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Abstract—Spectrum sensing performance of a cognitive radio
(CR) deploying the traditional energy detector (ED) degrades
in the presence of random network interference where both
the number and locations of the interferers are random, thus
preventing correct detection of primary user (PU) in the band
of interest. However, it is not clear how the ED performance in
such random network interference can be improved. Moreover,
the previous studies do not consider complete modeling of the
wireless environment including the cumulative effects of path-
loss, fading and random network interference. We thus take
these effects into account and investigate the performance of
the p-norm detector, which offers the flexibility of adapting p
to the operating conditions (as against fixed p = 2 for ED).
Such adaptability yields remarkable performance gains over
ED (say, 15% gain even at 10 dB lower (than that for ED)
PU signal powers). Further, cooperative spectrum sensing with
multiple CRs yields additional performance gains (say, 30%

better performance at optimal cooperative detection threshold)
compared to single CR based sensing even under the cumulative
effects of path-loss, fading and random network interference.

Index Terms—Spectrum sensing, cognitive radio, energy de-
tector, p-norm detector, multipath-fading, shadowing, random
network interference.

I. INTRODUCTION

Global mobile data traffic is expected to reach 1.6 zeta-bytes

per year by 2018 [1]. Such unprecedented growth will require

additional portions of the radio frequency (RF) spectrum

for accommodating new wireless users. However, spectrum

licensed to primary users (PUs) (say, analog/digital TV) is

limited (e.g., about 54-806MHz), yet remains underutilized

across time and space [2]. For example, even three unused TV

channels (6-7MHz per TV channel) occupy more than, say,

the scalable bandwidth or the maximum allowable bandwidth

for Long-term Evolution (LTE) (20MHz) or IEEE 802.11af

systems, respectively. Such inefficient spectrum utilization hin-

ders the introduction of new wireless users/services. In order

to improve spectrum utilization, intelligent devices, called

cognitive radios (CRs), may opportunistically communicate

over the temporarily unused bands [3]. Such opportunistic

communication is possible only if the CRs can effectively

detect (sense) a PU channel (spectrum band) to be vacant.

However, the accuracy of sensing the available vacant bands

depends on wireless channel impairments, noise, as well as

interference from other users.

Moreover, the future concept of “networked everything” [4],

where every wireless user (device) is virtually connected to

every other user, creates massive networks of interconnected

devices. This leads to leakage of powers from undesired trans-

mitters in space over relatively large distances thus causing

interference to the sensing CR node [5]. Such scenarios may

typically arise in heterogeneous network settings, say, while

enabling co-existence between IEEE 802.22 Wireless Regional

Area Networks (WRANs) and IEEE 802.11af Super Wi-Fi in

the TV white spaces where an IEEE 802.11af based small-cell

access point (AP) may receive interference from other similar

APs or even from the IEEE 802.22 based incumbents [6].

However, 802.22 and 802.11af based systems have different

specifications. For example, maximum transmit power for an

802.22 PU is 1000 kW while that for an 802.11af AP is

100mW [5]. Thus, despite such disparate operating conditions,

the CR must make correct decisions on the presence/absence

of vacant bands. Moreover, in addition to such disparities,

the CR must operate in the presence of a network of in-

terferers where both the number and locations (distances) of

the interferers vary randomly. Clearly, such random network

interference impairs the spectrum sensing accuracy of the CR.

In such scenarios, the ability of CR nodes to operate without

any knowledge of the PU signal structure/parameters is partic-

ularly advantageous since these parameters dynamically vary

in time and across space depending on the modulation type,

radio access technology, operators, and so on. Moreover, esti-

mating those parameters entails additional cost and complex-

ity. Fortunately, the energy detector (ED) operates “blindly”

and hence is a popular candidate for spectrum sensing [3].

The ED performance has thus been extensively analyzed

in multipath-fading (small-scale fading), shadowing (large-

scale fading), multiple antennas, cooperative diversity, and

others [3], [7]–[14]. Although these works reveal interesting

insights on channel impairments and diversity configurations,

the investigation of the impact of random network interference

is extremely limited [15]–[17]. While these studies show that

random interference from secondary users clearly degrades

ED’s ability to identify unused spectrum bands, [15]–[17] do

not treat the inherent effects of fading (which, henceforth

refers to both multipath-fading and shadowing). Moreover,

methods to improve the sensing performance against the

cumulative effects of multipath-fading, shadowing and random

network interference have not yet been reported.

