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Abstract—In this paper, we present mathematical frameworks
for error performance analysis in interference limited networks
such as cellular networks. Due to the increasing irregularity
in the spatial deployment of nodes in the emerging heteroge-
neous cellular networks (HCNs), we employ stochastic geometry
approach by abstracting the node locations as a homogeneous
Poisson point process (PPP). First, we characterize the average
error probability of an intended communication link with a given
transmitter-receiver separation, which is subject to interference
from these Poisson distributed nodes. More specifically, we de-
velop uniform approximation (UA), which is highly accurate over
the whole range of signal-to-interference ratio (SIR) and hence,
serve as an alternative to existing complex analytical results.
Error probability UAs for both single-antenna and maximal ratio
combining (MRC) receivers are derived in this paper. Next, we
evaluate the average error probability of any typical user in the
network, which is served by the node providing the maximum
received power. Mellin-transform based method is proposed in
this case, which often yield closed-form solution. An example of
BPSK modulation is given in the paper.

I. INTRODUCTION

In large wireless networks with numerous nodes spatially

distributed over very large areas, such as cellular networks,

the performance limiting factor is interference rather than

noise. The interference is a direct function of the spatial

configuration of the network on which wireless propagation

characteristics such as path loss, shadowing and multipath fad-

ing are dependent upon. As cellular networks emerge towards

heterogeneous deployments (low-power nodes such as picos

and femtos overlaid with the macro-cellular infrastructure),

which are characterized by unplanned/random locations of

the nodes, the interference scenario becomes more complex,

and computation of spatially averaged performance metrics

becomes critical to derive useful design insights. To this end,

stochastic geometry has been recently proven to be a powerful

mathematical tool [1], [2]. It allows to evaluate the average

network behavior over all possible spatial realizations of the

nodes, which are abstracted by a suitable spatial point process.

Poisson point process (PPP) is the most popular and widely

used spatial model for wireless networks due to its analytical

tractability and the availability of large class of powerful

results and well-established analytical tools [1]–[3].

The spatial distributions of base-stations (BSs) of each

tier (e.g., macro, pico, femto) in a multi-tier heterogeneous

cellular network (HCN) are modeled as independent PPPs in

[4]–[8]. Coverage probability and/or average achievable rate

are analyzed in these work for different BS-user association

and interference coordination schemes by using tools from

stochastic geometry and point process theory. It was shown

in [9] that even for the planned macro tier, the PPP model

provides tight lower bounds for performance measures such

as coverage and data rate.

Apart from coverage and data rate, the effectiveness of

wireless network is also characterized by its reliability, mea-

sured with metric such as error probability, which is barely

analyzed for HCNs. Few important works towards error prob-

ability analysis in the presence of interference from randomly

located network nodes are [10]–[13]. The authors in [10],

[11] developed a comprehensive framework to characterize the

error performance of a given transmitter-receiver link subject

to interference from network nodes distributed according to a

homogeneous PPP. However, the computation requires Monte-

Carlo simulations to average over the network interference

which is shown to be a stable random variable (RV). Such

requirement is eliminated in [12] where the authors derived

a single-integral expression for the average error probability.

Since no closed-form solution is available for the integral, it

has to be evaluated numerically. It is further extended to multi-

antenna receivers in [13], where the results were obtained in

the form of two-fold integral that reduces to single-integral

only under special cases.

As an alternative to these semi-analytical solution and com-

plex integral expression, in this paper, we develop a uniform

approximation (UA) approach to average error probability

analysis of the desired link in Poisson field of interferers. In

cellular networks with frequency reuse 1, which is the main

characteristic of next-generation wireless standards such as

LTE-Advanced for higher spectral efficiency, the performance

is limited by interference, rather than noise. We thus focus

on interference-limited scenarios and derive error probability

UAs for both single-antenna and maximal ratio combining

(MRC) receivers. The approximation is named “uniform” to

reflect its excellent accuracy over the whole range of signal-

to-interference ratio (SIR). We originally proposed the concept

of UA for wireless performance analysis in [14], [15].

After deriving UA for the average error probability of a

given link with a deterministic transmitter-receiver distance r0
in section II, we next evaluate the average error probability of



any typical user in downlink cellular network with maximum

received power based BS-user association in section III. In

this case, the transmitter-receiver distance is no longer deter-

ministic. The error performance of downlink cellular networks

for shortest distance based BS-user association is analyzed in

[16]. The mathematical framework we developed in this paper

for interference-limited scenario is however more simple and

easily provides insights on important system parameters.

