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Abstract—We consider a wireless system with a full-duplex
(FD) access point (AP) that transmits to a scheduled user in the
downlink (DL) channel, while receiving data from an user in the
uplink (UL) channel at the same time on the same frequency.
In this system, loopback interference (LI) at the AP and inter
user interference between the uplink (UL) user and downlink
(DL) user can cause performance degradation. In order to
characterize the effects of LI and inter user interference, we
derive closed-form expressions for the outage probability and
achievable sum rate of the system. In addition an asymptotic
analysis that reveals insights into the system behavior and
performance degradation is presented. Our results indicate that
under certain conditions, FD transmissions yield performance
gains over half-duplex (HD) mode of operation.

I. INTRODUCTION

Due to the exponential growth of wireless traffic, spectral
efficiency improvements achievable from transmitting while
receiving are highly beneficial [1], [2]. Traditionally, this
was achieved by the separation of the transmit and receive
carrier frequency. However, if a wireless radio node can
only transmit or receive at a given time and frequency, a
loss of efficiency from a channel resource perspective must
be expected. A promising solution that can be employed to
avoid the loss of spectral efficiency is the full-duplex (FD)
technology [3]–[7].

Since the loopback interference (LI) caused by a node
that is both transmitting and receiving at the same time
can be overwhelming, up until now FD operation was
considered practically unrealistic. This perception has been
challenged due to the recent advances in antenna design and
analog/digital signal processing. To this end, several recent
works have described single and multiple antenna FD system
designs largely made possible through new LI cancellation
techniques [3], [6], [8]. The implementation of single antenna
FD technology with LI cancellation was demonstrated in [3].
A multiple-input multiple-output (MIMO) FD implementa-
tion (MIDU) was presented in [6], while [7] reported design
and implementation of an in-band WiFi-PHY based FD
MIMO system. In [8] a massive MIMO FD relay system
with spatial LI mitigation and optimum power allocation was
investigated.

An interesting application of FD communications is simul-
taneous uplink and downlink transmission in wireless systems
such as WiFi and cellular networks [7], [9], [10]. However,
such transmissions introduce LI and internode interference
in the network as downlink transmission will be affected by
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the LI and the uplink user will interfere with the downlink
reception. Therefore, in the presence of such interference,
it is not clear whether FD applied to uplink/downlink user
settings can bring performance benefits. In order to answer
this question, several works in the literature have presented
useful results. In [9] a FD cellular analytical model based
on stochastic geometry was used to derive the sum capacity
of the system. However, [9] assumed perfect LI cancella-
tion and therefore, the effect of LI is not included in the
results. In [11] the combination of FD and massive MIMO
was considered for simultaneous uplink/downlink cellular
communication. The information theoretic study presented
in [12], has investigated the rate gain achievable in a FD
uplink/downlink network with internode interference man-
agement techniques. The application of FD radios for a
single small cell scenario was considered in [13]. Specifically
in this work, the conditions where FD operation provides
a throughput gain compared to HD and the corresponding
throughput results using simulations were presented. In [14],
joint precoder designs to optimize the spectral and energy
efficiency of a FD multiuser MIMO system were presented.
However [11], [12], [14] considered fixed user settings for
performance analysis and as such the effect of interference
due to distance, particularly relevant for wireless networks
with spatial randomness, is ignored.

In this paper, we consider a wireless network scenario
in which a FD infrastructure node is communicating with
half-duplex (HD) spatially random user terminals to support
simultaneous uplink and downlink transmissions. Our contri-
butions are summarized as follows:

• We take both LI and inter user inference into account
and derive exact expressions for the outage probability
and achievable sum rate of the system. Moreover, to
highlight the system behavior and shed insights into the
performance degradation, an asymptotic analysis is also
presented.

• We have compared the sum rate performance of the
system for FD and HD modes of operation at the AP
to elucidate the signal-to-noise ratio regions where the
former mode of operation outperforms the latter mode of
operation. Moreover, our results indicate that different
power levels at the AP and UL user has a significant
adverse effect to lower the sum rate in the HD mode of
operation than the FD counterpart.

