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ABSTRACT

A new sphere decoder algorithm for uncoded spatial multiplexing multiple-input multiple-output (MIMO) systems is
proposed. It overcomes the drawbacks of traditional sphere decoders: variable complexity and high complexity in low
signal-to-noise ratios (SNRs). Its main novelty lies in scaling the search radius by a heuristic SNR-dependent factor.
This new SNR-dependent radius control sphere decoder offers near maximum likelihood performance over the entire
range of SNRs, while keeping its complexity roughly constant. This algorithm also incorporates channel ordering to save
complexity. To quantify the variability of complexity, the normalised variance of the complexity is evaluated. This
algorithm is also extended for joint iterative detection and decoding in coded MIMO systems and for MIMO-relay
networks. Simulation results and theoretical analysis demonstrate the benefits of the proposed algorithm. Copyright © 2013
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Spatial multiplexing multiple-input multiple-output
(MIMO) systems over a rich-scattering wireless channel
are capable of providing enormous capacity improve-
ments without increasing the bandwidth or transmit power.
These systems, however, require a maximum likelihood
(ML) detector. Because the naive ML detector uses an
exhaustive search, its complexity grows exponentially with
the number of transmit antennas and with the order of
the signal constellation. The alternatives are the Fincke–
Pohst (FP) and the more efficient Schnorr–Euchner (SE)
sphere decoders [1], which achieve ML-performance with
reduced complexity, especially for the high signal-to-noise
ratio (SNR) region.

Nevertheless, the sphere decoders suffer from (i) high
complexity in the low SNR region and (ii) a high variabil-
ity in complexity as a function of the SNR. To address these
challenges, many variants have been developed [1–14]. For
example, [3] uses conditional probabilities to select more
reliable candidates, but the complexity is still high for
near-ML performance and for high-order constellations.

Statistical pruning approaches [4, 6, 7] sacrifice perfor-
mance for complexity reduction. K-best, [8] also known
as the M-algorithm [15] or as beam search in the Artifi-
cial Intelligence literature [16], and the fixed complexity
(Fixed) [9, 17] have also been proposed. K-best traverses
the search space in a breadth-first manner and retains only
several best nodes in each level. Despite its fixed complex-
ity, K-best requires higher complexity than that of the naive
sphere decoder for exact ML performance [8]. Although
Fixed ensures a fixed complexity, regardless of the noise
level and channel conditions, it has higher complexity than
that of SE in the high SNR regime [9]. Many adaptive
methods have also been developed including search radius
adjustments [18–21], channel-adaptive MIMO detection
[22] and an early-pruned K-best algorithm [23].

Sphere decoder is also required to provide soft infor-
mation for coded MIMO systems. One jointly iterative
detection and decoding method has been proposed [24],
which uses a list version of sphere decoder (LSD) for coded
MIMO systems. In this scheme, the error correction code
(ECC) can be any code that can be decoded by using soft
inputs and outputs, such as convolutional codes or turbo
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codes. Many algorithms are capable of supporting soft out-
puts in LSD. For example, K-best has been extended for
use in an iterative MIMO receiver [8], and a list Fixed
sphere decoder has been proposed [25] as a list extension
of the Fixed algorithm [9] for coded MIMO systems.

Sphere decoder is also required for MIMO-relay net-
works. The benefits of relays [26] are (i) increased diver-
sity, (ii) increased code rates, (iii) reduction of transmit
power and (iv) extension of coverage area. The relay
detection problem has thus been considered [27] for
detect (or decode)-and-forward (DF) relaying and amplify-
and-forward (AF) relaying. Low-complexity detection by
applying zero-forcing at the relay terminals [28] fails to
achieve ML performance. To achieve near-ML perfor-
mance, detection at DF relays is computationally inten-
sive; thus, cooperative partial detection (CPD) has been
proposed [29]. The relay in this case detects a subset of
transmit symbols, and only these are relayed to the destina-
tion. Although the complexity is low, this method performs
poorly when the number of detected symbols is small [29].

In this paper, we propose a new SNR-dependent radius
control sphere decoder (SRC-SD), which is also applied
for soft MIMO detection and MIMO-relay detection.

Contributions:

(1) A new SRC-SD with a low and roughly fixed level
of complexity over the whole SNR region and near-
ML performance is proposed. It scales the search
radius by a heuristic SNR-dependent factor. This
factor approaches one in the high SNR region guar-
anteeing that SRC-SD’s performance converges to
that of the conventional sphere decoder; however,
in the low SNR region, this factor is less than
unity, resulting more pruning of nodes and thereby
significantly reducing the complexity.

(2) A soft version for coded MIMO systems is devel-
oped with a list SRC-SD (LSRC-SD), which gen-
erates a list of candidates and further reduces the
complexity of iterative detection at a negligible
performance loss.

(3) To leverage the benefits of our new SRC-SD, its
use in MIMO AF and DF relays is developed by
deriving the ML detection rules.

(4) By considering the average number of visited nodes
as a measure of complexity, an upper bound to
the complexity of the proposed SRC-SD is derived.
This theoretical result along with the simulation
results confirms the complexity savings of SRC-SD.

(5) A measure � of the variability of complexity for
the range of SNR is defined. If � is zero, then
the complexity is fixed, an ideal state. The � val-
ues of the proposed SRC-SD and the conventional
sphere decoders are then examined, and the very low
variability of the proposed algorithm is established.

The rest of this paper is organised as follows. Section 2
describes the system models of a MIMO system, a coded

MIMO system and a multibranch dual-hop MIMO-relay
network. Section 3 briefly outlines the conventional sphere
decoder and derives the new SRC-SD. Section 4 derives
coded MIMO detection and the ML rules for MIMO-relay
networks. Section 5 provides a brief complexity analysis.
Simulation results for both performance and complexity
are presented in Section 6, followed by the conclusions
in Section 7.