To address these issues, we investigate the CR spectrum

sensing performance in path-loss, fading and random network

interference. We consider the p-norm detector, which encom-

passes ED as a special case (p = 2) and outperforms it in

multipath-fading [18]. However, to the best of our knowledge,

the performance of p-norm detector has never been studied

in presence of random network interference. In summary, our



contributions are as follows:

(i) As the exact distribution of the p-norm detector decision

variable is analytically intractable, we propose a classical

central-chi square approximation [19], which leads to

conditional (on random variables) detection probability

Pd and false alarm probability Pf expressions as func-

tions of path-loss, fading and network parameters.

(ii) Further, the average Pd over fading channels is derived.

The derived expression and Pf (from (i)) are then utilized

to devise semi-analytical evaluation of the detection per-

formance averaged over the random network model. The

devised method saves simulation running-time drastically

compared to exhaustive Monte-Carlo iterations performed

over all random parameters (noise, fading, interferers).

For instance, simulation running-time could be reduced

from one day to 125 seconds (details in Section V).

(iii) Finally, the developed framework is extended to cooper-

ative spectrum sensing to explore further possible gains

with multiple collaborating CR nodes.

The system model is introduced in Section II. Approximate

conditional expressions for Pd and Pf are derived in Section

III. Average Pd and Pf expressions over fading and random

network interference are presented in Section IV. Novel in-

sights are discussed for single CR based sensing in Section V

and for cooperative sensing in Section VI before concluding

the paper with Section VII.

II. SYSTEM MODEL

A. Network Model

The network model is shown in Fig. 1. Consider a CR

located at the center of a circular disc of radius R so that it can

sense the presence/absence of PU transmission within the area

A = πR2. The PU transmitter is operating at a fixed distance

r0 ≤ R from the CR node. Within the same area A, there exist

K interferers located at distances r = [r1, r2, ..., rK ] from the

sensing CR such that both K and r vary randomly. Such topo-

logical randomness in network interference can be modeled

via spatial point processes [20]. While our proposed semi-

analytical method is not limited to any particular point process

model, we will consider the popular (homogeneous) Poisson

point process (PPP) for ease of exposition [20] (Section V).

The PPP model is valid when the interferers are randomly

distributed over a large area without any correlation between

their locations. However, even for correlated locations, the PPP

assumption may yield within 1-2 dB accuracy compared to the

performance of an actual LTE network [20].

B. Link Model

Denoting the true presence and absence of the PU signal

within the CR sensing region by H1 and H0, respectively,

the n-th received signal sample yn, ∀n ∈ {1, 2, ..., N},

conditioned on K , r and the PU-CR random fading channel

coefficient h, can be expressed as

yn =

{

wn +
∑K

k=1 r
−α/2
k sk,n : H0,

hr
−α/2
0 sP,n + wn +

∑K
k=1 r

−α/2
k sk,n : H1,

(1)

rK

R
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Fig. 1: Network Model. The total number of interferers K and the
distances rk, ∀k ∈ {1, 2, ...K} are random.

where α is the path-loss exponent, sk,n ∼ CN (0, Pi) is the k-

th interfering signal sample assumed to be conditionally (on

K and r) complex Gaussian with mean zero and variance

Pi, wn ∼ CN (0, σ2
w) is the additive white Gaussian noise

(AWGN) sample and sP,n ∼ CN (0, Ps) is complex Gaussian

PU signal sample. Note that the statistical modeling of transmit

signals as Gaussian is a widely used approach [15]–[17], [21]–

[25]. However, deterministic models are also possible [3].

Although our framework may possibly be extended for the de-

terministic models, they are omitted here for brevity. Also, we

disregard the effect of fading on the interfering signals since

deep fading of the PU signal (rather than interfering signals) is

what determines the sensing performance. In fact, since fading

of interfering signals leads to better sensing performance, our

assumption of non-faded interfering signals provides a worst-

case lower bound on the sensing performance. Without loss

of generality, the PU signal, noise and interfering signals are

assumed to be mutually independent.