II. SYSTEM MODEL

Consider a single cell wireless system with an access point
(AP), where data to the users in the DL channel, and data



from users in the UL channel are transmitted and received at
the same time on the same frequency. All users are located
in a circular area with radius Rc and the AP is located at
the center. We assume that users are equipped with a single
antenna, while the AP is equipped with two antennas (one
antenna is used to transmit in the DL channel while the other
antenna is used for UL channel reception). In the sequel we
use subscript-u for the UL user, subscript-d for the DL user,
and subscript-a for the AP. Similarly, we will use subscript-
aa, subscript-ad, subscript-ud, and subscript-ua to denote the
AP-to-AP, AP-to-DL user, UL user-to-DL user, and UL user-
to-AP channels, respectively.

Let Φd be a two-dimensional homogeneous Poisson point
process (PPP) with density λd that characterizes the spatial
distribution of the DL users over R

2. To obtain the most
essential features, we consider the widely used Poisson
bipolar model [15] and assume that the UL users are located
at a fixed distance d in a random direction of angle θ from
the DL users. The results obtained thus can be interpreted
as the performance of networks with random link distances
conditioned on the link distance having a certain value. The
AP selects a DL user that is physically nearest to it. We
use the terms “nearest DL user” and “scheduled DL user”
interchangeably throughout the paper to refer to this user.
In next generation ultra-dense networks, each user will be
in the coverage area of an AP and can be considered as
a most nearest user [16]. Selection of a nearest user also
serves as a practical consideration for FD implementation
since transmitting very high power signals towards distant
periphery users in order to guarantee a quality-of-service
can cause overwhelming LI at the receive side of the AP.
Moreover, as a benchmark comparison we also consider the
random user selection (RUS) in Section IV. In RUS method
the AP randomly selects one of all candidate DL users with
equal probability.

We assume that the links in the network experience both
large-scale path loss effects and small-scale Rayleigh fading
phenomenon. For the large-scale path loss, we assume the
standard singular path loss model, �(x, y) = ‖x − y‖−α,
where α ≥ 2 denotes the path-loss exponent and ‖x− y‖ is
the Euclidean distance between two nodes.

The received power at a typical DL user located at point
xd from the AP is Pahad�(xd). It is worth mentioning that
the scheduled UL user, located at xu, is served by receive
antenna from AP at the same time, and it lacks coordination
with concurrent active DL users. Therefore, the signal-to-
interference-plus-noise ratio (SINR) of the typical DL user
associated with the AP can be expressed as

SINRd =
Pahad�(xd)

Puhud�(xu, xd) + σ2
n

, (1)

where Pu denotes the transmit power of the UL user in UL
channel and σ2

n is the constant additive noise power. On the
other hand, received power at the AP from the active UL
user is Puhua�(xu). Due to the FD mode of operation, the
receive antenna of the AP will receive a LI from its transmit
antenna. Hence, the resulting SINR expression at the AP can
be written as

SINRa =
Puhua�(xu)

Pahaa + σ2
n

, (2)

where haa denotes the LI channel at the AP. In order to
mitigate the adverse effects of self-interference on system

performance, an interference cancellation scheme (i.e. ana-
log/digital cancellation) can be used at the AP and we model
the residual LI channel with Rayleigh fading assumption
since the strong line-of-sight component can be estimated
and removed [4], [5], [17]. Since each implementation of
a particular analog/digital LI cancellation scheme can be
characterized by a specific residual power, a parameterization
by haa satisfying E

{|haa|2} = σ2
aa allows these effects to be

studied in a generic way [17], [18].
In order to facilitate the ensuing analysis, we now set

up a polar coordinate system in which the origin is at
the AP and the scheduled DL user is at xd = (r, 0).
Therefore, according to the bipolar poisson model, we have
�(xu) = (r2 + d2 − 2rd cos θ)−α/2. In the following, we
will need the exact knowledge of the spatial distribution
of the �(xu) in terms of r and θ. Since we assume that
nearest DL user is scheduled for downlink transmission, xd
denotes the distance between the AP and the nearest DL
user. Therefore, the probability distribution function (pdf) of
the nearest distance xd for the homogeneous PPP Φd with
intensity λd is given by [19]

fr(r) = 2πλdre
−λdπr

2

, r ≥ 0. (3)

Moreover, angular distribution is uniformly distributed over
[0 2π] i.e., fθ(θ) = 1/2π.

III. PERFORMANCE ANALYSIS

In this section, we derive analytical outage probability
and sum rate expressions. First, we obtain the cumulative
distribution function (cdf) of the SINRs, SINRd and SINRa.
Next exploiting the cdf result, the outage probability and sum
rate are derived.