2. SYSTEM MODELS

2.1. Standard multiple-input
multiple-output maximum
likelihood detection

A spatial multiplexing MIMO system with N transmit
antennas and N receive antennas is considered. A rich-
scattering memoryless (flat fading) channel is assumed.
The transmitted symbol vector consists of N symbols
from a constellation Q [a complex constellation such as
16-quadrature amplitude modulation (QAM)]. The MIMO
channel is an N � N Rayleigh fading channel matrix
with independent identically distributed elements hij �
CN .0; 1/, where CN .0; 1/ is a complex Gaussian variable
with zero mean and unit variance. As usual, the channel
matrix is assumed to be perfectly known by the receiver.
By factorising the channel matrix and preprocessing the
received signal appropriately, the ML detection rule for the
equivalent real system may be given as [1]

OsD arg min
s2�m

kz�Rsk2 (1)

wheremD 2N , and R is anm�m upper-triangular matrix,
which is obtained by QR factorization of the real channel
matrix. z is obtained by received signal y and Q, where
zD QH y. kxk represents the Frobenius norm of x. �m is
them dimensional vector of symbols from the real constel-
lation�. For example, 16-QAM can be transformed to two
real 4-pulse amplitude modulation (PAM) constellations
with � D f�3;�1; 1; 3g. The details of this well-known
model are omitted for brevity; for further details, the inter-
ested reader is referred to [1]. Note that the exhaustive
search of (1) has a complexity O.j�jm/.

2.2. Coded multiple-input
multiple-output model

We consider a coded spatial multiplexing MIMO system
(Figure 1). Information vector b as a frame of Mb bits are
encoded by the ECC module, whose output c goes through
an interleaver …. ECC can be a convolutional code or a
turbo code in particular with code rate R; thus, the length
of the coded sequence c is Mc D Mb=R. The interleaver
here ensures statistical independence. The interleaved bits
x are modulated to channel symbols s and transmitted.Mx
andMs are the frame length of x and s, respectively, where
Mx D Ms log2.jQj/. Therefore, a frame of Ms symbols
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Figure 1. The system model of iterative detection and decoding. ECC, error correction code; MIMO, multiple-input multiple-output.

requires the transmission of Mch DMs=N blocks of data,
corresponding to Mch different channel realisations.

At the receiver, several iterations of soft information
exchange [24] occur between the ECC decoder and MIMO
detector. The MIMO detector in this case generates soft
a posteriori information LD1 by processing the received
signal y and the a priori information LA1 from the ECC
decoder. This reliability information is expressed by a
posteriori probability in the form of log-likelihood ratios
(LLR). For example, the LLR of bit xi .i D 1; 2; : : : ;Mx/
is defined as

L.xi /D ln
PrŒxi DC1�

PrŒxi D�1�
(2)

Note that the amplitude levels �1 andC1 represent binary
0 and 1, respectively.

For the first iteration, the LA1 is initialized to 0, and the
extrinsic information LE1 D LD1 � LA1 generated by
the MIMO detector is deinterleaved by …�1 to serve as
the a priori information for the ECC decoder. The ECC
decoder then generates the extrinsic information for the
next iteration. This process continues until a stopping cri-
terion is met, such as a predefined iteration number or a
performance bound. In the final iteration, the ECC decoder
obtains the a posteriori information LD2;b on the uncoded
bits b [30], which is sent to the slicer that outputs the final
bit estimates Ob.

2.3. Relay network model

A basic system model for a multibranch dual-hop relay net-
work is considered, which contains the source .S/, Nre
relays .R/ and the destination .D/, where Nre is the num-
ber of relays in the network. The number of antennas at the
source, the relays and the destination terminal are denoted
as Ns , Nr and Nd , respectively. All nodes are half-duplex
and use orthogonal channels, and a direct link exists from
the source to the destination. Relay protocols operate in
two time slots. In the first time slot, the source broadcasts
its message to all the relays and the destination. In the
second time slot, the relays transmit the received and/or
processed signals to the destination.

The channels between the source and the i th relay, the
i th relay and the destination, the source and the destina-

tion are denoted by H.i/sr 2 CNr�Ns , H.i/
rd
2 CNd�Nr .i 2

f1; 2; : : : Nreg/ and Hsd 2 CNd�Ns , where C is the set
of complex numbers. For the first time slot, the received

signal vector at the i th relay .i D 1; 2; : : : ; Nre/ and the
destination are given by

y.i/sr DH.i/sr ss C n.i/sr (3)

ysd DHsd ss C nsd (4)

where ss and n.i/sr ;nsd � CN .0; 1/ are the transmitted
signal at the source, the additive white Gaussian noise
(AWGN) at the i th relay (i D 1; 2; : : : ; Nre) and the
destination, respectively.

As before, the channel matrix entries are assumed to
be independent elements. To be exact, the entries are

CN
�
0;

SNR.i/sr
Ns

�
, CN

�
0;

SNR.i/
rd

Nr

�
, CN

�
0;

SNRsd
Ns

�
for

H.i/sr , H.i/
rd

and Hsd , respectively. The SNRs are defined

to be consistent with [29] to be �P�
d
.i/
sr

�˛ ; .1��/P�
d
.i/

rd

�˛ ; �P
.dsd /

˛ ,

respectively. where � 2 .0; 1� denotes the proportion fac-
tor of transmit power between the source and the relays;
the equivalent power and distance to the source at all the

relays are assumed; d .i/sr , d .i/
rd

and dsd denote the dis-
tance between the source and the i th relay, the i th relay
and the destination, the source and the destination, respec-
tively; P is the total power for the source and the relays,
and ˛ 2 Œ2; 6� is the path loss exponent.

