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Abstract—A cooperative network in which confidential mes-
sages are conveyed from a source to a legitimate destination
with the help of decode-and-forward relays in the presence of
a malicious eavesdropper is considered. Tight upper bounds
on the ergodic secrecy rate are derived in the cases of i)
cooperative beamforming and ii) multi-user selection. Further,
a new concept of cooperative diversity gain, namely, adapted
cooperative diversity gain (ACDG), is investigated. It is shown
that the ACDG can be seen as an effective metric to evaluate
the security level of a cooperative wireless network in the
presence of eavesdroppers. Also, the ACDG obtained in the
cooperative beamforming scenario is equal to the traditional
cooperative diversity gain of traditional multiple-input single-
output networks, while the ACDG obtained in the multiuser
scenario is equal to that of traditional single-input multiple-
output networks.

I. INTRODUCTION

Due to the popularity of various wireless devices and appli-

cations in recent years, security of communication systems has

become an important issue of research. The broadcast nature

of the wireless channel is a key factor in making it vulnerable

to eavesdropping. To this end, while most security solutions

focus on methods from an upper layer perspective such as data

encryption, secret key-generation, etc. Recent solutions have

focused also on providing enhanced security using physical

layer techniques [1]. Initial information and communication

theoretic studies of physical layer security (PLS) date back to

the seminal work of Wyner [2] and it remains a challenging

yet promising field of study [3].

In order to deal with the security vulnerability, various PLS

techniques such as the use of multiple antennas/relaying/jam-

ming and user selection have been advocated [4]–[8]. Among

the current set of solutions toward the design of secured

wireless networks, node cooperation in a cooperative wireless

network (CWN) is a noticeable option. Node cooperation,

for instance relay selection techniques [4]–[6], [9]–[12] and

jamming methods [9], [10], [13]–[15], allow systems with

single antenna nodes to exploit the benefits of multiple antenna

systems. In addition, the design of cooperative beamforming

techniques for PLS in CWNs where nodes can collaboratively

work to build a virtual beam towards the receiver have been

discussed in [6], [9]–[11] and [13]–[19].

There is a rich body of literature that has investigated PLS of

dual-hop transmission with single/multiple relays and single/-

multiple eavesdropper/s; see for example [8] and [16]–[20].

However, the authors in [8] did not take beamforming into

account while the authors in [16]–[20] assumed cooperative

beamforming at the relays but did not consider multiple users.

In contrast, in this paper, we consider the use of cooperative

beamforming and user selection in order to enjoy the benefits

of spatial diversity from the exploitation of node cooperation.

Traditionally, cooperative diversity gain is used to evaluate

the performance of a CWN at high signal-to-noise ratio (SNR).

This approach, however, is not suitable for a secured CWN.

Alternatively, [4] introduced a new metric to evaluate the

secure performance of secured CWNs considering the ratio

of the legitimate channel gain to the eavesdropping channel

gain instead of the SNR. Motivated by the work in [4], we

also evaluate the secure performance of our proposed system

through the new metric, which we shall call the adapted

cooperative diversity gain (ACDG).

In this work, we consider two system models i) a WCN with

one relay and multiple users, i.e., the single-input multiple-

output in the presence of single eavesdropper (SIMOSE)

wiretap channel, and ii) a WCN with multiple relays and

a single user, i.e., the multiple-input single-output in the

presence of single eavesdropper (MISOSE) wiretap channel.

We derive upper bounds on the ergodic secrecy rate for both

scenarios. Based on the concept of the ACDG, we quantify the

secure performance of the proposed WCNs and show that the

ACDG of a virtual SIMOSE (or MISOSE) system is equal to

the diversity gain of a single-input multiple-output (SIMO)

(or multiple-input single output, MISO) system. Thus, the

ACDG is seen as the counterpart of cooperative diversity gain

in secured WCNs because of the involvement of the security

aspect.