A. The SINR cdfs at the AP and DL User

The cdf of the SINRa and the SINRd are respectively
expressed by

FSINRi(z) = 1− Pr(SINRi ≥ z), (4)

for i ∈ {a, d} and z ≥ 0, where Pr(·) denotes the probability.
We now proceed to derive exact expressions for FSINRa(z)
and FSINRd

(z), respectively.

Uplink Transmission: Using (4), the SINRa cdf can
be written as
FSINRa(z)= 1−Er,θ

{
Pr

(
hua≥ z

Pu�(xu)
[Pahaa+σ

2
n]
∣∣∣haa)}

=1−Er,θ

⎧⎨
⎩ e−z

σ2n
Pu

(r2+d2−2rd cos θ)α/2

1 + z Pa

Pu
σ2
aa(r

2+d2−2rd cos θ)α/2

⎫⎬
⎭, (5)

where the second equality in (5) is due to haa ∼ exp(1/σ2
aa).

With the aid of the pdfs for r and θ, we can express FSINRa(z)
as FSINRa(z) =

1− λd

∫ Rc

0

∫ 2π

0

re−λdπr
2

e−
zσ2n
Pu

(r2+d2−2rd cos θ)
α
2

1 + z Pa

Pu
σ2
aa(r

2 + d2 − 2rd cos θ)
α
2

dθdr.

(6)

In general, the double integral in (6) does not admit a simple
analytical solution for an arbitrary value of α. However, the
cdf can be conveniently evaluated using numerical integra-
tion. The following propositions characterize FSINRa(z) for



the interference-limited scenario with σ2
n = 0 and special

cases1; α = 2 and α = 4.

Proposition 1. The cdf of SINRa, for α = 2 is given by

FSINRa(z) = 1− Pu

Pa

8πλd
zσ2

aa

∞∑
k=0

(−2πλdc)
k

Γ(k + 1)

√
c

(
b−√

c�

c− b2

)k+1

× F1

(
k + 1;k + 1,k + 1;k + 2;

b−√
c�

b+
√
c
,
b−√

c�

b−√
c

)
, (7)

where c =
(
Pu

Pa

1
zσ2

aa
+ d2

)2

, b = Pu

Pa

1
zσ2

aa
− d2, � =

(
√
R4
c + bR2

c + c−√
c)/R2

c , Γ(·) is the Gamma function [20,

Eq. (8.310.1)], and F1(·; ·, ·; ·; ·, ·) is the Appell hypergeomet-

ric function [21, Eq. (5.8.5)].

Proof: Following (6), the FSINRd
(z) corresponding to

α = 2 and σ2
n = 0 is given by FSINRa(z) =

1− Pu

Pa

1

zσ2
aa

∫ Rc

0

∫ 2π

0

λdre
−λdπr

2

Pu

Pa

1
zσ2

aa
+ r2 + d2 − 2rd cos θ

dθdr.

With the help of [20, Eq. (3.661.4)], and next making the
change of variable r2 = υ, we obtain

FSINRa(z) =1−
Pu

Pa

πλd
zσ2

aa

∫ R2
c

0

e−λdπυ

√
υ2 + 2bυ + c

dυ. (8)

To the best of our knowledge, the integral in (8) does
not admit a closed-form solution. In order to proceed, we
use Taylor series representation [20, Eq. (1.211.1)] for term
e−λdπυ , and write

FSINRa(z) = 1− Pu

Pa

πλd
zσ2

aa

(9)

×
∞∑
k=0

(−λdπ)k
k!

∫ R2
c

0

υk√
υ2 + 2bυ + c

dυ.

A change of variable
√
υ2 + 2bυ + c = υt +

√
c, and after

some manipulations, (9) can be expressed as

FSINRa(z) = 1− Pu

Pa

4πλd
zσ2

aa

×
∞∑
k=0

(−λdπ)k
k!

∫ �

b√
c

(b−√
ct)k

(t2 − 1)k+1
dt. (10)

Finally, using [21, Eq. (5.8.5)], we get the desired result given
in (7).

Proposition 2. The cdf of SINRa for α = 4 is lower bounded

as

FSINRa(z) > 1−
∞∑
k=0

(−1)k(λdπR
2
c)
k+1

Γ(k + 2)

× 2F1

(
1,
k+1

2
,
k+1

2
+ 1,−zσ2

aa

Pa

Pu
R4
c

)
, (11)

where 2F1(·, ·; ·; ·) denotes the Gauss hypergeometric func-

tion defined in [20, Eq. (9.111)].