2.3.1. Detect-and-forward relaying.

We focus on detection strategies for the relay networks
and assume that the channel state information is available
at all the nodes and could be established from the trans-
mitted pilot symbols. Similar to the system model demon-
strated in [29], we have not considered the errors resulted
by the detection at the relays to compare our method with
the method [29].

The relays process and forward the received signal from
the source (3) to the destination. Thus, at the end of the sec-
ond time slot, the received signal vector at the destination
from the i th relay .i D 1; 2; : : : ; Nre/ is given as

y.i/
rd
DH.i/

rd
s.i/r C n.i/

rd
(5)

where s.i/r is the signal detected at the i th relay by using

sphere decoder, and n.i/
rd
� CN .0; 1/ is an AWGN sample.

2.3.2. Amplify-and-forward relaying.

The relays just amplify the received signals (3) from
the source during the first time slot and retransmit to
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the destination during the second time slot. The i th relay

(i D 1; 2; : : : ; Nre) amplifies y.i/sr by a fixed gain parame-
ter ˛i [31], which is chosen to satisfy the power constraint.
Therefore, the received signal at the destination from the
i th relay, i D 1; 2; : : : ; Nre , is

y.i/
rd
DH.i/

rd

�
˛iy

.i/
sr

�
C n.i/

rd

D ˛iH
.i/
rd

H.i/sr ss C n
0

(6)

where the noise term n
0
D ˛iH

.i/
rd

n.i/sr C n.i/
rd

.
For both DF and AF modes, the destination terminal

combines the received signals from the source ysd (4)

and the relays y.i/
rd

, i D 1; 2; : : : ; Nre , and performs
ML detection.

3. SIGNAL-TO-NOISE
RATIO-DEPENDENT DETECTION

This section briefly introduces the conventional sphere
decoder and proposes the new SRC-SD. Complexity
analysis and quantifying the variability of complexity
are discussed.

3.1. Conventional sphere decoder

The real-system formulation is used to briefly explain the
basic FP and SE sphere decoders. (see [1] for more details.)
Both of these algorithms restrict the search space to a
hypersphere within a radius d centred around the received
signal. To generate the points inside the hypersphere, all
points s such that kz�Rsk2 6 d2 can be expanded asPm
iD1

�
zi �

Pm
jDi ri ;j sj

�2
6 d2. This inequality can be

replaced by a set of looser bounds. In the Pohst enumera-
tion [32], for example, given the symbols siC1; : : : ; sm, the
element si can be chosen from the range of LBi 6 si 6
UBi where

LBi D

2
666
1

ri ;i

0
@zi � mX

jDiC1

ri ;j sj � di

1
A
3
777 (7)

UBi D

6664 1

ri ;i

0
@zi � mX

jDiC1

ri ;j sj C di

1
A
7775 (8)

with d2i D d2 �
mP

kDiC1

 
zk �

mP
jDk

rk;j sj

!2
, where dxe

is the smallest integer greater than or equal to x, and bxc is
the largest integer less than or equal to x. In the SE enumer-
ation [33], the admissible points are searched in a zigzag

order from the midpoint si ;mid D
l
1
ri;i

.zi � di /
k

, where

dxc is the nearest integer around x. The spanning order is
si ;mid; si ;midC 1; si ;mid� 1; si ;midC 2; : : :, when zi �di �

ri ;i si ;mid > 0, and si ;mid; si ;mid�1; si ;midC1; si ;mid�2; : : :,
otherwise. This enumeration method has been found to be
more efficient than the Pohst enumeration.

For the original FP, the initial radius can be selected
on the basis of the noise level [34]. The initial radius for
SE is typically set as d D 1 [1]. More results on sphere
decoders may be found [2–14].

3.2. Signal-to-noise ratio-dependent
scaling function

As discussed in our Introduction, although the FP and SE
sphere decoders save complexity compared with the naive
ML detector, their computational complexity is variable
and high in the low SNR region. These two problems
are mitigated by our proposed SRC-SD at a negligible
performance loss.

The traditional FP and SE algorithms achieve complex-
ity savings by pruning nodes in the search tree, but pruning
is limited to nodes that can be identified early in the search
to be not on the ML path. Such nodes are few and their
pruning results in only modest complexity reduction, espe-
cially in the low SNR region. Therefore, to achieve sub-
stantial complexity savings, more nodes need to be pruned.
To this end, our main idea is to scale the search radius of the
hypersphere on the basis of the SNR, which is defined as
a scaling function �.�/ on the basis of the SNR �. Several
properties for the scaling factor are the following:

(1) �.�/ has to be a positive value for all the SNRs,
�.�/> 0.

(2) �.�/ should be smaller than one to obtain complex-
ity savings than the conventional sphere decoder,
that is �.�/6 1.

(3) To prune more nodes in the low SNR region and
to keep the optimal performance in the high SNR
region, �.�/ should be an increasing function of �.

(4) When the SNR is high enough, the scaling factor
approaches to one, that is, lim�!1 �.�/ D 1 that
guarantees to have the optimal performance in the
high SNR region.

There are many different scaling functions, such as
1=.exp.��/C 1/, �=.�CC0/ and so forth. On the basis
of numerical experiments, we propose the specific scal-
ing function (9), which is a simple function of the SNR
and efficiently achieves a nice performance and complexity
trade-off.