Throughout the paper, we use the following notation. [·]T
and [·]† denote the transpose operator and Hermitian operator,
respectively. ‖ · ‖ denotes the Euclidean norm. E {·} denotes

expectation. CN (µµµ,Σ) denotes the complex Gaussian distri-

bution with mean µµµ and covariance matrix Σ. Exp (r) denotes
the exponential distribution with rate r. Erl (k, r) denotes

the Erlang distribution with shape k and rate r. The func-

tions En(z) and 2F1(a, b; c; z) denote the exponential integral
function of order n [21, Eq. (5.1.4)] and the hypergeometric

function [22, Eq. (9.14.2)], respectively.



II. SYSTEM MODEL

We consider a cooperative relay network in which there is a

single source, a set ofM trusted relays, a set ofN destinations,

and one eavesdropper (cf. Fig. 1). All the nodes are single-

antenna devices and operate in the half-duplex mode. For no-

tational simplicity, let S represent the source, Rm represent the

mth relay (m = 1, . . . ,M), Dn represent the nth destination

(n = 1, . . . , N), and E represent the eavesdropper. Also, let

R = {R1, . . . ,RM} represent the set of all relays preselected

for forwarding the source signal, and D = {D1, . . . ,DN}
represent the set of all destinations. Additionally, it is noted

that there are no direct links S-D and S-E. We assume that each

relay Rm ∈ R is successful in demodulating and decoding the

signal received during the first time slot (i.e., the DF protocol

[23]), and all relays (i.e., the set R) perform collaborative

beamforming (e.g., see [16], [17], [20] and [24]). R then

forwards a weighted version of the retransmitted signal to

D during the second time slot. The retransmitted signal is

also intercepted by the malicious node E. Thus, the signals

received at a certain Dn and E during the second time slot

are, respectively, given by

yDn
=
√

PRwhRDn
x+ nDn

, (1)

yE =
√

PRwhREx+ nE , (2)

where x is the signal retransmitted by R (assuming that

E{|x|} = 0 and E
{
|x|2
}

= 1), w = [w1, . . . , wM ] is the

beamforming vector, hRDn
= [hR1Dn

, . . . , hRMDn
]
T
is the

R-Dn channel gain vector, and hRE = [hR1E , . . . , hRME ]
T

is theR-E channel gain vector, nDn
is additive white Gaussian

noise (AWGN) at Dn, and nE is AWGN at E. Note that

hRmDn
∼ CN (0,ΩRD), hRmE ∼ CN (0,ΩRE), nD ∼

CN (0, N0), and nE ∼ CN (0, N0).

Regarding the use of the beamforming scheme, the beam-

forming vector w is designed according to the channel be-

tween R and D∗, in which D∗ is the selected D that has the

strongest link between R and itself. Mathematically, we have

D∗ = arg max
Dn∈D

‖hRDn
‖2, (3)

‖hRD∗‖2 = max
Dn∈D

‖hRDn
‖2, (4)

w =
h
†
RD∗

‖hRD∗‖
. (5)

Let Θ be the instantaneous received SNR at D∗ for the

signal retransmitted by R in the second time slot. We obtain

from (1) that

Θ = γR|whRD∗ |2 = γR‖hRD∗‖2 (6)

where γR = PR/N0. The cumulative distribution function

(cdf) and the probability density function (pdf) of Θ are

presented in Appendix A.
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Fig. 1. A wireless relay system that consists of a source, a set of M relays,
a set of N users, and an eavesdropper.

Similarly, let Φ be the instantaneous received SNR at the

eavesdropper for the signal retransmitted by R in the second

time slot. We obtain from (2) that

Φ =

(√
γRh

†
REhRD∗

‖hRD∗‖

)(√
γRh

†
RD∗hRE

‖hRD∗‖

)

︸ ︷︷ ︸

Z

= |Z|2. (7)

It is apparent that SNR appears in (7) as a function of two

random vectors hRD∗ and hRE . Conditioning on hRD∗ , we

get

Z |hRD∗ ∼ CN
(

0,

√
γRh

†
RD∗

‖hRD∗‖ ΩREI

√
γRhRD∗

‖hRD∗‖

)

⇔ Z |hRD∗ ∼ CN (0, γRΩRE) (8)

leading to Φ |hRD∗ ∼ Exp
(

1
γRΩRE

)

as a result. 1 Note that

Φ |hRD∗ is equivalent to Φ |Θ because the fact that Θ is a

function of hRD∗ only. Thus, we shall use Φ |Θ in place of

Φ |hRD∗ .