Proof: Following (6), the FSINRa(z) corresponding to
α = 4 and σ2

n = 0 can be written as

FSINRa(z) = 1− 1

z

λdPu

σ2
aaPa

(12)

×
∫ Rc

0

∫ 2π

0

re−λdπr
2

Pu

Pa

1
zσ2

aa
+(r2 + d2 − 2rd cos θ)2

dθdr.

1Note that α = 2 and α = 4 correspond to free space propagation and
typical rural areas, respectively, and constitute useful bounds for practical
propagation conditions.

By using [20], the inner integral can be obtained as

FSINRa(z) = 1−
√
2π

z

λdPu

σ2
aaPa

(13)

×
∫ Rc

0

re−λdπr
2√

c2(r)+
√
c4(r)c0(r)

[
1√
c0(r)

+
1√
c4(r)

]
dr,

where c0(r) = b0(r) − b1(r) + b2(r), c2(r) = b0(r) −
b2(r), and c4(r) = b0(r) + b1(r) + b2(r), with b0(r) =
Pu/(Pazσ

2
aa) + (r2 + d2)2, b1(r) = 4rd(r2 + d2), and

b2(r) = 4r2d2. The integral in (13) cannot be calculated
analytically. However, we can simplify the above integral
in the case of d = 0. Hence, after a simple substitution
r2 = υ, (13) can be written as

FSINRa(z) > 1− π

z

λdPu

σ2
aaPa

∫ R2
c

0

e−λdπυ

υ2 + Pu

Pa

1
zσ2

aa

dυ. (14)

In order to simplify (14), we adopt a series expansion of the
exponential term. Substituting the series expansion of e−λdπυ

into the (14) yields

FSINRa(z) > 1− 1

z

Pu

σ2
aaPa

×
∞∑
k=0

(−λdπ)k+1

k!

∫ R2
c

0

υk

υ2 + Pu

Pa

1
zσ2

aa

dυ. (15)

Let us denote β = Pu

Pa

1
zσ2

aa
. By making the change of variable(

υ/R2
c

)2
= t, we obtain

FSINRa(z)>1−
∞∑
k=0

(−λdπR2
c)
k+1

2k!

∫ 1

0

t
k−1
2

1+
R4
c

β t
dt. (16)

Now with the help of [20, Eq. (9.111)] the integral in (16)
can be solved to yield (11).

Downlink Transmission: Using (1) and (4), the cdf of
SINRd can be written as

FSINRd
(z) = 1− EId,u

{
Pr

(
Pahadr

−α ≥ z[Id,u + σ2
n]
) ∣∣r} ,

= 1− EId,u

{
e−

z
Pa
rα[Id,u+σ

2
n]
∣∣r} . (17)

Note that in our system model the randomness of the Id,u
is due to the fading power envelope hdu. As such, FSINRd

(z)
can be written as

FSINRd
(z) = 1− Er

{
e−

z
Pa
σ2
nr
α
∫ ∞

0

e−(
r
d )
α Pu
Pa
zxe−xdx

}
,

= 1− 2πλd

∫ Rc

0

r
e−z

σ2n
Pa
rαe−λdπr

2

1 +
(
r
d

)α Pu

Pa
z
dr. (18)

Eq. (18) does not have a closed-form solution. However, an
expression for FSINRd

(z) can be derived in the interference-
limited case in Proposition 3.

Proposition 3. The cdf of SINRd, can be expressed as

FSINRd
(z) = 1−

∞∑
k=0

(−1)k(λdπR
2
c)
k+1

Γ(k + 2)
(19)

× 2F1

(
1,

2(k+1)

α
,
2(k+1)

α
+ 1,−zPu

Pa

(
Rc
d

)α)
.

Proof: The proof, similar to Proposition 2, is omitted.

B. Outage Probability

The outage probability is an important quality-of-service
metric defined as the probability that SINRi, i ∈ {a, d}, drops



below an acceptable SINR threshold, γth. We now present
the following corollaries to establish the DL and UL user
outage probability valid in the interference-limited case (i.e.,
σ2
n = 0).