3.3. Signal-to-noise ratio-dependent radius
control sphere decoder

This decoder uses the scaling function to obtain the new
radius via

d2SRC-SD D �.�/� d
2 D

�

�CC0
� d2 (9)
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where dSRC-SD is the radius in the new SRC-SD, � is the
SNR of the MIMO system, d is the radius used in the orig-
inal FP or the SE, and C0 is a predefined constant. This
scaling function satisfies the conditions mentioned earlier.
Because of the limit

lim
�!1

�

�CC0
D 1 (10)

the performance of the proposed algorithm reverts to
that of the original sphere decoder when the SNR is
sufficiently high.

When we apply this idea to the original FP, denoted by
SRC-FP, its initial radius

d2SRC-FP D
�

�CC0
� d2

D
�

�CC0
� ˛n�2r

D
˛nm

4.�CC0/
(11)

where m D n D 2N , the noise variance in real MIMO
system �2r D

�2

2 and �2 is the additive noise variance.
The last step for (11) is based on the fact that the SNR in

a complex MIMO system is given by �D NE.jsj2/

�2
, where

the average energy of each symbolE.jsj2/D 1 is assumed.
Because SE has lower complexity compared with FP,

we choose the former as the building block of SRC-SD
(Algorithm 1). Thus, SRC-SD is derived by augmenting
the SE sphere decoder with the SNR-dependent radius (9).

To further improve the proposed SRC-SD, the ordering
of the channel matrix is included in our algorithm. In lines
1–4, the algorithm iteratively reorders the m columns of
the channel matrix. The main idea of reordering is that the
signals suffering the smallest noise amplification should be
selected in every iteration as discussed in [9, 35].

As Algorithm 1 reveals, the proposed SRC-SD is a
variant of the conventional SE [1] and achieves a critical
improvement in computational complexity and near-ML
performance (Section 6).

3.4. Complexity analysis for
SNR-dependent radius control
sphere decoder

An exact complexity analysis of SRC-SD algorithm
appears intractable because of the updating of radius and
the zigzag search ordering, which is adapted from SE [1].
Fortunately, the complexity of SE is less than that of the FP.
Thus, we evaluate the complexity of the SRC-FP sphere
decoder, which will be an upper bound of the complexity
of SRC-SD.

The complexity of an sphere decoder may be taken as
the average number of nodes visited. This average depends
on the number of antennas, the initial radius and the noise
variance [34]. By considering the number of nodes visited

at all the levels, the expected complexity of sphere decoder
is given by

C
�
m; �2r ; d

2
�
D

mX
kD1

'k (13)
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where 'k is the number of nodes visited at kth level within
the hypersphere of radius d .

Furthermore, here, we show only the theoretical com-
plexity for 16-QAM, which is equivalent to two real
4-PAM constellations. Other constellations may be anal-
ysed similarly but are omitted for the sake of brevity. For
consistency with the results of [34], the average energy of
the transmitted signals is not set to one. Therefore, by using

[34, Theorem 2] and the SNR-dependent radius d2SRC-SD
(11), the expected complexity of SRC-FP is given as
Equation (14), where gkl .q/ is the coefficient of xq in the

polynomial .1 C x C x4 C x9/l .1 C 2x C x4/k�l , and

�2r D
m
� �

L2�1
12 (for 4-PAM, LD 4).

CSRC-FP.m; �; C0/D

mX
kD1

X
q

1

2k

kX
lD0

 
k

l

!
� gkl .q/	

0
@ ˛n�

2.�CC0/
�
1C 12�q

m.L2�1/

� ; n�mC k
2

1
A (14)

3.5. Variability of complexity

Complexity C is a random variable. We are interested in
its variability for different SNRs. The variability index � is
thus proposed as the ratio between the variance of C and
square mean of C :

�D
E.C � NC/2

NC 2
(15)

where C denotes the complexity measured by the aver-
age number of nodes visited by sphere decoder; NC and
E.C/ denote the mean and the expectation of C for all the
SNRs, respectively.

Therefore, the smaller the index, the less is the variabil-
ity of the complexity. For example, from the aforemen-
tioned theoretical analysis, the FP and SRC-FP (C0 D 5

as an example) sphere decoders achieve � D 1:78 and
� D 0:69, respectively. The reduced value � suggests that
SRC-FP achieves a more constant level of complexity than
the original FP.

Remarks

(1) The new SRC-SD has lowered the computational
complexity compared with the basic sphere decoder,
especially in the low SNR region, while main-
taining near-ML performance in the high SNR
region. The channel-ordering method in lines 1–4 of
Algorithm 1 is included to further reduce the
complexity.

(2) The new SRC-SD effectively reduces the variability
index �, which is particularly helpful for hardware
implementation.

(3) This idea of an SNR-dependent radius can also
be applied to other types of tree search algorithms
for MIMO detection, such as many sphere decoder
variants [3, 7] or different stopping criteria [36].

(4) We have not discussed in detail the effects of
the constant C0 in Equation (9), which should be
adjusted for different systems. For adjusting C0,
we can use the conventional SE as a guide. When
the SNR is large enough, say 20 dB, it has a very
low complexity and further complexity reductions
appear not possible. Thus, a smaller C0 may be cho-
sen so that SRC-SD performs close to SE in the high
SNR regime.

4. DETECTION STRATEGIES

This section introduces coded MIMO detection and
MIMO-relay detect strategies. For both AF and DF relays,

the ML rule for combining the received signals from the
relays and the source is derived.