C. The p-norm Detector

The p-norm detector is a generalized version of the tradi-

tional ED where the squaring operation is replaced by a power

p > 0 operation thus yielding a decision variable of the form

T =
1

N

N
∑

n=1

|yn|p, (2)

so that the ED (p = 2) appears as a special case [25]. The

ED is non-optimal in terms of maximizing Pd at fixed Pf , N
and signal-to-noise ratio (SNR) or minimizing Pf at fixed Pd

and N while the p-norm detector yields a better performance

by adapting p to maximize/minimize Pd/Pf , for given values

of the other parameters [25]. As well, the ED is non-optimal

in detecting signals affected by multipath-fading [18]. These

reasons motivate the investigation of the p-norm detector for

improving spectrum sensing under cumulative effects of fading

and random network interference. We thus derive its Pd and

Pf conditioned on the random variables, next.

III. CONDITIONAL DETECTION PERFORMANCE

The detection probability Pd , P(T > λ|H1) and the

false alarm probability Pf , P(T > λ|H0), where λ is the



detection threshold, are two fundamental performance metrics

of the p-norm detector. Thus, the statistical distributions of T
under H1 and H0 are needed to evaluate Pd and Pf , respec-

tively. However, since T is a sum of arbitrary p-th powered

random variables, these distributions are not amenable to an

exact closed-form analysis even in non-random (non-fading,

AWGN) channels [18]. Thus, to date, three distinct approaches

for performance analysis of p-norm detector exist, however,

with some limitations as follows.

(i) Although highly accurate methods based on the moment-

generating function, Laguerre polynomials, and series-

sum have been developed for evaluating Pd and Pf [18],

the extension of these techniques to the random network

and link model at hand appears difficult.

(ii) The central-limit-theorem (CLT) approximation for the

distribution of T [26] is only suitable for large samples

(N ≫ 1) and may not facilitate the small-sample per-

formance which is critical to determine the minimum

samples (to maintain low sensing time) required for

attaining the target sensing performance [24].

(iii) Another approach based on approximating T by a

Gamma random variable [25] does not limit the sample

size (as in CLT). However, it only considers AWGN

channels without encompassing path-loss, fading and/or

random network interference.

To circumvent these limitations, we derive approximate Pd and

Pf expressions to facilitate analysis of the problem at hand.

We resort to a classical approximation proposed by [19]

to approximate the scaled (by ρ) version of T by a central

chi-square random variable Y with u degrees of freedom as

Y =
1

ρ
· T. (3)

The scaling factor ρ and the degrees of freedom u can be

determined by matching the first two exact moments of T/ρ to

those of Y . Then, the complementary cumulative distribution

functions (CCDFs) of Y under hypotheses H0 and H1 yield

Pf and Pd, respectively.

For the random signal model considered, the distribution of

yn, ∀n ∈ {1, 2, ..., N}, under hypotheses H0 and H1, can be

expressed as yn|H0 ∼ CN (0, v0) and yn|H1 ∼ CN (0, v1),
respectively. The variables v0 and v1 denote variances condi-

tioned on the random variables K , r = [r1, r2, ..., rK ] under

H0, and additionally on h under H1, as

v0 = σ2
w +

K
∑

k=1

Pir
−α
k

v1 = σ2
w +

K
∑

k=1

Pir
−α
k + |h|2Psr

−α
0 .

(4)

Since yn is conditionally complex Gaussian distributed, its

squared amplitude |yn|2 is exponentially distributed under

each hypothesis Hj with the probability density function

(PDF) f|yn|2(x) = 1/vje
−x/vj , j = {0, 1}. Since the samples

are independent and identically distributed (i.i.d.), the mean
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Eq. (8)

Simulation

p = 2.5, N = 10

p = 4, N = 100

Fig. 2: ROC curves comparing (8) and simulation. The p = 4, N =

100 graph is plotted for SINR = −10 dB and p = 2.5, N = 10 is
obtained with SINR = 0 dB.

