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Abstract—Although the approximations based on the central by Abdel-Aty [15] for approximating non-central chi-sqear
limit theorem (CLT) for the detection probability ( P,;) of the distributions. However, the CGA is not the only option, and
energy detector and of its more generalized cousin, the-norm other more robust approximations may exist. Thus, in this

detector, are accurate for large sample sizes, their accucy is . . . . . .
poor otherwise. A recent work has addressed this problem by paper, we investigate five other classical approximatians t

developing a cube-of-Gaussian approximation (CGA). Howesr, derive P;. These approximations (i) yield accuralg in
CGA may not be the only option and thus this letter investigaes closed form; (ii) apply to an arbitrary number of samples;

five other classical approximations for deriving P;. They tightly  (jii) need only the first few momentsumulants, and thus
match the exact values even for few samples and thus are more 5.0 applicable to deterministic or random signal model; and

accurate than CLT. These approximations have been unnotice . b tended to oth licati = le. th
in the signal detection research community and this letter ans (iv) may be extended to other applications. For example, the

at making them known to a wider audience. Because the range P-norm detector is a generalization of the ED [1], [6], [14f fo
of their potential applications could be diverse, to demonsate  which we will derive a novel approximation for the area under

their utility, we derive a novel expression for the area undethe the receiver operating characteristic (ROC) curve (AUC), a

receiver operating characteristic curve of thep-norm detector.  gingle figure of merit useful for characterizing the deteti
Index Terms—Detection probability, energy detector, false performance

alarm probability, p-norm detector.
NortaTIONS

| INTRODUCTION fz(), P(-), E(-), Var() denote the probability density
As the IEEE 802.22 based cognitive radios must deteginction (PDF) of Z, probability measure, expectation, and
potential spectrum opportunities rapidly, sensing dev&ech variance, respectivelyy? and x2(e) denote the central and
as the energy detector (ED) or the more gengralorm non-central chi-square distributions, respectivelyhwiit be-
detector [1] must operate with fewest possible samplesewhijhg the degree of freedom and being the non-centrality
offering high detection reliability. However, their probatyil parameter.CA(m o2) denotes complex Gaussian variable
of detection,P,, is widely approximated by using the centralyith mean m and variancec?. I'(z) = fo"" tz-le~dt,
limit theorem (CLT) [2] which yieldsP; in terms of the g4 (zx) = f"otz—le—tdt are the Gamma function and
vyell-known Gauss_ialQ function. T_he QLT-pased "{‘pprOXim"f"upper-incomplet)é Gamma function, respectively(a,b) =
tion has found widespread applications in solving pratuc?bw a)lc_i;]_e_(xz+a2)/2|l—l(ax)dx is the I-th order generalized

problems such as sensing-throughput traidg®], multiple- ) ) e (g/2
band spectrum sensing [4], low signal-to-noise ratio (SNF arcumQ fqnctlon with 1,,(2) . Zk=.0 T(v+k+1) denot-
ing the modified Bessel function of first kind of order

spectrum sensing [5], [6], and numerous others. Howevi, it o 123
e

not accurate enough for small sample sizes [7]. Small sam@éX) = 7 dtis the Gaussia@ function.1Fy(a; b; 2) =
size based analysis is particularly important for highljagte s % is the regularized hypergeometric function and

sensitive applications such as mission critical machype-t k=0 Ib+k) ko .
o ; oFi(ab;c;z) = X7 M is the Gauss hypergeometric
communications, say, in future 5G networks [8]. funci h k—dO (Ltkk- the Pochh bol
ExactP, (without approximations) has also been analyze(LJfnC fon, with x), denoting the Pochhamer symbol.
extensively. For example, works in [9]-[13] treat ED withlfa [l. PROBLEM STATEMENT
ing, shadowing, multiple antennas, cooperative diversind ~ In an ED, the decision variable is givenas= £ 37 |y;|2,
other factors. For the more genephorm detector, since ex- wherey; is thei-th sample of the received signal ands the
act closed-fornmP,; appears intractable, several computationaumber of samples. Theif, is compared against a detection
methods have been developed [14]. However, these analydeesholdl to decide on the absencEd) or presenceHi) of
often lead to complicated expressions (residues, infieities, the primary user (PU) signal. For deterministic signaltsefa
and so on) rather than closed-forms, which may hinder th&ilarm probability Py, is Py = I'(n, 4/2)/T'(n), while detection
rapid use in optimization and low-SNR design [3]-[6]. probability, Py, is [9]
Thus, simple and accuratBe,; approximations valid for P4 =Qn(\/z, Va), (1)