4.1. Soft multiple-input
multiple-output detection

For simplicity, we consider a block of bits x with NB D
N log2.jQj/, whereNB is the number of bits in one block.
The optimal detector obtains the exact a posteriori prob-
ability for each bit, the a posteriori LLRs of the bits xk
(k D 1; 2; : : : ; NB ) conditioned on the received signal
vector y [24] is

LD1.xk jy/D ln
PrŒ xk DC1jy�

PrŒ xk D�1jy�

D LA1.xk/CLE1.xk jy/ (16)

Here, the Bayes’ theorem and the independence of
the bits xk due to the interleaver are used to obtain
the a priori LLRs LA1.xk/ and the extrinsic LLRs

LE1.xk jy/. From [24], the extrinsic information can be
denoted by Equation (17) on next page. It is obtained
by applying the definition of the extrinsic information
[24] and the Max-log approximation [37]. Here, Xk;C1
and Xk;�1 denote the sets of the bit vectors x D�
x1; x2; : : : ; xNB

�T having xk D C1 and xk D �1,
respectively. xŒk� represents the subvector of x by omitting

the kth bits xk ; LA1Œk� denotes the subvector of LA1 D�
LA1.x1/; LA1.x2/; : : : ; LA1.xNB /

�T by omitting the
LA1.xk/.

Despite these simplifications, the computing of
LE1.xk jy/ (17) has an exponential complexity O.jQjN /
and is prohibitively complex for systems with a large num-
ber of antennas and with high-order modulations. There-
fore, we develop a list version of SRC-SD.
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List SRC-SD generates a list L of NL candidates by
searching the tree by using a rule. This list includes the ML
estimate, but the size of the list satisfies 1 6 NL < 2Nc �N ,
where Nc D log2 .jQj/ is the number of bits per mod-
ulated symbol. Therefore, to compute the LE1.xk jy/, the
searching space in Equation (17) is limited in the list L, and
the extrinsic information can be rewritten as Equation (18),
where L \ Xk;C1 and L \ Xk;�1 represent the subset of
vectors L having xk DC1 and xk D�1, respectively.

List SRC-SD is a soft extension of SRC-SD, which is
used to obtain the set of candidates around the ML estimate
that can be exploited to calculate the soft extrinsic informa-
tion of Equation (17) for the iterative detection and decod-
ing. Our LSRC-SD significantly reduces the complexity of
generating the candidate list L by adopting several proper-
ties of the classical LSD [24]. First, the radius is updated
whenever a better candidate than the worst candidate in the
current list is found. Second, the candidate list is not gener-
ated for every iteration. Once computed, it is stored in the
memory and used by every iteration. Therefore, for every
iteration, the only information needing to be updated is the
a priori information from the channel decoder.

LE1.xk jy/�
1

2
max

x2Xk;C1

�
xTŒk�LA1Œk� �

1

�2=2
ky�Hsk2

	
�
1

2
max

x2Xk;�1

�
xTŒk�LA1Œk� �

1

�2=2
ky�Hsk2

	
(17)

LE1.xk jy/�
1

2
max

x2L\Xk;C1

�
xTŒk�LA1Œk� �

1

�2=2
ky�Hsk2

	
�
1
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(18)

Similar to the a posteriori information of the MIMO
detector, that of the channel decoder can also be decom-
posed into the a priori information and extrinsic informa-
tion for the iterative detection and decoding. Therefore, the
details of the channel decoder are not shown in this paper.

4.2. Multiple-input multiple-output-relay
detection

For single-relay networks with DF relaying, ML detection
at the relay and destination is proposed in [29]. This section
considers DF and AF relays.

4.2.1. Detect-and-forward relaying.

The detection problem at each relay is equivalent to the
standard MIMO detection problem (1). For the first step at
the i th relay .i D 1; 2; : : : ; Nre/, the ML detection rule is
thus given by

s.i/r D arg min
ss2QNs

jjy.i/sr �H.i/sr ss jj2 (19)

where QNs is the set of constellation symbols in the Ns
dimensional constellation Q. The computational complex-
ity is significantly reduced by using sphere decoder. On
the basis of Equation (19) and the QR factorization of

H.i/sr
�

H.i/sr DQ.i/sr R.i/sr
�

and z.i/sr D Q.i/Hsr y.i/sr , (19) is

equivalent to

s.i/r D arg min
ss2ˆ

jjzsr �R.i/sr ss jj2 (20)

ˆ should be the set of all points in the hypersphere with

radius d that satisfies jjz.i/sr �R.i/sr s.i/sr jj2 6 d2.
In the second step, the relays transmit to the destina-

tion. Hence, the destination receives a total of Nre C 1

signals, including the direct source signal. All these signals
are combined via the ML rule as

Osd D arg min
ss2QNs

0
@NreX
iD1

jjy.i/
rd
�H.i/

rd
ss jj2C jjyd �Hsd ss jj2

1
A

(21)
By expanding each of the norms and regrouping some
terms, the equivalent channel matrix H

0
and the equivalent

received signal y
0

are derived as (see Appendix A)

H
0

D

0
@NreX
iD1

H.i/H
rd

H.i/
rd
CHHsdHsd

1
A
1=2

(22a)

y
0

D .H
0

/�1

0
@NreX
iD1

H.i/H
rd

y.i/
rd
CHHsdysd

1
A (22b)

The ML rule is then derived by Equation (19). The differ-
ence is that sphere decoder at the destination is performed
by the newly combined matrix of the channel matrix and
received signal vector from Equations (22a) and (22b).

4.2.2. Amplify-and-forward relaying.

The relays simply retransmit a scaled version of
the received signal. Similar to the DF relaying case
(Appendix A), the equivalent channel matrix and received
signal at the destination in AF relaying are given by

H
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To sum up, sphere decoder is appropriate for the receiver in
both DF relaying and AF relaying networks to reduce the
complexity with near-ML performance.