Notations: We denote a 2-dimensional Euclidean space by

R
2 and Euclidean distance between two points x, y ∈ R

2 by

||x − y||. A real and a circularly symmetric (CS) complex

Gaussian RV with mean m and variance σ2 is denoted

by N (m,σ2) and CN (m,σ2), respectively. P(·), E[·] and

FB(s) =
∫

xs−1fB(x)dx denote probability measure, statisti-

cal expectation and Mellin transform, respectively. S (µ, β, η)
denotes a real stable RV with characteristic exponent µ, skew

parameter β and dispersion η [17]. Q(·) denotes the Gaussian

Q function, and |s| and s∗ denote the modulus and conjugate

of complex number s, respectively.

II. UNIFORM APPROXIMATION FOR AVERAGE ERROR

PROBABILITY IN POISSON FIELD OF INTERFERERS

A. System and channel model

We consider a 2-dimensional network in which a transmitter

S (located at xs ∈ R
2) intends to communicate with a receiver

D (located at the origin o without loss of generality). The

distance between S and D is fixed at ||xs − o|| = r0. Other

nodes in the network which are transmitting in the same

channel as S and thus, interfering with S−D communication,

are spatially distributed according to a homogeneous PPP

Φ = {x1, x2, x3, . . .} of density λ, where xi ∈ R
2 is the

location of the ith interferer. For simplicity of analytical

expressions, we assume that the transmissions from interfering

nodes are synchronized. Results for asynchronous case can be

easily derived and are omitted here for the sake of brevity.

We first consider the case where each node in the network

including S and D have single antenna. With multipath fading

superimposed on power-law path loss and shadowing, the

channel power gain between a transmitter at x ∈ R
2 and the

receiver D at the origin can be modeled as

Ωx = eσgx |hx|2||x− o||−α, (1)

where eσgx captures the shadowing effect modeled by log-

normal distribution with gx ∼ N (0, 1), σ is the shadowing

standard deviation, hx = |hx| exp(jψx) is the complex multi-

path fading coefficient with E[|hx|2] = 1, and α is the power

loss exponent. In (1), gx and hx are independent RVs.

If the source S transmits with power P0 and each interfering

node with power PI , then according to the channel model (1),

the complex received signal at D is given by

Y =
√

P0
e

σ
2 gxshxs

r
α/2
0

s0 + Z +W, (2)

where

Z =
√

PI

∑

xi∈Φ

e
σ
2 gxihxi

r
α/2
i

si (3)

is the aggregate interference signal, ri = ||xi − o|| is the

distance between the ith interferer at xi and the receiver

D, W ∼ CN (0, N0) is complex Gaussian noise, and s0 =
a0 exp(jθ0), si = ai exp(jθi) are the complex modulated

symbols transmitted from S and the ith interferer, respectively

with E[|s0|2] = E[|si|2] = 1. While all the interfering nodes

are assumed to be using the same linear modulation scheme,

the transmitter S employs an arbitrary linear modulation. We

assume each sequence {gxi}, {hxi} and {si} are independent

and identically distributed (i.i.d.). If the phase ψxi of multipath

fading coefficient hxi is uniformly distributed in (0, 2π), then

it is shown in [11] that Z is a CS complex stable RV whose

distribution is given by

Z ∼ Sc

(

µz =
4

α
, βz = 0, ηz

)

1 (4)

for α > 2, where ηz = πλC−1
4/αe

2σ2/α2

P
2/α
I E

[

| ξi|4/α
]

,

Cx =

{

1−x
Γ(2−x) cos(πx/2) , x 6= 1
2
π , x = 1,

and ξi = |hxi |ai cos(θi +ψxi). Z can be decomposed as [11]

Z =
√
BG, (5)

where

B ∼ S
(

µB =
2

α
, βB = 1, ηB = cos

(π

α

)

)

, (6)

G ∼ CN (0, PIν), ν = 4eσ
2/α

(

πλC−1
4/αE

[

| ξi|4/α
])α/2

.