of T |Hj , denoted by µj , can be expressed after interchanging

the order of integration and summation as

µj =
1

N

N
∑

i=1

∫ ∞

0

xp/2 1

vj
e−x/vjdx = v

p/2
j Γ

(

p

2
+ 1

)

, (5)

where the definition of Gamma function, Γ(a) =
∫∞

0
xa−1e−xdx, is used. The variance of T |Hj , denoted by

var(T |Hj), can be obtained similarly as

var(T |Hj) =
vpj
N

[

Γ(p+ 1)− Γ2

(

p

2
+ 1

)]

. (6)

Then, using the transformation (3), matching the correspond-

ing means and variances under each Hj , and solving the

resulting equations for u and ρ|Hj denoted by ρj , j = {0, 1},

we get (details omitted for brevity)

u =
2NΓ2(p/2 + 1)

Γ(p+ 1)− Γ2(p/2 + 1)
, ρj = v

p/2
j g(N, p), (7)

where g(N, p) , [Γ(p+ 1)− Γ2(p/2 + 1)]/[2NΓ(p/2 + 1)].
Then, the CCDFs of Y , for j = {0, 1}, can be readily derived

in terms of the upper-incomplete Gamma function Γ(a, x) =
∫∞

x
ta−1e−tdt, to yield Pd and Pf , respectively, as

Pd ≃ 1

Γ(u/2)
Γ

(

u

2
,
λ

2ρ1

)

, Pf ≃ 1

Γ(u/2)
Γ

(

u

2
,
λ

2ρ0

)

. (8)

These approximate expressions (8) are simple enough to lend

analysis in the random network/link model of interest as will

be discussed in the next section where we evaluate the average

of these metrics over the corresponding random variables.

Before proceeding to the next section, the derived expres-

sions (8) are numerically compared against the simulation

results via the receiver operating characteristic (ROC) curves

for two p-norm detectors with different sample sizes and

conditional (on K , r and h) signal-to-interference-plus-noise

ratios (SINRs), where SINR , Psr
−α
0 /[σ2

w +
∑K

k=1 Pir
−α
k ]

(Fig. 2). For both cases, (8) and simulations match closely,

thus validating the accuracy of (8).



IV. AVERAGE DETECTION PERFORMANCE

As discussed in Section III, Pf is conditioned on the number

of interferers K and their distances r while Pd is additionally

conditioned on channel gain h. Thus, complete simulation

requires averaging over realizations of the random signals,

channel gain, noise and the point process, which results in

long running-times, particularly for high interferer densities

where the number of interfering nodes can be very large.

Thus, simulation-only based evaluations are prohibitively ex-

pensive for multiple design perspectives which require inter-

relationship among various parameters (such as α, Ps, Pi, p,

N and others) across a wide range of values. This motivates

us to develop a semi-analytical method for faster computation

of average Pf (over K and r), denoted by P f , and average

Pd, denoted by P d (over K , r and h), next.

Substituting ρ1 from (7) into the conditional Pd (8) and

integrating over the PDF of the squared amplitude of channel

coefficient |h|2, denoted by f|h|2(x), results into

Pd|PP =
1

Γ(u/2)

∫ ∞

0

Γ

(

u

2
,

λ/[2g(N, p)]

(σ2
a + xPsr

−α
0 )p/2

)

f|h|2(x)dx,

(9)

where σ2
a , σ2

w+
∑K

k=1 Pir
−α
k and the subscript PP indicates

condition on the point process (i.e. on K and r). Since p > 0
is a critical parameter of interest, imposing any limitations on

its range is unrealistic (for example, assuming p as an integer

or confining it to a particular interval, for ease of analysis) for

achieving possible gains resulting from fine tuning of p. Unfor-

tunately, this requirement renders the integral in (9) virtually

intractable. However, with further algebraic manipulations, the

integral can be simplified to obtain Pd|PP as an integral over

a finite support of the form

Pd|PP =

∫ π/2

0

Γ

(

u

2
,
λ/[2g(N, p)]

(σa sec θ)p

)

f|h|2

(

σ2
a tan

2 θ

Psr
−α
0

)