III. ERGODIC SECRECY RATE

The achievable secrecy rate in nat/s/Hz can be defined as

C∆ (Θ,Φ) =

[

ln

(
1 + Θ

1 + Φ

)]+

(9)

where [x]+ = max{0, x}.
The ergodic secrecy rate of proposed system in the general

case (i.e., for a MIMO system) is given by

C∆ = EΘ

{
EΦ|Θ {C∆ (Θ,Φ) |Θ = θ}

}

= EΘ

{
∫ θ

0

ln

(
1 + θ

1 + φ

)

fΦ|Θ (φ) dφ

}

= A− B. (10)

1Let x ∼ CN (µµµ,Σ). If A is a non-random matrix and b is a non-
random vector, then y = Ax + b yields a circularly symmetric complex
y ∼ CN

(

Aµµµ+ b,AΣA†
)

[25, Appendix A].



where the terms A and B can be expressed as

A = EΘ

{
ln(1 + θ)FΦ|Θ (θ)

}

= EΘ {ln(1 + θ)} − EΘ

{

ln(1 + θ)e−θ/(γRΩRE)
}

, (11)

B = EΘ

{
∫ θ

0

ln (1 + φ) fΦ|Θ (φ) dφ

}

= e1/(γRΩRE)

[

E1

(
1

γRΩRE

)

− EΘ

{

E1

(
1 + θ

γRΩRE

)}]

− EΘ

{

ln(1 + θ)e−θ/(γRΩRE)
}

. (12)

Substituting both (11) and (12) into (10), we obtain

〈C∆〉 = EΘ {ln(1 + θ)} − e1/(γRΩRE)E1 (1/(γRΩRE))

+ e1/(γRΩRE)
EΘ

{

E1

(
1 + θ

γRΩRE

)}

≤ EΘ {ln(1 + θ)} − e1/(γRΩRE)E1

(
1

γRΩRE

)

+ e1/(γRΩRE)
EΘ {E1 (θ/(γRΩRE))}

, 〈C∆〉upper (13)

where the inequality follows from the fact that E1 (x) =
∫∞

x
e−u

u du is a decreasing function. Eq. (13) shows that the

ergodic secrecy rate 〈C∆〉 has an upper bound 〈C∆〉upper. Fur-
ther, at high SNR, we can show that 〈C∆〉∞ , lim

γR→∞
〈C∆〉 =

lim
γR→∞

〈C∆〉upper which reveals that 〈C∆〉upper is also exact in
the asymptotic sense. However, due to limited space we opted

not to report the detailed proof of this result.

A. SIMOSE Wiretap Channel

Theorem 1. In the case of SIMOSE, an upper bound on the

ergodic secrecy rate is given by

〈C∆〉upper =
N∑

n=1

(
N

n

)

(−1)n−1

{

e
1

γRΩRE ln

(

1 + n
ΩRE

ΩRD

)

+ e
n

γRΩRD E1

(
n

γRΩRD

)

− e
1

γRΩRE E1

(
1

γRΩRE

)}

.

(14)

Proof. When M = 1, the pdf of Θ in (41) reduces to

fΘ(θ) =
N∑

n=1

(
N

n

)

(−1)n+1 n

γRΩRD
e
− nθ

γRΩRD . (15)

Using the above pdf expression to calculate the expected

values in (13), we obtain

EΘ {ln(1 + θ)} =

N∑

n=1

(
N

n

)

(−1)n+1e
n

γRΩRD E1

(
n

γRΩRD

)

,

(16)

EΘ

{

E1

(
θ

(γRΩRE)

)}

=

N∑

n=1

(
N

n

)

(−1)n+1 ln

(

1 + n
ΩRE

ΩRD

)

(17)

after simple manipulations. Finally, substituting (16) and (17)

into (13) yields (14).