(7)

Thus, conditioned on B, Z +W ∼ CN (0, PIνB +N0). For

the particular case of hxi ∼ CN (0, 1), i.e., Rayleigh fading,

E
[

| ξi|4/α
]

can be easily computed. Since conditioned on si,
ξi = [|hxi |ai cos(θi + ψxi)] ∼ N (0, a2i /2), we have,

E

[

| ξi|4/α
]

=
Γ(1/2 + 2/α)√

π
E[a

4/α
i ]. (8)

In the presence of channel state information (CSI) of

the S − D link only, the receiver employs simple coherent

demodulation. The conditional error probability is thus given

by the error expression for coherent detection in Gaussian

noise, denoted by h(γ) (for example, h(γ) = Q(
√
2γ) for

binary phase shift keying (BPSK) modulation) with

γ =
P̄0e

σgxs |hxs |2r−α
0

P̄IνB + 1
, (9)

where P̄0 = P0/N0 and P̄I = PI/N0 are the noise normalized

transmit powers of the node S and the interfering nodes,

respectively. P̄0 and P̄I are referred to as signal-to-noise ratio

(SNR) and interference-to-noise ratio (INR), respectively. In

interference limited scenario, γ can be expressed as γ = ρX ,

where ρ = P̄0e
σgxs r−α

0 /(P̄Iν) is a non-random quantity,

referred to as SIR, and X = |hxs |2/B is a RV. Note that

for the fixed S − D link, the shadowing coefficient gxs is

assumed to remain constant.

1The real and imaginary components of a CS comple stable RV Sc(µ, β =
0, η) are both S (µ, β = 0, η).



B. Average error probability

The average probability of error can be expressed as

Pe =

∫ ∞

0

h(ρx)fX(x)dx, (10)

where fX(x) is the probability density function (PDF) of X .

Since the PDF is not available in closed form, which is the

main obstacle in deriving the closed-form expression for (10),

we exploit the Mellin transform (MT) information of h(γ) and

fX(x) to derive UA for (10). UA is a rational function that

matches the asymptotics of Pe(ρ) as ρ → 0 and ρ → ∞,

simultaneously.

The MT of fX(x) is given by

FX(s) = F|hxd
|2(s)FB(2− s), (11)

where F|hxd
|2(s) and FB(s) are the MTs of the PDFs of

|hxd
|2 and B, respectively. The MT of the stable RV B with

parameters given in (6) is given by [18]

FB(s) =
Γ(1 + α

2 − α
2 s)

Γ(2− s)
. (12)

If the MTs F|h0|2(s) and H(s) are known and they have

only first order poles, the UA can be easily derived by using

[15, Eqn. (14)] for any linear modulation and any fading

model with the required coefficients computed according to

[15, Proposition 2].

1) Performance with BPSK modulation in Rayleigh fading:

In the following example, we consider the case where the

transmitter S employs BPSK modulation, and the S −D link

is Rayleigh faded. In this case, FX(1 − s) = Γ(1 − α
2 s)

and H(s) = Γ(s+1/2)
2s

√
π

. We can observe that FX(1 − s) has

poles at s = 2/α, 4/α, 6/α, . . ., while H(s) has poles at

s = 0,−1/2,−3/2, . . .. The first positive pole at s = 2/α
indicates that the diversity order is 2/α. The diversity order

thus, depends on the power loss exponent α. The required

coefficients b(0) and c(l) to compute the UA can be obtained

by using [15, Proposition 2].

Example: For α = 4, we have τ = 1/2, δ = 1, and the

required coefficients b(0) and c(l) are given by

b(0) =
1

2
√
π
, c(l) =



















1
2 l = 0

(−1)(l+1)/2Γ [l]√
πΓ [(l + 1)/2]

l = 1, 3, . . .

0 otherwise.
(13)

The UA can be readily computed by using [15, Eqn. (14)].

The average bit error rate (BER) of the S−D link when S
as well as all the interfering nodes employ BPSK modulation,

and all the links (desired and interfering) undergo independent

Rayleigh fading is depicted in Fig. 1 for different densities

of interfering nodes, 0.1Km−2, 0.4Km−2 and 1Km−2. Both

UA and Monte Carlo simulation results are plotted against

the SNR. The parameters used are α = 4, r0 = 1 Km,

gxs = 0 (no shadowing on the desired link), INR = 20 dB,

σdB = 10, i.e., σ = ln 10. Note that noise is not ignored in the

simulation results. The excellent match between the UAs and
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Fig. 1. Average BER of S − D link with BPSK modulation for different
densities of interfering nodes (α = 4, r0 = 1 Km, gxd = 0 INR = 20 dB,
σdB = 10)

the simulated results shows thats the error performance can be

accurately evaluated with UA method in interference limited

scenario. We can observe that the error performance improves

with the decrease in node density due to the decrease in total

interference power.