Corollary 1. The UL user outage probability with α = 2 is

given by substituting z = γth into (7). Moreover, for α = 4,

the outage probability is lower bounded by substituting z =
γth into (11).

Corollary 2. The UL user outage probability is given by

substituting z = γth into (19).

C. Achievable Sum Rate

The achievable sum rate with simultaneous UL/DL trans-
mission can be written as

RFD = Ra +Rd, (20)

where Ra = E {log2 [1 + SINRa]} and Rd =
E {log2 [1 + SINRd]} are the spatial average capacity
of the UL (xu → AP) and DL (AP → xd), respectively.

Note that since E {X} =
∫∞
t=0

Pr(X > t)dt for a nonneg-
ative random variable X , the spatial average capacity can be
written as

Ri =

∫ ∞

0

[1− FSINRi(εt)] dt. (21)

where i ∈ {a, d} and εt = 2t − 1.

Uplink Transmission: By substituting (5) into (21), the exact
average capacity of the UL user can be written as

Ra =

∫ ∞

0

∫ Rc

0

∫ 2π

0

(22)

2πλdre
−εt σ

2
n
Pu

(r2+d2−2rd cos θ)α/2e−λdπr
2

1 + εt
Pa

Pu
σ2
aa(r

2 + d2 − 2rd cos θ)α/2
drdθdt.

This integral cannot be solved in closed-form. Therefore, we
now turn our attention into deriving the average capacity of
the UL user with the interference-limited assumption and α =
2, 4.

Corollary 3. Plugging (7) into (21), the spatial average

capacity of the UL user for α = 2 is given by

Ra=
8πλd

σ2
aa log 2

Pu

Pa

∞∑
k=0

(−2πλd)
k

Γ(k + 1)

∫ ∞

0

ck+
1
2

z(z + 1)

(
b−√

c�

c−b2
)k+1

× F1

(
k + 1;k + 1,k + 1;k + 2;

b−√
c�

b+
√
c
,
b−√

c�

b−√
c

)
dz.

(23)

Proposition 4. For α = 4, the spatial average capacity of

the UL user is upper bounded by

Ra <
2

log 2

∞∑
k=0

(−1)k(λdπR
2
c)
k+1

(k + 1)Γ(k + 2)

×G2 3
3 3

(
Pa

Pu
R4
cσ

2
aa

∣∣∣∣0, 1− k+1
2 , 0

0, 0,−k+1
2

)
, (24)

where Gmn
pq

(
z | a1···ap

b1···bq

)
denotes the Meijer G-function de-

fined in [20, Eq. (9.301)].

Proof: By substituting the lower bound of FSINRa(·) from
Proposition 2 into (21), and applying the transformation y =
2t − 1, an upper bound for the average capacity of the UL

user can be derived as

Ra <
1

log 2

∞∑
k=0

(−1)k(λdπR
2
c)
k+1

Γ(k + 2)

×
∫ ∞

0

1

y + 1
2F1

(
1,
k+1

2
,
k+1

2
+ 1,−σ2

aa

Pa

Pu
R4
cy

)
dy,︸ ︷︷ ︸

I
where the integral, I can be expressed [22, Eq. (17)] in terms
of the tabulated Meijer G-function as

I =
2

k + 1

∫ ∞

0

G11
11

(
y
∣∣∣ 0

0

)

×G12
22

(
Pa

Pu
R4
cσ

2
aay

∣∣∣ 0, 1− k+1
2

0,−k+1
2

)
dy. (25)

The above integral can be solved with the help of [22, Eq.
(21)] to yield the desired result in (24).

Downlink Transmission: By plugging (18) into (21), exact
average capacity of the DL user can be written as

Rd = 2πλd

∫ ∞

0

∫ ∞

0

re−εt
σ2n
Pa
rαe−λdπr

2

1 +
(
r
d

)α Pu

Pa
εt

dr. (26)

Moreover, for the interference-limited case (i.e., σ2
n = 0),

using the cdf in (19), Proposition 5 presents the average
capacity of the DL user.

Proposition 5. The spatial average capacity of the DL user

in the interference-limited case is expressed as

Rd =
α

2

∞∑
k=0

(−1)k(λdπR
2
c)
k+1

(k + 1)Γ(k + 2)

×G2 3
3 3

(
Pu

Pa

(
Rc
d

)α ∣∣∣∣0, 1−
2(k+1)
α , 0

0, 0,− 2(k+1)
α

)
. (27)

Proof: The proof, similar to Proposition 4, is omitted.