ξ(θ)dθ

(10)

where ξ(θ) ,
2σ2

a tan θ sec2 θ

Psr
−α
0

Γ(u/2)
. Note that (10) is a very general

expression valid for any multipath-fading, shadowing or diver-

sity combining model with a known PDF f|h|2(x). Moreover,

it can be readily computed in software packages such as

MATLAB. Finally, (10) averaged over the point process yields

P d as

P d = EK,r(Pd|PP), (11)

where E(·) denotes the expectation over the random variables

K and r. Thus, (11) only needs to be iteratively averaged

over the realizations of the point process while simulations-

only based evaluations would require additional iterative sim-

ulations over random signals, channel gain h and noise. Note

that since Pf (8) is independent of h, its average over the

point process, denoted by P f , is given by

P f = EK,r(Pf ). (12)

The main advantage of (11) and (12) is a drastic reduction

in simulation time compared to the direct (exhaustive) simu-

lations over random signals, h, noise, and the point process.

For instance, for a homogeneous PPP with average interferer
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Fig. 3: ROC curves: semi-analytical (11) and (12) vs. simulations for
3-norm, N = 20 detector with β = 0.0001 α = 4, Pi = 10 dB,
Ps = −10 dB; and for 1.5-norm N = 10 detector with β = 0.005,
α = 2.5, Pi = 5 dB, Ps = 0 dB; m = 2, σs = 4.66 dB.

density β over the disc of radius R with the PU-CR link

modeled by a Gamma-shadowed Nakagami-m channel (see

Section V), in order to attain a 3-digit accuracy for β = 0.0001
and β = 0.01 with R = 150, the direct simulations require

148 and 1555 seconds, respectively, while our semi-analytical

solutions only require 4 and 51 seconds, respectively (on

an Intel(R) Core i7(TM), 2.4GHz CPU). Moreover, say, for

β = 0.1, the average number of interferers is in the order of

thousands (7069) and simulations could take more than one

day to complete, while our solution only takes 127 seconds.

V. NUMERICAL SETUP AND DISCUSSIONS

In this section, we present novel, interesting insights into

how the p-norm detector performs under the system model

at hand. For numerical purpose, the interfering network is

generated via a homogeneous PPP. The PU-CR channel is

modeled as a Gamma-shadowed Nakagami-m fading channel.

The CR sensing performance is illustrated via ROC curves and

the average probability of error, defined as P e = P(H1)(1 −
P d) + P(H0)Pf where P(Hj), j = {0, 1} denotes the

probability of occurrence of Hj . Without loss of generality, the

P e results are obtained assuming equally-likely hypotheses.

For a homogeneous PPP with an average interferer den-

sity β, the total number of interferers K is a Poisson

distributed random variable with probability mass function

P(K = k) = (βA)ke−βA/k!, while the distance rk of

the k-th interferer ∀k ∈ {1, 2, ...,K} from the sensing CR

is uniformly distributed in the disc of radius R with PDF

frk(x) = 2x/R2, 0 < x < R, and frk(x) = 0, x ≥ R.

The PDF of the squared envelope |h|2 for the Gamma-

shadowed Nakagami-m fading channel is given by [27]

f|h|2(x) =
2b

m+ms
2 x

m+ms
2

−1

Γ(m)Γ(ms)
Kms−m(2

√
bx) (13)

with b = msm/Ωs, where for a shadowing standard deviation

σs, ms = 1/[exp(σ2
s ) − 1] represents the inverse shadowing

severity, Ωs =
√

(ms + 1)/ms is the shadowed area mean
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λ = 10 Ps = 5 dB, Pi = 5 dB, α = 2, σs = 6.52 dB and m = 2.5.

power, m is the Nakagami fading severity index, and Kν(·) is

the modified Bessel function of second kind of order ν.

Without loss of generality, we normalize the distances with

respect to the PU’s location r0 = 1 and set R = 150. To

validate our semi-analytical approach, ROCs obtained using

(11) and (12) are numerically compared with those generated

from simulations (Fig. 3). A tight match between the two

clearly indicates the accuracy of our method.

The dependence of P e on p for various PU signal powers

(Fig. 4) clearly indicates that the ED (p = 2) is non-optimal in

minimizing P e with its performance getting worse for low PU

power levels. An optimal p of 5, denoted by p∗ = 5, attains

71% lower P e than that of ED when Ps = 10 dB. In fact,

another p∗ = 5.4 detector possesses 15% lower P e than the

ED even at 10 dB lower (than that for the ED) Ps levels.