2) Performance with Nr-branch MRC receiver in all

Rayleigh fading: Let Nr antennas are employed at the re-

ceiver D with MRC. If {hxs,l = |hxs,l| exp(jψxs,l), l =
1, 2, . . . , Nr} are i.i.d. fading coefficients from S to

each receive antenna of D, and similarly, {hxi,l =
|hxi,l| exp(jψxi,l), l = 1, 2, . . . , Nr} are i.i.d. fading coeffi-

cients from ith interferer, the resultant signal after combining

the received signals at each antenna can be expressed as

Y =
√

P0
e

σ
2 gxs

∑Nr

l=1 |hxs,l|2

r
α/2
0

s0 + Z +W, (14)

where

Z =
√

PI

∑

xi∈Φ

e
σ
2 gxi

∑Nr

l=1 h
∗
xs,l

hxi,l

r
α/2
i

si (15)

is the resultant interference, and W =
∑Nr

l=1 h
∗
xs,l

nl is the

resultant noise. Since {nl ∼ CN (0, N0), l = 1, 2, . . . , Nr} are

i.i.d. complex Gaussian noise, conditioned on {hxs,l}, W ∼
CN (0, N0

∑Nr

l=1 |hxd,l|2) . Z can again shown to be a CS

complex stable RV, which can be decomposed according to

(5) with B and G given by (6) and (7), respectively. But ξi in

this case is given by

ξi =

Nr
∑

l=1

|hxs,l||hxi,l|ai cos(θi + ψxi,l − ψxd,l). (16)

Thus, conditioned on B and {hxs,l}, Z+W ∼ CN (0, PIνB+

N0

∑Nr

l=1 |hxs,l|2).



If the interference links are Rayleigh faded, then conditioned

on {hxs,l},

E

[

| ξi|4/α
]

=
Γ(1/2 + 2/α)√

π
E[a

4/α
i ]

Nr
∑

l=1

|hxs,l|2. (17)

In interference limited scenario, γ can again be expressed as

γ = ρX , where

ρ =
P̄0e

σgxs r−α
0

P̄Iκ
, X =

∑Nr

l=1 |hxs,l|2
B

,

κ = 4eσ
2/α

(√
πλC−1

4/αΓ
(

1
2 + 2

α

)

E

[

a
4/α
i

])α/2

. The error

probability UA can be similarly obtained as in the single-

antenna receiver case with the help of MT information of h(γ)
and fX(x).

If {hxs,l, l = 1, 2, . . . , Nr} undergo i.i.d. Rayleigh fading,

then

FX(1− s) =
Γ(Nr − s)Γ(1− α

2 s)

(Nr − 1)!Γ(1− s)
,

which have poles at s = 2/α, 4/α, 6/α, . . ., and at s =
Nr, Nr + 1, Nr + 2, . . ., along with zeros at s = 1, 2, 3, . . ..
For exponentially decaying h(γ) as γ → ∞, H(s) has only

negative poles. The first positive pole at s = 2/α thus indicates

that the diversity order is given by 2/α, irrespective of the

number of antennas at the receiver D.

The required parameters to compute UA for the average

error probability of BPSK modulation for α = 4 are τ = 1/2,

δ = 1 and

b(0) =
Γ(Nr − 1/2)

2πΓ(Nr)
,

c(l) =



















1
2 l = 0

(−1)(l+1)/2Γ(Nr + l/2)Γ(l)√
πΓ

(

(l + 1)/2
)

Γ(Nr)Γ(l/2 + 1)
l = 1, 3, . . .

0 otherwise.

(18)

Note that when α = 4, the poles at s = 1, 2, 3, . . . are canceled

by the zeros and the effective poles of FX(1 − s) are s =
1/2, 3/2, . . . and s = Nr, Nr + 1, Nr + 2, . . ..

UA and simulation result for the average BER in all

Rayleigh fading scenario with BPSK modulation at each node

are plotted against SNR in Fig. 2 for different values of Nr.

It is clearly visible from the figure that diversity order of the

system is the same for each value of Nr. However, the error

performance improves by having more receive antennas.

III. AVERAGE ERROR PROBABILITY OF DOWNLINK

CELLULAR NETWORKS

While the above analysis is suitable for evaluating the

average error probability of a particular user whose distance

from the serving node is known, in this section, we are

interested in evaluating the average error probability of any

randomly selected user in a cellular network. We consider

a single-tier downlink cellular network with frequency reuse
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Fig. 2. Average BER of BPSK modulation with Nr-branch MRC receiver in
Rayleigh fading (α = 4, r0 = 1 Km, gxd = 0, λ = 0.4Km−2, INR = 10
dB, σdB = 10)

1. Extension to multi-tier heterogeneous networks will be

considered in future work.

