) SIMOSE and ii) MISOSE wiretap
channels.

A. SIMOSE Wiretap Channel

Theorem 6. When M = 1 and N ≥ 1, the ACDG of the
proposed system is equal to d = N .

Proof. Substituting (21) into (53) and then introducing t ,
θ/ (γRΩRD), we can rewrite (53) as

Pint =

∫ ∞

0

e−λt

[
N∑

n=1

(
N

n

)
(−1)n−1ne−nt

]
dt

=

∫ ∞

0

e−λtd
[
(1− e−t)N

]
=

∫ ∞

0

e−λtNe−t
(
1− e−t

)N−1︸ ︷︷ ︸
,Υ1(t)

dt. (56)

Moreover, Υ1(t) can be expanded as

Υ1(t) = N

[
1 +

∞∑
k=1

(−t)k

k!

][
−

∞∑
k=1

(−t)k

k!

]N−1

= NtN−1 + o(tN ), (57)

in some neighbourhood of t = 0+. Note that the symbol o(·)
in (57) is the little-o notation.

Now, in order to investigate the asymptotic behavior of the
integral in (56) we apply Watson’s lemma [35, Lemma 1.2]
and write

Pint = N
Γ((N − 1) + 1)

λ(N−1)+1
+ o

(
1

λN+1

)
=
N !

λN
+ o

(
1

λN+1

)
as λ→ ∞. (58)

Finally, the ACDG of the proposed system with M = 1 and
N ≥ 1 can be derived as

d = − lim
λ→∞

[
log (N !)− log

(
λN
)]

log λ
= N. (59)

This result reveals that Pint decreases inversely with N , and
therefore the security performance is improved by increasing
N . This completes the proof.

B. MISOSE Wiretap Channel
Theorem 7. When N = 1 and M ≥ 1, the ACDG of the
proposed system is equal to d =M .

Proof. Substituting (31) into (53) and then introducing t ,
θ/ (γRΩRD), we can rewrite (53) as

Pint =

∫ ∞

0

e−λt

[
e−t

M−1∑
m=0

1

m!

(
tm −mtm−1

)]
dt

=

∫ ∞

0

e−λt

[
e−t tM−1

(M − 1)!

]
︸ ︷︷ ︸

,Υ2(t)

dt. (60)

Moreover, Υ2(t) can be expanded as

Υ2(t) =

[
1 +

∞∑
k=1

(−t)k

k!

]
tM−1

(M − 1)!
=

tM−1

(M − 1)!
+ o

(
tM
)
,

(61)

in some neighbourhood of t = 0+.
Therefore, Watson’s lemma is applicable to (60) and we can

express

Pint =
1

(M − 1)!

Γ((M − 1) + 1)

λ(M−1)+1
+ o

(
1

λM+1

)
=

M

λM
+ o

(
1

λM+1

)
as λ→ ∞. (62)

Finally, the ACDG of the proposed system with N = 1 and
M ≥ 1 can be written as

d = − lim
λ→∞

[
logM − log λM

]
log λ

=M. (63)

This result reveals that Pint decreases inversely with M ,
therefore the security performance is improved by increasing
M . This completes the proof.
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Fig. 2. Ergodic secrecy rate and its upper bound versus γR. System
parameters: M = 1, N = {2, . . . , 6}, ΩRD = 2.5, and ΩRE = 4.

VI. NUMERICAL RESULTS AND DISCUSSION

This section gives some numerical examples to verify the
analysis presented in Sections III–V, and illustrate the key
behaviors of the system when different network parameters
are varied. Without loss of generality, N0 is set to 0 dB, and
so γR is referred to as PR.

In Figs. 2 and 3, the mean channel powers of the links
Rm-Dn and Rm-E are set to ΩRD = 2.5 and ΩRE = 4
respectively. Fig. 2 considers the proposed system with M = 1
and N = {2, 3, 4, 5, 6}, whereas Fig. 3 considers the proposed
system with M = {2, 3, 4, 5, 6} and N = 1. For each figure,
we observe that the upper bound gets closer to the ergodic SR
as γR (or PR) increases from 0 dB to 30 dB. This can be easily
explained by assessing that E1

(
1+θ

γRΩRE

)
≈ E1

(
θ

γRΩRE

)
with large enough θ due to the fact that θ = γR∥hRD∗∥2.
On this observation, the upper bound can be referred to as
an approximation to the ergodic SR at high γR. Moreover, the
asymptotic line agrees exactly with both the simulation and the
upper bound at high γR, which confirms again the correctness
of our analyses.