Therefore, SRC-SD works for both DF and AF systems.
Thus, the computational complexity at both the relays
and the destination can be reduced. Previously, the Fixed
algorithm [9] has been applied to obtain the fixed com-
plexity in the MIMO-relay networks. In our results section,
both the Fixed and SRC-SD algorithms will be compared.

5. COMPLEXITY ANALYSIS

The average complexity for coded MIMO and MIMO-
relay detection is analysed here.

5.1. Coded multiple-input
multiple-output system

For the proposed LSRC-SD, we evaluate the computational
complexity of generating the candidate list. This enables
a comparison of our proposed LSRC-SD and the original
LSD [24].

5.2. Multiple-input multiple-output-relay
networks

We now use sphere decoder for both DF and AF relays
networks. For AF relays, because signal detection is not
required, the complexity is the same as that of a point-
to-point MIMO link (13). The DF relays require signal
detection at both the relays and the destination, so the aver-
age number of nodes visited by sphere decoder algorithms
is given by

Call D

NreX
iD1

Ci CCd (24)

where Ci is the complexity evaluated at the i th relay
.i D 1; 2; : : : ; Nre/, Cd is the complexity of detection at
the destination, and Ci and Cd are given by Equation (13).

6. RESULTS AND DISCUSSIONS

6.1. Multiple-input multiple-output
detection

This section evaluates the performance and complexity of
the proposed SRC-SD (Algorithm 1). An uncoded 4 � 4
MIMO 16-QAM system is considered over a flat Rayleigh
fading channel. To verify the advantages of SRC-SD, both
the performance measured by the error rate [e.g. sym-
bol error rate (SER)] and the complexity measured by the
average number of nodes visited of the new SRC-SD are
compared with those of the FP, SRC-FP, K-best [8] and
Fixed [9] sphere decoders. The first two require the choice
of an initial radius, and we use the method of [34] to

set the probability of the lattice point inside the sphere at
1 � " D 0:9999. The K-best algorithm with K D 4 [8],
and Fixed with p D 1 (p is the number of levels with full
enumeration and p >

p
N � 1) [9] for achieving the same

diversity as ML detection are compared here. We choose
C0 to be 10 for the proposed SRC-SD where necessary.

Complexity comparison: Because computational com-
plexity is the most important issue for implementation, it is
compared for the FP, SRC-FP, SE and SRC-SD algorithms
for different numbers of antennas (Figure 2). From this
figure, two main observations can be found as follows:

(1) The simulation and theoretical results of both FP
and SRC-FP agree, confirming the theoretical anal-
ysis of Equation (14). In this figure, an example at
an SNR of 0 dB is shown. Clearly, SRC-FP achieves
lower complexity than the original FP. Furthermore,
the complexity gap between these two algorithms
increases with the number of antennas. For example,
when the number of antennas increases from three
to five, the complexity gap increases by a factor of
200. This result shows that augmenting the tradi-
tional FP sphere decoder with our SNR-dependent
idea achieves substantial complexity gains.

(2) The complexity of the proposed SRC-SD is also
shown here, which achieves the lowest complexity
for all the antenna numbers. For example, for an
8 � 8 MIMO system at an SNR of 0 dB, the SRC-
SD, SE and FP sphere decoders search on average
about 2:4 � 102, 105 and 109, respectively. Thus,
over six orders of magnitude of complexity savings
are achieved, confirming the high efficiency in the
low SNR region of SRC-SD and affirming its suit-
ability for large MIMO systems. Furthermore, the
complexity savings depend on the operating SNR
and diminish for high SNRs.
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Figure 2. Comparison of different sphere decoders (16-QAM)
as a function of the number of antennas, where SNR D
0 dB except stated. QAM, quadrature amplitude modulation; FP,
Fincke–Pohst; SNR, signal-to-noise ratio; SE, Schnorr–Euchner;

SRC-SD, SNR-dependent radius control sphere decoder.
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How complexity varies as a function of the SNR is
an important consideration (Figure 3). In this figure, the
SRC-SD with/without channel ordering are compared with
the FP, SE, K-best and Fixed sphere decoders. The SRC-
SD with channel ordering obtains complexity saving com-
pared with that without channel ordering. In the following,
SRC-SD denotes the algorithm with channel ordering for
simplicity. From this figure, the advantages of the proposed
SRC-SD can be found in the following:

(1) SRC-SD significantly reduces the complexity com-
pared with the conventional SE and FP sphere
decoders. For example, for an SNR of 20 dB, SRC-
SD obtains about one order of magnitude complex-
ity savings compared with FP; and this amount
increases to four orders of magnitude at 0 dB. In
contrast to SE, which visits 3 � 102 nodes, SRC-
SD visits only 16 nodes at 0 dB. This advantage
may, however, vanish if the SNR increases, as per
Equation (10).

(2) More importantly, SRC-SD also has even lower
complexity than the K-best [8] and Fixed [9] sphere
decoders.

(3) Notice how flat the complexity curve of SRC-SD
is; the variability index � of 0:14 for SRC-SD
verifies the roughly fixed complexity according to
Equation (15). SRC-SD thus achieves a roughly
fixed and reduced complexity.

Because of the trade-off between complexity and perfor-
mance, the performance of SRC-SD is examined next.