A. System model and error probability analysis

The BSs are spatially distributed according a homogeneous

PPP Φ = {x1, x2, x3, . . .} on R
2 of intensity λ, each em-

ploying the same modulation scheme and transmitting with

the same power P . Rayleigh fading with power law path

loss is assumed between any transmitter-receiver pair. Each

user in the network is associated with the BS offering the

maximum received power. A typical user o at the origin is

thus associated with a BS located at xb = argmax
xi∈Φ

|hxi |2r−α
i ,

where ri = ||xi − o|| is the distance from o to ith BS and

hxi is the fading coefficient of the channel between o and the

ith BS. The BSs other than xb is the set of interfering nodes

for the user o, and is still a homogeneous PPP of intensity λ
because for a homogeneous PPP, the reduced Palm distribution

is equal to the distribution of PPP itself [19].

We consider interference-limited scenario and analyze error

probability at the user o, which is valid for any randomly

chosen user according to Slivnyak’s theorem [19]. By using

the mathematical framework outlined in section (II-A), the

conditional error probability is given by h(γ) with

γ =
1

ν

max
i∈Φ

|hi|2r−α
i

B
, (19)

where ν = 4
(√

πλC−1
4/αΓ

(

1
2 + 2

α

)

E

[

a
4/α
i

])α/2

, and the RV

B is given by (6). Let V = max
xi∈Φ

|hxi |2r−α
i . The cumulative

distribution function (CDF) of V can be derived as

FV (v) = P

(

max
xi∈Φ

hxir
−α
i < v

)

= EΦ

[

∏

xi∈Φ

(1− exp(−vrαi ))
]

. (20)



By using the probability generating functional (PGF) of PPP

[19], we have

FV (v) = exp

(

− 2πλ

∫ ∞

0

exp(−vrα)r dr
)

= exp

(

− πλ

v2/α
Γ

(

2

α
+ 1

))

. (21)

The corresponding PDF of V can thus be obtained as

fV (v) =
2πλ

α
Γ

(

2

α
+ 1

)

v−2/α−1e−πλΓ( 2
α+1)v−2/α

. (22)

The RV V can be expressed as V = (πλΓ(2/α +
1))α/2U , where the PDF of U is given by fU (u) =
2
αu

−2/α−1exp(−u−2/α). γ can finally be expressed as γ =

ρX , where ρ = 1
4

[ √
πΓ( 2

α+1)

C−1
4/α

Γ( 1
2+

2
α )E

[

a
4/α
i

]

]α/2

and X = U
B .

The average error probability is then given by (10). If we

closely observe ρ and X , we can see that in interference

limited cellular networks, the average error probability is

independent of the BS density λ and the SNR P̄ = P/N0.

Thus, error probability can not be improved by increasing SNR

because this would increase the interference power as well. On

the other hand, if we increase λ, the gain in desired received

signal power due to closer distance between the user and the

serving BS is counter balanced by the increase in interference

power. However, by increasing λ, more users can be simul-

taneously served and the network capacity naturally improves

without affecting the error performance of the network.

Unlike ρ in section II, it is now the function of α and ai
only. For the typical values of α in the range 2 < α ≤ 6
and E[a2i ] = 1, the range of ρ is much limited compared to

the range 0 < ρ < ∞ in section II. Thus, the UA approach

which basically matches the high-SIR (ρ→ ∞) and low-SIR

(ρ → 0) asymptotics may not make much sense in this case.

However, one can still exploit MT information of fX(x) and

h(γ) to evaluate (10).

Equation (10) can be transformed via Parseval formula for

MT [20] as

Pe =
1

2πj

∫ c+j∞

c−j∞

1

ρs
H(s)FX(1 − s)ds, (23)

where c lies in the fundamental strip of both H(s) and FX(1−
s). The MT FX(s) is given by FX(s) = FU (s)FB(2 − s),
where FU (s) can be derived as

FU (s) =

∫ ∞

0

us−1fU (u)du = Γ
(

−α
2
s+

α

2
+ 1

)

, (24)

and FB(s) is given by (12). We can apply residue theorem

to obtain a series representation of (23), which can often be

expressed in terms of generalized Hypergeometric function

pFq() [21], thus yielding closed-form expression.