In Fig. 4, we show the ergodic SR for the case of a very
large MIMO relaying system. Although M is assumed to
approach to infinity, we illustrate a more practical scenario
with M = {50, 100, 150}. For each given M , we consider
N = {1, 2, 3} for comparison. Likewise, we choose ΩRD =
2.5 and ΩRE = 4. The figure shows the convergence of the
ergodic SR (as stated in Theorem 3) in the case that M is
much greater than N . When the ratio M

N becomes larger, the
agreement between the simulation and the analysis becomes
closer. As expected, when N = 1 and M = 50, the simulated
points lie slightly lower than the analytical curve because
the analysis is intended for M → ∞. However, they nearly
coincide with each other when N = 1 and M = 150. This
suggests that exact agreement is achievable when N = 1 and
M takes very large number.

Figs. 5 and 6 show the secrecy outage probabilities in two
scenarios of interest, the proposed system with M = 1 (i.e.,
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Fig. 3. Ergodic secrecy rate and its upper bound versus γR. System
parameters: M = {2, . . . , 6}, N = 1, ΩRD = 2.5, and ΩRE = 4.
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Fig. 4. Ergodic secrecy rate versus γR. System parameters: M =
{50, 100, 150}, N = {1, 2, 3}, ΩRD = 2.5, and ΩRE = 4.

the SIMOSE scenario), and the proposed system with N = 1
(i.e., the MISOSE scenario). We also choose ΩRD = 2.5, and
ΩRE = 4. The outage threshold is chosen to be ϵ = 0.5 ln 2 (in
nat/s/Hz). As we can see from these figures, when γR increases
from 0 dB to 40 dB, the secrecy outage probabilities decrease
slightly, while increasing N (the SIMOSE scenario) or M (the
MISOSE scenario) improves the system performance more
significantly. These observations suggest that increasing the
number of relaying/destination nodes is a much more effective
strategy than increasing the transmit power at the relays.

Figs. 7 and 8 show the intercept probabilities versus the
ratio λ = ΩRD

ΩRE
in two scenarios of interest, namely, SIMOSE

and MISOSE. For each of these figures, we can see that the
worst case occurs when M = 1 and N = 1, while the intercept
probability decreases strongly with the number of nodes and λ.
As proved in Theorems 6 and 7, the number of nodes is equal
to the ACDG, which serves to shift the intercept probability



10

1 2 3 4 5 6 7 8 9 10
0.01

0.1

1

0,  40  dBR

The number of users (N)

 Analysis
 Simulation

 

S
ec

re
cy

 O
ut

ag
e 

P
ro

ba
bi

lit
y

 

Fig. 5. Secrecy outage probability versus N . System parameters: M = 1,
ΩRD = 5, ΩRE = 2, ϵ = 0.5 ln 2 nat/s/Hz, and γR = {0, 40} dB.

curves to the left and therefore improves the reliability of the
proposed system from the security point of view. Furthermore,
these figures reveal striking similarities of the ACDG to the
conventional cooperative diversity gain. As such, the concept
of the ACDG seems to be more compatible with security issue
of wireless networks than the concept of traditional diversity
gain.

VII. CONCLUSIONS

We have considered the use of cooperative beamforming
and user selection for relay network security. First, we have
analyzed the ergodic SRs for three cases: SIMOSE systems
(M = 1, N ≥ 2), MISOSE systems (M ≥ 2, N = 1),
and very large scale MIMOSE systems (M → ∞, finite N ).
Bounds on and asymptotic expressions for the ergodic SR for
the first two cases, and an exact expression for the ergodic
SR at very large M for the third case have been derived.
Secondly, we have evaluated the security performance for
SIMOSE and MISOSE systems in terms of outage probability.
We have quantified the ACDG, similar to conventional co-
operative diversity gain, for SIMOSE and MISOSE systems.
The validity of our expressions have been verified through
simulation results. For future work, we plan to investigate the
more generic case of the proposed network and the effects of
other factors, e.g. imperfect channel state information.

APPENDIX

A. Proof of Lemma 1

Proof. It is clear from (18) that proving Lemma 1 is equivalent
to proving

lim
γR→∞

EΘ

{
E1

(
1 + θ

γRΩRE

)}
= lim

γR→∞
EΘ

{
E1

(
θ

γRΩRE

)}
.