Another set of graphs (Fig. 5) illustrate the effect of

interferer density on the choice of optimal p, which in general,

is not equal to 2 (ED). For example with an optimal p = 4.8,

25% lower P e (than ED) is attained at β = 0.0001. More

interestingly, the optimal p is inversely proportional to β.

Although the p-norm detector performance in multipath-

fading channels is well-characterized [18], its performance
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Fig. 6: ROC curves for a 3-norm, N = 10 detector for various σs dB
with β = 0.0001, α = 2, Pi = 5 dB, Ps = 0 dB and m = 2.5.

in shadowing is not known. Motivated by this, the effect of

shadowing, measured by σs dB is explicitly shown in Fig. 6

for a typical outdoor environment (where 4 ≤ σs dB ≤ 12).

Clearly, largely shadowed PU signals are more difficult to

detect. For example, with a 6.1 dB increase in the shadowing

spread, P d drops by about 23% (at Pf = 0.01). A typical

solution to mitigate the effects of shadowing is to exploit

cooperation among a number of CRs, rather than a single CR

detecting the PU, as discussed next.

VI. COOPERATIVE SPECTRUM SENSING PERFORMANCE

In cases when the PU is heavily shadowed from the sensing

CR, cooperation among multiple CRs remarkably improves

the sensing performance [28]. Thus, to mitigate shadowing

and more importantly, to explore further enhancements in the

sensing performance, we now allow multiple CRs to cooperate.

For cooperatively sensing the PU, multiple CRs participate

along with a fusion center (FC) to decide on the pres-

ence/absence of PU in the spectrum of interest. Since our

primary interest is to evaluate the benefits of cooperation rather

than a particular fusion scheme, we do not seek any optimal

fusion scheme but simply choose the M out of C fusion

rule for the purpose. A discussion of other common fusion

rules can be found in [3]. For the M out of C fusion rule,

the co-operative (fused) detection probability and false alarm

probability, denoted by Qd and Qf , respectively, are [29]

Qd=

C
∑

l=M

(

C

l

)

P
l

d(1−Pd)
C−l; Qf=

C
∑

l=M

(

C

l

)

P
l

f (1−Pf )
C−l,

(14)

where C is the total number of CRs and M is the threshold of

cooperative detection such that if the sum of individual 1-bit

CR decisions (1 or 0) exceeds (or equals) M , the FC decides

in favor of H1, else it decides on H0.

Interestingly, cooperative spectrum sensing is advantageous

for minimizing the overall probability of error given by Qe =
1 − Qd + Qf (Fig. 7). Say, for β = 0.05, an optimal M ,

M∗ = 6 reduces the probability of error (Qe) by 30% as

compared to that for single CR (P e = 0.42) . Moreover, at
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Fig. 7: Qe vs. M with C = 10 for various β for a N = 10, 4.8-
norm detector with λ = 5.5, α = 2, Ps = −5 dB, σs = 8.69 dB,
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larger interferer densities, a higher M is better, implying that

more CRs deciding in favor of H1 are needed in order to

reduce Qe. For example, as much as 27% reduction in Qe can

be obtained when M is increased from 1 to 8 for a relatively

large interferer density (β = 0.1).

VII. CONCLUSION

Spectrum sensing with p-norm detector based CR under

cumulative effects of path-loss, multipath-/shadow- fading and

random network interference has been considered. Adaptive

tuning of p in response to varying PU signal power yields

better performance, as compared to the traditional ED (p = 2)

Also, p can be chosen inversely to the interferer density to

reduce the impact of random network interference on the sens-

ing performance. Increased levels of shadow-fading degrades

the p-norm performance, which however, can be overcome

by cooperative spectrum sensing. Additionally, cooperation

further improves the sensing performance even in the presence

of random network interference. The improvement is achieved

by adapting the detection threshold at the FC in proportion to

the interferer density. Thus, our technique can serve as a robust

tool to design, analyze and improve CR spectrum sensing

performance which is fundamental for promoting coexistence

among current and next-generation wireless networks.
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