B. MISOSE Wiretap Channel

Theorem 2. In the case of MISOSE, an upper bound on the

ergodic secrecy rate is given by

〈C∆〉upper

= e
1

γRΩRE ln

(

1 +
ΩRE

ΩRD

)

+ C1(γR) +
M−1∑

m=1

1

m!
C2(γR)

+ e
1

γRΩRE

M−1∑

m=1

(
ΩRE

ΩRD +ΩRE

)m

×
[

1

1 + ΩRD

ΩRE

1

m+ 1
2F1

(

1,m+ 1;m+ 2;
1

1 + ΩRD

ΩRE

)

− 1

m
2F1

(

1,m;m+ 1;
1

1 + ΩRD

ΩRE

)]

(18)

where

C1(γR) , e
1

γRΩRD E1

(
1

γRΩRD

)

− e
1

γRΩRE E1

(
1

γRΩRE

)

,

(19)

C2(γR) ,
1

(γRΩRD)
m

[

1

γRΩRD
I
(

1

γRΩRD
,m

)

−mI
(

1

γRΩRD
,m− 1

)]

(20)

where the function I(α,m) ,
∫∞

0 θm ln(1 + θ)e−αθdθ, m ∈
N is calculated in [22, Eq. (4.222.8)].

Proof. When N = 1, the pdf of Θ in (41) reduces to

fΘ(θ) =
M−1∑

m=0

e
− θ

γRΩRD

m! (γRΩRD)
m

(
θm

γRΩRD
−mθm−1

)

. (21)

Using the above pdf expression to calculate the expected

values in (13), we obtain

EΘ {ln(1 + θ)}

= e
1

γRΩRD E1

(
1

γRΩRD

)

+

M−1∑

m=1

1

m! (γRΩRD)
m

×
[

1

γRΩRD
I
(

1

γRΩRD
,m

)

−mI
(

1

γRΩRD
,m− 1

)]

,

(22)

and

EΘ {E1 (θ/ (γRΩRE))}

= ln

(

1 +
ΩRE

ΩRD

)

+

M−1∑

m=1

(
ΩRE

ΩRD +ΩRE

)m

×
[

1

1 + ΩRD

ΩRE

1

m+ 1
2F1

(

1,m+ 1;m+ 2;
1

1 + ΩRD

ΩRE

)

− 1

m
2F1

(

1,m;m+ 1;
1

1 + ΩRD

ΩRE

)]

(23)



after simple manipulations. Finally, substituting (22) and (23)

into (13) yields (18).

IV. ADAPTED COOPERATIVE DIVERSITY GAIN

We state that an intercept event occurs when the channel

capacity of the link R-D∗ becomes less than that of the link

R-E. Thus the intercept probability is then given by

Pint = P {Θ < Φ} =

∫ ∞

0

e
− θ

γRΩRE fΘ(θ)dθ. (24)

According to [4], the traditional diversity gain definition is

not appropriate for security issue in secured CWNs. Instead, a

different concept of diversity gain, which we call the ACDG,

is defined as

d = − lim
λ→∞

logPint

logλ
(25)

where λ is the ratio of average channel gain between R and

D∗ to that between R and E, i.e.,

λ =
E
{
‖hRD∗‖2

}

E {‖hRE‖2}
=

ΩRD

ΩRE
. (26)

We now derive the ACDG for SIMOSE and MISOSE systems

as follows:

A. SIMOSE Wiretap Channel

Theorem 3. When M = 1 and N ≥ 1, the ACDG of the

SIMOSE system is equal to d = N .