B. Average error probability in BPSK modulation

For BPSK modulation, (23) can be expressed as

Pe =
1

2πj

∫ c+j∞

c−j∞

Γ(s+ 1/2)

2s
√
π

Γ
(

α
2 s+ 1

)

Γ(1− α
2 s)

Γ(1− s)
ρ−sds.

(25)

The poles to the left of the contour R(s) = c are s = 0,−(k+
1/2),−2(k + 1)/α, where k = 0, 1, 2, . . .. For α 6= 4 in the

range 2 < α ≤ 6, the poles are simple. Thus, by closing the

contour to the left, and then applying residue theorem, we have

Pe =
1

2
+

∞
∑

k=0

(−1)k+1Γ(− 2
α + 1

2 − 2
αk)Γ(2 + k)

k!(k + 1)2
√
πΓ( 2

α + 1 + 2
αk)

ρ
2(k+1)

α

+

∞
∑

k=0

(−1)k+1Γ(−α
4 + 1− α

2 k)Γ(
α
4 + 1 + α

2 k)

k!(k + 1
2 )2

√
πΓ(32 + k)

ρk+
1
2 (26)

for α 6= 4. The infinite series can be expressed in terms of

Hypergeometric function as

Pe =
1

2
+

d
∑

r=1

(−1)rα

4
√
π

Γ(−α
4 (2r − 1) + 1)Γ(α4 (2r − 1))

Γ(r)Γ(r + 1
2 )

ρr−
1
2

× 1F2d

[

1;
r + 1/2

d
,
r + 1/2

d
+

1

d
, . . . ,

r + 1/2

d
+
d− 1

d
,

r

d
,
r

d
+

1

d
, . . . ,

r

d
+
d− 1

d
;
(−1)(c+d)ρd

d2d

]

+

c
∑

r=1

(−1)r

2
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, (27)

where α/2 = c/d, c and d are integers. For example, for

α = 2.8, c = 7 and d = 5. The details of the proof are

omitted for the sake of brevity.

For α = 4, (25) has double poles at s =
−1/2,−3/2,−5/2, . . . to the left of the contour R(s) = c.
In order to avoid residue computation with double poles, (25)

is expressed as follows for α = 4 by substituting s = −s and

utilizing the properties of Gamma function [21]:

Pe = − 1

2πj

∫ −c+j∞

−c−j∞

Γ
(

−s+ 1
2

)

Γ(−2s+ 1)Γ
(

s+ 1
2

)

21−2sπs
ρsds,

(28)

which then has simple poles at s = −1/2,−3/2,−5/2, . . . to

the left of the contour R(s) = −c. Again by applying residue

theorem, followed by identifying the series with pFq(),the

average error rate for α = 4 can finally be expressed as

Pe =
1

2π
√
ρ

3F0

[

1, 1,
1

2
;−1

ρ

]

. (29)

In Fig. 3, the simulated BER of a typical user is plot-

ted against SNR without ignoring the impact of noise for

three different BS densities 0.01BS/Km2, 0.1BS/Km2 and

0.4BS/Km2. Our analytical result based on interference lim-

ited assumption is also plotted in the figure which is in-

dependent of both λ and SNR. We can observe that the

simulation and analytical results converge once the network

become interference limited. If the value of λ is large, which

is expected in future networks for higher capacity, the network

becomes interference limited even at smaller values of SNR.

The impact of power loss exponent, α in the average

BER of downlink cellular network is assessed in Fig. 4. The
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error rate initially drops with the increase in α due to the

decrease in aggregate interference power received at a typical

user. However, the received power from the serving BS also

decreases at the same time. Eventually, when the decrease

in desired signal power due to increase in α becomes more

significant compared to the decrease in aggregate interference

power, the error rate starts increasing.

IV. CONCLUSION

The contributions of the paper are two-fold:

1) We developed UA for error probability of an intended

link subject to interference from surrounding nodes

distributed according to a PPP. Both single-antenna and

MRC receivers are analyzed. The diversity order of the

system is found to be 2/α, independent of the number

of receive antennas.

2) We introduced MT based approach to error probability

analysis of a typical user in cellular network, which

is served by the BS providing the maximum received

power. The BSs are distributed according to a PPP. A

closed-form expression for the average BER of BPSK

modulation in Rayleigh fading is derived. The average

error probability is found to be independent of SNR and

BS density.
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