arbitrary sample size are necessary. To the best of our k”OWherey is the SNR. The conditional decision variablEid,

edge, only thelwork in [7] ha_s attacked thi§ problem with gng T|H; are distributed aS(%,, and X%n (2y), respectively.
cube-of-Gaussian approximation (CGA), originally props Tpys the problem at hand is to find accurate approximations
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by approximating the distribution of|H;. Let Y denote whered < y < oo, @ = 4K§/K§, B = k3/(2k2) and § =
T|H1. Among the numerous approximations available in the_L—ZK%/Kg. Thus, the parameters g andé in (6) are readily
statistical literature, we next consider five important ®te obtained from the cumulants 8% The approximate detection
find accurate approximations to the distribution Yof[16]- probability, PLQ, can hence be expressed as

[20]. Note that for some of our derivations, the cumulant -

generating function o is needed which is obtained as [21] pl9 _ f fy(y)dy = 1 F(a, A= 5). @)
g(t) =INE(¢7) =t/(1-2yt) —nin(1-2y1). t<1/(2y). d () B

Then, the Taylor expansion gft) yields the first three cumu- gj,ce poth (7) and (5) utilize third-order statistics, thei
Iarr]ns OLY to bexy =ﬁ2{(n+7),_m N i(n+27), k3= 16(n.+.37). accuracy should be similar.

Ther-th moment ofY is m. = 2"eT'(r + n)aFu(r +n; n;y). So far, we have presented all the approximations based
Next, we present the five approximations for deriving on momenftumulant matching. In contrast, the next two
A. Patnaik’s approximation approximations are based upon finding a rapid transformatio

Patnaik [16] proposed approximating the non-central ch@f Y that approaches a Gaussian RV. The basis is as follows.

square random variable (RY)by a scaled central one denotedf we denoteY asY(n) (a function ofn), then we knowy (n)
Z; ~ x2, as converges to a Gaussian RV when— co. However, this

_ Y ~ P2y ) (@) condition requires a large number of samples. Alternatjvél
The problem then is to find thg scalmg factierand the new 5 transformg(-) can be found which makeg(Y) Gaussian
degree of freedom. By matching the first two moments of yjthout the large-sample assumption, that forms the basis
both sides of (2), these pa;rameters are found tp BN+  for approximating the non-central chi-square tail probigbi
2y)/(n+y) andv = 2(n+y) /(npﬁ 2y). Then, the approximate Transforms of typeg(x) = (ax + b)# have been used in the
detection probability, denotef,, can be expressed as literature as discussed in the following sub-sections.

« 1 v 4
pn _ - - L
Pa =FlpZ1> ’l)_j;/p fz,(2)dz = '(v/2) (2’ zp)' () p. sankaran's third approximation

Clearly, P" is in terms of the upper-incomplete Gamma func- Following the basis above, Sankaran [19] proposed the

tion (as opposed to the more complicated MaraQrfunction  fo|lowing transformation ofY: X = 2y ) to be Gaussian
(1)) and thus may further lead to tractable analysis (e.gerw ) (nso ) (2 I (131 (1292
averaging P, over fading, shadowing, antennaoperative With meanusk = 1+ (z(n)fy;z 7). AGAX 8(2,(+y)4)( &) and

diversity, or in other applications such as sensing-thhpug varianceo?, = h;(l’:ff;/) [1- (1-h)(1-3h) 2(8;2“/))2] where
tradedt in cognitive radios) for arbitrary sample size unlike thg, _ 1 _ [2(n + y)(ny+ 39)]/[3(n + 2y)?. As X |ys Gaussian
CLT whi_ch is _valid c_)nly for. large ;ample sizes. The acCUraGyistributed, the desired approximate detection probgtbies

of (3) will be investigated in Section IV. can thus be obtained in terms of the Gaus$afunction after