Symbol error rate performance: Pruning the nodes by
using SNR-dependent scaling of the hypersphere radius in
the proposed SRC-SD results in a suboptimal detection
performance. The impact of this suboptimality is quanti-
fied in Figure 4. Note that the SER curves of SRC-SD
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Figure 3. Complexity comparison of different sphere decoders
for a 4 � 4 16-QAM MIMO system. QAM, quadrature ampli-
tude modulation; MIMO, multiple-input multiple-output; FP,
Fincke–Pohst; SE, Schnorr–Euchner; SRC-SD, SNR-dependent
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Figure 4. Performance comparison of different sphere decoders
for a 4 � 4 16-QAM MIMO system. QAM, quadrature ampli-
tude modulation; MIMO, multiple-input multiple-output; FP,
Fincke–Pohst; SE, Schnorr–Euchner; SRC-SD, SNR-dependent

radius control sphere decoder.

(with/without ordering), FP and SE are almost identical.
The FP, Fixed and SE sphere decoders are full ML detec-
tors. Clearly, SRC-SD achieves a near-ML performance,
and also outperforms K-best, especially in the high SNR
region. For instance, at an SER of 10�3, SRC-SD gains
7 dB over K-best. Consequently, on the basis of perfor-
mance and complexity, the new SRC-SD outperforms the
Fixed and K-best sphere decoders.

6.2. Detection for coded multiple-input
multiple-output system

We next assess the advantages of SRC-SD in a coded
MIMO system. The performance measured by the bit error
rate and the complexity for a 4 � 4 coded MIMO system
are investigated. The naive LSD is compared with LSRC-
SD for several values of the parameter C0. The system-
atic recursive convolutional code with rate R D 1=2 is
exploited to encode the transmitted bits sequence b with
the frame length Mb D 8192, where the feed-forward and
feedback-generating polynomials are G1.D/ D 1 C D2

and G2.D/D 1CDCD2 with memory length 2 [24]. A
random interleaver is exploited here. The SNR is used as
the Horizontal axis as defined by Es=N0.

To choose the best C0, the performance and complex-
ity comparison of LSRC-SD for different values of C0 is
shown. On the basis of the idea of SRC-SD, by increas-
ing C0, more nodes are pruned in the searching process,
which achieves much lower complexity. The bit error rate
performance is also impacted by this parameter. Thus, a
proper value for C0 may be found to attain a nice trade-
off between performance and complexity. From Table I, by
using four iterations, the performance becomes closer to
that of the naive LSD when C0 decreases. To maintain the
performance, a smaller value should be chosen for C0.
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Table I. Performance comparison for different C0 for a 4 � 4 16-QAM coded MIMO system
with Mb D 8192 transmitted bits and a maximum of four iterations.

LSRC-SD LSRC-SD LSRC-SD LSRC-SD LSRC-SD
LSD (C0 D 1) (C0 D 2) (C0 D 3) (C0 D 5) (C0 D 10)

SNRD 8 dB 0.12010 0.11800 0.1398 0.13170 0.1356 0.16590
SNRD 8:5 dB 0.06390 0.06350 0.0632 0.07080 0.0799 0.10045
SNRD 9 dB 0.01470 0.01460 0.0194 0.02269 0.0284 0.04300
SNRD 9:5 dB 0.00435 0.00450 0.0060 0.00789 0.0093 0.01760
SNRD 10 dB 0.00190 0.00195 0.0029 0.00366 0.0048 0.00810

SNR, signal-to-noise ratio; LSD, list version of sphere decoder; LSRC-SD, list SNR-dependent
radius control sphere decoder; QAM, quadrature amplitude modulation; MIMO, multiple-input
multiple-output.

Table II. Complexity comparison for different C0 for a 4�4 16-QAM coded MIMO system with
Mb D 8192 transmitted bits.

LSRC-SD LSRC-SD LSRC-SD LSRC-SD LSRC-SD
LSD (C0 D 1) (C0 D 2) (C0 D 3) (C0 D 5) (C0 D 10)

SNRD 8 dB 4280.2 2561.6 2111.8 1860.5 1571.9 1199.9
SNRD 8:5 dB 4243.4 2624.9 2192.4 1914.4 1633.4 1257.5
SNRD 9 dB 4241.3 2675.8 2240.8 1982.0 1688.6 1314.1
SNRD 9:5 dB 4196.4 2736.7 2302.7 2043.9 1737.8 1381.6
SNRD 10 dB 4190.7 2767.1 2374.7 2121.6 1804.6 1435.7

SNR, signal-to-noise ratio; LSD, list version of sphere decoder; LSRC-SD, list SNR-dependent
radius control sphere decoder; QAM, quadrature amplitude modulation; MIMO, multiple-input
multiple-output.

The complexity for LSRC-SD with different C0 is given
in Table II. As C0 increases, the complexity decreases
more. For example, the average number of nodes visited
are about 1:7�103 forC0 D 5, around 2�103 withC0 D 3,
and approximately 2:2 � 103 with C0 D 2. Therefore, to
maintain the performance and reduce the complexity,
C0 D 2 should be chosen in this case. Similarly, an appro-
priate value for other MIMO systems can be found after
several trials.