Asymptotic Analysis: In order to present further insights
into the system performance, we now investigate the asymp-
totic outage probability and achievable rate by neglecting the
interference terms in the UL and DL SINRs. Therefore, with
negligible LI effect, one can omit the term Pahaa in (2).
Finally, the cdf of the SNR in the special case of α = 2 can
be obtained as

FSNRa(z) = 1−
(
1 +

z

ψu

)−1

e
−λdπd

2

1+
ψu
z , (28)

where ψu = Pu

σ2
n
λdπ. The asymptotic outage of the UL

transmission can be determined by substituting z = γth
into (28). Furthermore, the corresponding asymptotic spatial
average capacity of the UL user is

Ra =
1

log 2

(
1

ψu
− 1

)−1

e−
λdπd

2

ψu

×
(
Ei

(
λdπd

2

1− ψu

)
− Ei

(
ψuλdπd

2

1− ψu

))
, (29)

where Ei (·) is the exponential integral function defined
in [20, Eq. (8.211.1)]. Similarly, by neglecting the term
Puhud�(xu − xd) in (1), a valid assumption for Pud

−α � 1,
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Fig. 1. Outage performance of the DL and UL user for nearest user selection
(NUS) and random user selection (RUS) (d = 25 m and γth = 3 dB)

we obtain

FSNRd
(z) =

⎧⎪⎨
⎪⎩

1−
(
1 + zλdπ

ψd

)−1

α = 2,

1−
√

ψd

2z e
ψd
8zD−1

(√
ψd

2z

)
α = 4

(30)

where ψd = Pa

σ2
n
(λdπ)

2 and D−1(·) denotes a Parabolic
cylinder function [20, Eq. (9.241.2)]. Accordingly, the DL
user asymptotic outage probability can be readily obtained by
substituting z = γth into (30). Moreover, the corresponding
rates are given by

Rd =
1

log 2

⎧⎪⎨
⎪⎩

(
λdπ
ψd

− 1
)−1

log
(
λdπ
ψd

)
α = 2,∫∞

0
1
z+1

√
ψd

2z e
ψd
8zD−1

(√
ψd

2z

)
dz α = 4.

(31)

D. Half-Duplex Mode

In this subsection, we compare the performance of the HD
and FD modes of operation at the AP. In the HD mode of AP
operation, AP employs orthogonal time slots to serve the DL
and UL user, respectively. In order to keep our comparisons
fair, we consider “antenna conserved” (AC) and “RF-chain

conserved” (RC) scenarios. Under AC condition, the total
number of antennas used by the HD AP and FD AP is
kept identical. However, the number of radio frequency (RF)
chains employed by the HD AP is twice that of the FD
AP [6] and hence former system would be a costly option.
Under RC condition, the total number RF chains used is same
for the HD and FD modes. Therefore, in any transmission
(UL or DL), the HD AP only uses a single antenna under
the RC condition, while it uses two antennas under the AC
condition. The average sum rate under the RC condition can
be expressed as
RRC

HD =δE
{
log2

(
1 + snrd�(xd)|ha,d|2

)}
+ (1− δ)E

{
log2

(
1 + snru�(xu)|hd,a|2

)}
, (32)

where δ (0 < δ < 1) is a fraction of the time slot duration of
T , used for DL transmission, snrd = PHD

a /σ2
n, and snru =

PHD
u /σ2

n.
Under the AC condition, using the weight vector wMRC =

hHd,a for the maximum ratio combining (MRC) receiver, and
the maximum ratio transmission (MRT) precoding vector
wMRT =

hHa,d
‖ha,d‖ , the average achievable rate can be obtained
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Fig. 2. Average sum rate versus δ for the FD (FD) and half-dulpex (HD)
AP (α = 2, and d = 25 m).

as
RAC

HD =δE
{
log2

(
1 +

snrd
2
�(xd)‖ha,d‖2

)}
+ (1− δ)E

{
log2

(
1 +snru�(xu)‖hd,a‖2

)}
. (33)

IV. NUMERICAL RESULTS AND DISCUSSION

Here, we investigate the system performance and confirm
the derived analytical results through comparison with Monte
Carlo simulations. We evaluate the performance in a cell
of radius Rc = 200 m and for λd = 1 × 10−3 node/m2.
Moreover, with curves shown in Figs. 3-5, we assume that
the total power of the AP and UL user for FD and HD modes
is the same.