B. Pearson’s approximation some algebraic manipulations to be

Pearson’s method is a generalization of Patnaik’s idea&vher
Y is approximated with a linear transformation of a central Pf,k =P(Y > 1) = Q(
chi-square RV denoted ~ X%,, asY ~ Z, = aX + b, where
a,b andv’ are to be determined via moment matching. Byike the CLT approximation, expression (8) avoids occuceen
matching the first two moments on both sides, we get [17] of the Marcum® function (in P;), yet does not invoke the

Al — yskZh(n + y)h )
osk2(n+y)h

(8)

X - n+3y 2y? large-sample assumption needed for the CLT. Thus, expressi
Z2 = 2 Var(Y) +E(Y) = n+2y" n+3y’ (4) (8) should work for any number of samples (low to high).

Parameter’ is obtained by matching the third momentszf

(4) andY asv’ = 2(n+2y)3/(n+3y)? Then, the approximate E. Moschopoulos’ approach

detection probabilitszsz P(aX + b > 1), is obtained as This approach [20] exploits the folll?wing transformation
ps 1 NG 2y? n+2y (abusing the notatioX) of Y: X = (YK—J'l”) , whereh (abusing
d =~ F(v'/Z)F(?( n+ 3y) "2(n+3y) ) previous notations) ant are determined from the first three

- 1- 2 - -

Despite matching the first three moments, the fiRET ex- 22;?:}'{2; ts.l_r?gq ?(Sir; 23 alu < s’:;’f{j(li;%uigg Svith Kra/e(Zkl) ~
. - pn ; : , alno =
pression has a form similar " (3) and thus has the same;” i ; (h-1x +b], and variance-2, = hZ/«2. Then, similar

computational ease. Intuitively, we expect (5) to be high (g)[ 2 1

i it util the first th A N the desired approximate detection probabif}°, can
accurate as it utilizes the first three exact moments. be expressed as

C. Three-parameter Gamma

A+Db) -«
This method approximates the PDF &f by a three- PTO=P(Y > 1) = Q(( )h Kl'umo). 9)
parameter Gamma PDF [18] as K10mo
(y - 5)* e b-0)/B Since the detection probabilities (8) and (9) both utilipeta
fr(y) = BT () ’ (6)  third-order statistics o¥ and have the same functional com-

plexity, these approximations may possess similar acgurac
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Fig. 1: ROC curves for various sample sizes®pr< 0.1,y = 10dB. Fig. 2: Absolute error folP; vs.y for Py = 0.01,n= 5.

Section IV shows thaP"" is highly accurate at low SNRs

. 6 © .
Section Il presented five approximations for detectiorbpro (with '2%;22 x 10. at SNRs beIow—1.5dB). I;or mstan(I:e,
ability. In addition, the approximate detection probapilising IEEE -c< requires spe%tr:um Sensing at SNRs as low as
cga ~22dB [2]. We thus adopP,," to derive the AUC of thep-