(64)
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Fig. 6. Secrecy outage probability versus M . System parameters: N = 1,
ΩRD = 5, ΩRE = 2, ϵ = 0.5 ln 2 nat/s/Hz, and γR = {0, 40} dB.

First, we rewrite the left hand side (LHS) of (64) as

LHS(64) = lim
γR→∞

∫ ∞

0

E1

(
1 + θ

γRΩRE

)
fΘ(θ)dθ

= lim
γR→∞

∫ ∞

0

E1

(
1 + γRz

γRΩRE

)
f∥hRD∗∥2(z)︸ ︷︷ ︸

~γR (z)

dz (65)

where fΘ(θ) is given in (8) and f∥hRD∗∥2(z) = γRfΘ(γRz)
due to the relation in (6). Additionally, it is easy to con-
firm that f∥hRD∗∥2(z) is no longer dependent on γR, while
E1

(
1+γRz
γRΩRE

)
is an increasing function of γR.

We therefore come to the conclusion that ~γR(z) is increas-
ing in γR ≥ 0, is bounded above and has the limit

lim
γR→∞

~γR(z) = E1

(
z

ΩRE

)
f∥hRD∗∥2(z). (66)

Following these observations, we have

LHS(64) = lim
γR→∞

∫ ∞

0

~γR(z)dz

=

∫ ∞

0

E1

(
z

ΩRE

)
f∥hRD∗∥2(z)dz. (67)

Because the right hand side (RHS) of (67) is independent of
γR, we can also rewrite it as the limit of a constant, i.e., (67)
becomes

LHS(64) = lim
γR→∞

∫ ∞

0

E1

(
z

ΩRE

)
f∥hRD∗∥2(z)dz

= lim
γR→∞

EΘ

{
E1

(
θ

γRΩRE

)}
≡ RHS(64) (68)

and the proof is complete.

B. Integral

Proposition 2. Let us define

I(α,m) ,
∫ ∞

0

θm ln(1 + θ)e−αθdθ, m ∈ N. (69)
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Then I(α,m) can be expressed in two ways:
• Either [29, Eq.(4.222.8)]

I(α,m) = α−(m+1)
m∑

k=0

m!

(m− k)!

[
(−1)m−keαE1(α)

αm−k

+

m−k∑
h=1

(h− 1)!

(−1/α)m−k−h

]
(70)

• or

I(α,m) = α−(m+1)G1,3
3,2

(
α−1

∣∣∣∣ −m, 1, 1
1, 0

)
(71)

where Gm,n
p,q

(
z

∣∣∣∣ (ap)
(bq)

)
is Meijer G-function [36,

Eq.(1.122)].
If m = 0, then both (70) and (71) reduce to

I(α, 0) = α−1eαE1(α). (72)

Proof. Rewriting ln(1+θ) in terms of Meijer G-function [37,
Eq.(8.4.6.5)], we have

ln(1 + θ) = G1,2
2,2

(
θ

∣∣∣∣ 1, 1
1, 0

)
.

Then I(α,m) can be evaluated as follows:

I(α,m) =

∫ ∞

0

θmG1,2
2,2

(
θ

∣∣∣∣ 1, 1
1, 0

)
e−αθdθ

= L

{
θmG1,2

2,2

(
θ

∣∣∣∣ 1, 1
1, 0

)
;α

}
= α−(m+1)H1,3

3,2

[
α−1

∣∣∣∣ (−m, 1), (1, 1), (1, 1)
(1, 1), (0, 1)

]
(73)

where L{f(θ);α} denotes the Laplace transform [36, Eq.

(2.11)] and Hm,n
p,q

[
z

∣∣∣∣ (ap, Ap)
(bq, Bq)

]
is the H-function [36, Eq.

(1.2)]. The last equality is obtained by using the Laplace
transform of the Meijer G-function [36, Eq. (2.29)]. Evaluating
the RHS of (73) again with the help of [37, Eq. (8.3.2.21)],

i.e. Hm,n
p,q

[
z

∣∣∣∣ (ap, 1)
(bq, 1)

]
= Gm,n

p,q

(
z

∣∣∣∣ (ap)
(bq)

)
, we arrive at

(71). In addition, if m = 0, we can apply directly [29, Eq.
(4.337.2)] to (69) in order to obtain (72). We thus complete
the proof.
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