Proof. Substituting (15) into (24) and then evaluating the

integral in (24) we have

Pint =

N∑

n=1

(
N

n

)
(−1)n−1n

γRΩRD

(
n

γRΩRD
+

1

γRΩRE

)−1

=

N∑

n=1

(
N

n

)
(−1)n−1n

n+ λ
. (27)

By evaluating the term
(
N

n

)

(−1)n−1n = N !

[
(−1)n−1

(n− 1)!

] [
1

(N − n)!

]

= N ! [(1− n)(2 − n) . . . ((n− 1)− n)]
−1

× [((n+ 1)− n)((n+ 2)− n) . . . (N − n)]
−1

= N !
N∏

k=1
k 6=n

(k − n)−1, (28)

we can rewrite (27) as

Pint = N !

N∑

n=1

1

n+ λ

N∏

k=1
k 6=n

(k − n)−1 = N !

N∑

n=1

rn
n+ λ

(29)

where

rn = lim
λ→−n

{

(n+ λ)

N∏

k=1

(k + λ)−1

}

, n ∈ {1, . . . , N}.

(30)

According to the Cauchy residue theorem [26], we can see

that rn appears as the residue of the function u(λ) =
[
∏N

k=1(k + λ)
]−1

at simple pole λ = −n. Thus, applying

the Cauchy residue theorem to (29), we have

Pint = N !u(λ) = N !
N∏

k=1

(k + λ)−1. (31)

Finally, the ACDG of the SIMOSE system with M = 1 and
N ≥ 1 can be derived as

d = − lim
λ→∞

[

log (N !)− log

(
N∏

k=1

(k + λ)

)]

log λ
= N. (32)

B. MISOSE Wiretap Channel

Theorem 4. When N = 1 and M ≥ 1, the ACDG of the

MISOSE system is equal to d = M .

Proof. Substituting (21) into (24) and then evaluating the

integral in (24) we have

Pint =
1

γRΩRD

(
1

γRΩRD
+

1

γRΩRE

)−1

+

M−1∑

m=1

(

1 +
γRΩRD

γRΩRE

)−m
[(

1 +
γRΩRD

γRΩRE

)−1

− 1

]

= (1 + λ)−M

[

(1 + λ)M−1 − λ

M−1∑

m=1

(1 + λ)m−1

]

︸ ︷︷ ︸

v(λ)

.

(33)

Using the binomial theorem, we can express v(λ) as

v(λ) = 1 +

M−1∑

m=1

(
M − 1

m

)

λm −
M−1∑

m=1

m−1∑

k=0

(
m− 1

k

)

λk+1.

(34)

The third term of (34) can be successively analyzed into

M−1∑

m=1

m−1∑

k=0

(
m− 1

k

)

λk+1

=

M−1∑

l=1

M−1∑

m=l

(
m− 1

l − 1

)

λl (a)=
M−1∑

l=1

M−1∑

m=l

(
m− 1

m− l

)

λl

=

M−1∑

l=1

[(
l − 1

0

)

+

(
l

1

)

+ . . .

(
M − 2

M − l − 1

)]

λl

(b)
=

M−1∑

l=1

(
M − 1

M − l − 1

)

λl (c)=
M−1∑

l=1

(
M − 1

l

)

λl (35)

where the equalities (a) and (c) follow from [21, Eq. (3.1.3)];

the equality (b) is obtained by using [21, Eq. (24.1.1.II.A)].

We then substitute (35) into (34) to get a surprisingly simple

expression

v(λ) = 1. (36)
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Fig. 2. Ergodic secrecy rate and its upper bound versus γR. System
parameters: M = 1, N = {2, . . . , 6}, ΩRD = 2.5, and ΩRE = 4.