6.3. Detection for multiple-input
multiple-output-relay networks

To confirm the benefits of SRC-SD for MIMO-relay net-
works, its performance and the complexity are evaluated
for both DF and AF relays. The number of relays is one or
two. The proposed SRC-SD is compared with Fixed, the
original SE and CPD [29]. In what follows, it is assumed

that dsd D d
.i/
sr Cd

.i/
rd

with d
.i/
sr

dsd
D 0:2; i 2 f1; 2; : : : Nreg,

the path loss exponent ˛ D 3 and �D 0:5.
Let us first evaluate the SER performance. See Figure 5,

which consider the Fixed, SRC-SD and SE sphere
decoders. Direct source-to-destination transmissions also
occur. The horizontal axis is the transmit power. We set
p D 1 for Fixed [9] and C0 D 10 for the new SRC-
SD. For cooperative partial detection (CPD), we let the
expansion factor be 3 [29]. Note that for both the one-
relay case and the two-relay case with DF, the SRC-SD,

SE and Fixed sphere decoders performs identically. This
finding confirms the near-ML performance of SRC-SD. In
contrast, CPD incurs performance penalties. For example,
for the one-relay case, at an SER of 10�3, it loses 5 dB per-
formance and worse than SRC-SD. Clearly, the SER per-
formance improves when the number of relays increases.
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Figure 5. Error probability of sphere detection for a 4 � 4
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modulation; MIMO, multiple-input multiple-output; SE,
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Figure 6. Complexity comparison of sphere detection for a
4 � 4 16-QAM MIMO-relay network. QAM, quadrature ampli-
tude modulation; MIMO, multiple-input multiple-output; SE,
Schnorr–Euchner; DF, decode-and-forward; CPD, cooperative
partial detection; SRC-SD, signal-to-noise ratio-dependent radius

control sphere decoder.

This result confirms the benefit of using relays to increase
the reliability.

The complexity comparison for the same setup shown
in Figure 5 is depicted in Figure 6. For the single-relay
case, SRC-SD reduces the complexity compared with the
CPD, Fixed and SE sphere decoders, and approaches the
complexity of SE when the power increases (to higher than
15 dB). For example, at an SNR of 0 dB, SRC-SD visits
only 19 nodes, whereas the CPD, Fixed and SE algorithms
visit 190, 128 and 130 nodes, respectively. SRC-SD also
achieves lower complexity than that of the direct link with
SE and Fixed for the lower power region, whereas it has
slightly higher complexity than that of the direct trans-
mission when the power is larger than 21 dB. This result
is caused by the path loss because of the long distance.
For the two-relay network, SRC-SD reduces the complex-
ity compared with that of SE. To check the variability of
the complexity here, notice that for both one-relay and
two-relay networks, SRC-SD obtains a roughly flat com-
plexity curve as a function of the SNR. For these two
cases, it can be shown by using Equation (15) that the
variability indexes of SRC-SD are 6:5 � 10�5 and 5:7 �
10�3, respectively. Our results demonstrate that SRC-SD
is an effective detection algorithm for multibranch MIMO-
relay networks, with the advantage of roughly fixed,
low complexity.

Both the DF and AF cases are considered in Figure 7 and
8. Figure 7 compares the performances of the SRC-SD, SE
and Fixed algorithms in one-relay AF and DF systems. In
AF relaying, both the SRC-SD and Fixed sphere decoders
perform close to that of SE, which is the optimal decoder.
In DF relaying, SE achieves a performance gain of 1:5 dB
than that in AF.

A complexity comparison for the same setup is also
shown in Figure 8. The AF SRC-SD system has lower
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Figure 7. Performance comparison of sphere detection for
a 4 � 4 16-QAM MIMO-relay network. QAM, quadrature
amplitude modulation; MIMO, multiple-input multiple-output;
SE, Schnorr–Euchner; DF, decode-and-forward; AF, amplify-and-
forward; SRC-SD, signal-to-noise ratio-dependent radius control

sphere decoder.
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Figure 8. Complexity comparison of sphere detection for
a 4 � 4 16-QAM MIMO-relay network. QAM, quadrature
amplitude modulation; MIMO, multiple-input multiple-output;
SE, Schnorr–Euchner; DF, decode-and-forward; AF, amplify-and-
forward; SRC-SD, signal-to-noise ratio-dependent radius control

sphere decoder.

complexity than the SE and Fixed sphere decoders, just
as in DF relaying (Figure 6). Especially, in the low-
power region, SRC-SD significantly reduces complexity.
For example, at 0 dB, it is only 6% of that of SE. Thus, sys-
tems that operate in the low SNR region may particularly
benefit from the use of SRC-SD. As expected, however,
both the SRC-SD and SE algorithms have the same level
of complexity in the high SNR region (> 20 dB). It is
interesting to compare the DF SE and AF SRC-SD sys-
tems. The complexity saving varies from 93:6% to 52%.
The variability index � is found to be 1:9 � 10�4 for
SRC-SD, which demonstrates roughly fixed complexity.
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These results again confirm that SRC-SD reduces the
complexity and its variability.

7. CONCLUSIONS

This paper proposed an SRC-SD with reduced com-
plexity, reduced variability of complexity, and near-
ML performance. The search radius is tightened by a
heuristic SNR-dependent factor. The resulting algorithm
outperforms existing detectors such as the K-best and
Fixed sphere decoders in terms of SER but also saves
complexity. For coded MIMO systems, we proposed, as
a soft extension of the new SRC-SD, LSRC-SD for gen-
erating the candidate list. This LSRC-SD algorithm fur-
ther improves the complexity of detection and decoding
at a negligible performance loss. Signal detection for AF
and DF MIMO-relay networks was also investigated by
deriving the ML detection rules. The simulation results
confirmed the benefits of the proposed SRC-SD with a
near-ML performance and roughly constant complexity.

APPENDIX A

According to the norm expansion jjHjj2 D HHH, the
Equation (21) is expanded as

Osd D arg min
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Assuming y
0

and H
0

are derived, the ML expression
maybe expanded similarly as
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By comparing Equations (A1) and (A2), it is clear that
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Further, because of
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thus, the equivalent channel matrix H
0

is
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where H
0
DH

0H .
According to the equivalent channel matrix, Equations

(A1) and (A2), the equivalent received signal y
0

are
derived as
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