CGA [15], P, can be derived to be (derivation omitted for .
brevity) norm d_etector. The AUC varies fronmy4to 1 and serves as a
single figure of merit of detection performance [23]. Simila
1/3 2 to [1], [6], we consider a random PU signal model [2], [3],
PflgazQ([(z A ) + 9n+272 —1]“@). (10) [5]. In this model, the PU signal samples and the additive
(n+7) (n+7) n+ey white Gaussian noise (AWGN) samples are assumed to be
Fig. 1 compares the ROC curves for the six approximatioss ~ CN(0,02) and n; ~ CN(0,02), respectively,¥i e
(along with the CLT approximation) and the exd@i (1). (12 ...n}. Thus, the distribution of, appears intractable as
Note that we restricP; < 0.1 as per the specifications inp > 0 is an arbitrary real number. In contrast, the Patnaik’s
IEEE 802.22 standard for cognitive radios [2]. While the CLBpproximation forT,|Hy andT,|Ho yields (see Appendix)
is the least accurat®;,*® (10) andP"" (Patnaik) almost match 1 0 1 1 0 1
the exact values and become more accurate with increasing P, = —21"(5, 2—) Pr = —21"(5, 2—) (12)
The other proposed approximations tightly match the exact I'r2) P1 I'©r2) Po
values. with the parameterg = 2nI'2(p/2+1)/[T'(p+1)-T?(p/2+1)]

Fig. 2 shows the absolute errors (AES) of the six apprO)@_-ndpj =[[(p+1)-T%(p/2+1)][2n[(p/2+ 1)Aj.’/2], j=01,
mations and of the approximation method in [7] Whlgrl)’l US&fith Ag = 1, A1 = 1/(1+y), andy 2 o2/c2. Then, by
CGA for both Py and Py. Here, AE Is given 3Py~ P2™.,  substituting (11) into the definition of the AUC [2] AUE
whereP%*is the exact (1) an&,™ is the approximate. Clearly, _f°° Pd(y,/l)%d/l, and then using [24, eq. (6.455.1)] to

for 4 < ydB < 14, all except the Patnaik and the two CGASOI?/e the integral, the AUC can be expressed as

approximations have AE 10-3. The average (over all SNRS)

IV. NuMERrIicAL REsuLTs AND DiscUSSIONS

AEs of the Pearson’s and the three-parameter Gamma are the 2r(0) (1 + 7)”9/42F1(L 0;%+1; %)
lowest. Note that the CGA [7] has lower AE than CGA (10) aAyC = ()P (12)
for y < —1dB. Another interesting observation is that for low 0r2(0/2)(1+ (1 +y)r/2)?

SNRs ( < -5dB), the Patnaik approximation outperformsrhis new expression (12) helps to study the dependence of
Sankaran’s, Moschopoulos’ and the CGA approximations. Auc on SNR,n andp as depicted in Fig. 3 and Fig. 4.
In Fig. 3, (12) is compared against the simulation results
V. AUC oF TrE p-Norm DeTECTOR for p = 1.5 andp = 2.5. The close match between (12) and
Recently, thep-norm detector, whose decision variable is othe simulation results is evident, thus validating its aacw.
the form [1]T, = 1/n X", |y:|”, has received attention as the The dependence of AUC gmis depicted in Fig. 4 for a wide
more generalized version of the traditional EP= 2 reverts range of parameter values: SNRs as low-29 dB andn in
to the ED) suitable for improving the detection performaince the orders of 18to 10%. For all the cases, increasipgoeyond
non-Gaussian noise [6], fading [14], and co-operativespat p = 2 has a negative impact on the sensing performance of
sensing [22]. However, the general form of fir@orm detector the p-norm detector since it lowers the AUC. Further, a 15dB
decision variable makes its exact closed-form performandeop in SNR (from-5 dB to-20 dB) requires to be increased
analysis intractable. To demonstrate the applicabilityoné by 3 orders of magnitude (1o 10%) to maintain a similar
of the approximations, we thus consider thmorm detector performance.
in this section and derive its approximate AUC performance, Thus, (12) accurately facilitates the@norm AUC perfor-
its exact AUC being analytically intractable. mance analysis for any SNR and amy Importantly, the
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1)/Aj.’/2. Similarly, the variance of,|H;, denoted byrjz., can

be obtained to be—j? = [[(p+1)-T?(p/2+ 1)]/[nA7]. Then,
use of the transformation (2), matching the corresponding
means and variances, and solving foand p; yields (11).
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