As a result, (33) reduces to

Pint = (1 + λ)−M . (37)

Finally, the ACDG of the MISOSE system with N = 1 and
M ≥ 1 can be derived as

d = − lim
λ→∞

log
[
(1 + λ)−M

]

logλ
= M. (38)

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present some representative numerical

examples to verify the analysis presented in previous sections,

and illustrate the key behaviors of the system when different

network parameters are varied. In Figs. 2 and 3, the mean

channel powers of the links Rm-Dn and Rm-E are set to

ΩRD = 2.5 and ΩRE = 4 respectively. Fig. 2 considers the

proposed system withM = 1 and N = {2, 3, 4, 5, 6}, whereas
Fig. 3 considers the proposed system with M = {2, 3, 4, 5, 6}
and N = 1. For each figure, we observe that the upper bound
gets closer to the ergodic secrecy rate as γR (or PR when N0

is set to 0 dB) increases from 0 dB to 30 dB. This can be easily

explained by assessing that E1

(
1+θ

γRΩRE

)

≈ E1

(
θ

γRΩRE

)

with large enough θ due to the fact that θ = γR‖hRD∗‖2.
On this observation, the upper bound can be referred to as an

approximation to the ergodic secrecy rate at high γR.
Figs. 4 and 5 show the intercept probability versus the ratio

λ = ΩRD

ΩRE
for SIMOSE and MISOSE systems, respectively.

In each of these figures, we see that the worst case occurs

when M = 1 and N = 1, while the intercept probability

decreases strictly with the number of nodes and λ. As proved
in Theorems 3 and 4, the ACDG equals the number of nodes

and serves to shift the intercept probability curves to the left

and therefore improves the reliability of the SIMOSE and

MISOSE systems from a security point of view. Furthermore,

these figures reveal striking similarities of the ACDG to the
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Fig. 3. Ergodic secrecy rate and its upper bound versus γR. System
parameters: M = {2, . . . , 6}, N = 1, ΩRD = 2.5, and ΩRE = 4.

traditional diversity gain. As such, the concept of the ACDG

seems to be more compatible with security issue of wireless

networks than the concept of traditional diversity gain.

VI. CONCLUSIONS

We have considered the use of cooperative beamforming and

user selection for secured WCNs. In particular, our analysis

has focused on two cases, namely, SIMOSE systems (M = 1,
N ≥ 2) and MISOSE systems (M ≥ 2, N = 1). For
each case, we have derived a tight upper bound (and exact

in an asymptotic sense) on the ergodic secrecy rate. We

have also evaluated the security level in terms of the ACDG,

similar to conventional cooperative diversity gain, for SIMOSE

and MISOSE systems. We have shown that the ACDGs of

SIMOSE and MISOSE systems are respectively equal to the

number of users and the number of relays. The validity of our

expressions have been verified through extensive simulations

results.
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APPENDIX

A. Distribution of Θ

Since Xn = γR‖hRDn
‖2 =

∑M
m=1 γR|hRmDn

|2 is a sum

of independent and identically distributed (i.i.d.) exponential

variables, then Xn ∼ Erl
(

M, 1
γRΩRD

)

. By definition of Θ,

we have

Θ = γR‖hRD∗‖2 = max
n=1,...,N

Xn. (39)

The CDF of Θ is given by

FΘ(θ) = FN
Xn

(θ) =

[

1−
M−1∑

m=0

e
− θ

γRΩRD

m!

(
θ

γRΩRD

)m
]N

(40)
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Fig. 4. Intercept probability versus λ = ΩRD/ΩRE . The SIMOSE system
has a single relay, and a group of N = {1, 2, 3, 4, 5} users.
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Fig. 5. Intercept probability versus λ = ΩRD/ΩRE . The MISOSE system
has a single user, and a group of M = {1, 2, 3, 4, 5} relays.

and hence the pdf of Θ is given by

fΘ(θ) = dFΘ(θ)/dθ

= N

[

1−
M−1∑

m=0

e
− θ

γRΩRD

m!

(
θ

γRΩRD

)m
]N−1

×
[
M−1∑

m=0

(
θ

γRΩRD
−m

)
e
− θ

γRΩRD

m!

θm−1

(γRΩRD)
m

]

. (41)
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