Fig. 1 shows the outage probability versus SNR for the
nearest DL user (to the AP) and UL user for α = 2, d = 25 m
and γth = 3 dB. In this figure, the X-axis indicates the power
of the transmitter (i.e., AP for DL and UL user for UL). The
outage probability of the RUS scheme is also included as a
benchmark comparison. The ‘Analytical’ curves are plotted
from (7) and (19) with z = γth, for nearest UL user and
DL user, respectively, which clearly match the Monte Carlo
simulated curves. As expected, we see that the nearest user
selection (NUS) scheme outperforms the RUS scheme. In
addition, the ‘Asymptotic’ curves plotted from (28) and (30)
tightly converge to the simulation values.

In Fig. 2 we compare the average sum rate as a function of
δ for the FD and HD operation and for two different values
of σ2

aa. We assume same total energy consumption for both
FD and HD operation and plot the sum rate for two different
power constraints (Pa, Pu) = (25 dB, 25 dB) (symmetric)
and (Pa, Pu) = (25 dB, 12 dB) (asymmetric). In particular,
numerical results lead to the following conclusions: 1) As
expected, the sum rate under the RC condition is worse
than those of other scenarios. 2) In the asymmetric case, FD
operation outperforms HD within the practical range of δ.
However, in the symmetric case, AC condition achieves the
best performance even in case of perfect LI cancellation (i.e.,
σ2
aa = 0). 3) The symmetric case is more vulnerable to the

LI power (Please see Fig. 4).
In Fig. 3, we present the average sum rate (with δ = 0.5

and σ2
aa = 0.1) versus the distance d between the UL and

DL user achieved by the FD and HD modes of operation.
There are two main observations that can be extracted from



0 10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Distance Between the DL and UL User, d (m)

Su
m

 R
at

e 
(b

it/
se

c/
Hz

)
FD
HD− AC
HD− RC
FD, Asymptotic

Pa=25 dB, Pu=12 dB

Pa=Pu=25 dB

Fig. 3. Average sum rate versus d the FD and half-dulpex (HD) AP (α = 2,
δ = 0.5, and σ2

aa = 0.1).

−50 −40 −30 −20 −10 0 10
−20

0

20

40

60

80

100

σ
aa

 (dB)

Av
er

ag
e 

Su
m

 R
at

e 
G

ai
n 

(%
)

G(FD,HDAC)
G(FD,HDRC)
G(FD(IL),HDAC)
G(FD(IL),HDRC)

Pa=25 dB, Pu=12 dB

Pa=Pu=25 dB

Fig. 4. Average sum rate gain of the system (α = 2, d = 25 m, and
δ = 0.5).

this figure. First, the sum rate shows the opposite behaviors
in FD and HD modes as d increases. This result can be
explained as follows. Notice that when d increases the inter
user interference between the DL and UL user decreases and
thus SINRd and consequently the average sum rate of the
FD system increases. On the other hand, the sum rate of
the HD operation is inversely proportional to d. Therefore,
increasing d, reduces the sum rate. Secondly, as d increases
the average sum rate of the FD system converges to the sum
of asymptotic rate in (29) and (31).

In Fig. 4 we plot the average sum rate gain, which is
defined as G(FD,HDi) = (RFD − RiHD)/RFD versus σaa
and for d = 25 m and δ = 0.5. The sum rate gain
of the interference-limited FD system is also included for
comparison (dashed line curves). A general observation is
that FD significantly outperforms the HD counterpart when
LI is substantially suppressed. However, when σaa ≥ −5 dB,
the AC-HD system outperforms the FD system (symmetric
power case). Moreover, the symmetric power case is more
sensitive to the LI effect.

V. CONCLUSION

We have analyzed the performance of a wireless network
scenario where a FD AP is communicating with spatially
random HD user terminals in the downlink and uplink
channels simultaneously. We derived the outage probability
and achievable sum rate of the system, considering the impact
of the LI channel and inter user interference. Then, we

compared the performance of the FD and HD modes of
operations for the same total power budget. We found that
even if the LI cancellation is imperfect, FD transmissions
with different transmit power levels at the AP and the UL
user can achieve significant performance gains as compared
to the HD mode of operation.
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