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Abstract—Although the approximations based on the central
limit theorem (CLT) for the detection probability ( Pd) of the
energy detector and of its more generalized cousin, thep-norm
detector, are accurate for large sample sizes, their accuracy is
poor otherwise. A recent work has addressed this problem by
developing a cube-of-Gaussian approximation (CGA). However,
CGA may not be the only option and thus this letter investigates
five other classical approximations for deriving Pd . They tightly
match the exact values even for few samples and thus are more
accurate than CLT. These approximations have been unnoticed
in the signal detection research community and this letter aims
at making them known to a wider audience. Because the range
of their potential applications could be diverse, to demonstrate
their utility, we derive a novel expression for the area under the
receiver operating characteristic curve of thep-norm detector.

Index Terms—Detection probability, energy detector, false
alarm probability, p-norm detector.

I. Introduction
As the IEEE 802.22 based cognitive radios must detect

potential spectrum opportunities rapidly, sensing devices such
as the energy detector (ED) or the more generalp-norm
detector [1] must operate with fewest possible samples while
offering high detection reliability. However, their probability
of detection,Pd , is widely approximated by using the central
limit theorem (CLT) [2] which yieldsPd in terms of the
well-known Gaussian-Q function. The CLT-based approxima-
tion has found widespread applications in solving practical
problems such as sensing-throughput tradeoff [3], multiple-
band spectrum sensing [4], low signal-to-noise ratio (SNR)
spectrum sensing [5], [6], and numerous others. However, itis
not accurate enough for small sample sizes [7]. Small sample
size based analysis is particularly important for highly delay-
sensitive applications such as mission critical machine-type
communications, say, in future 5G networks [8].

Exact Pd (without approximations) has also been analyzed
extensively. For example, works in [9]–[13] treat ED with fad-
ing, shadowing, multiple antennas, cooperative diversity, and
other factors. For the more generalp-norm detector, since ex-
act closed-formPd appears intractable, several computational
methods have been developed [14]. However, these analyses
often lead to complicated expressions (residues, infinite series,
and so on) rather than closed-forms, which may hinder their
rapid use in optimization and low-SNR design [3]–[6].

Thus, simple and accuratePd approximations valid for
arbitrary sample size are necessary. To the best of our knowl-
edge, only the work in [7] has attacked this problem with a
cube-of-Gaussian approximation (CGA), originally proposed
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by Abdel-Aty [15] for approximating non-central chi-square
distributions. However, the CGA is not the only option, and
other more robust approximations may exist. Thus, in this
paper, we investigate five other classical approximations to
derive Pd . These approximations (i) yield accuratePd in
closed form; (ii) apply to an arbitrary number of samples;
(iii) need only the first few moments/cumulants, and thus
are applicable to deterministic or random signal model; and
(iv) may be extended to other applications. For example, the
p-norm detector is a generalization of the ED [1], [6], [14] for
which we will derive a novel approximation for the area under
the receiver operating characteristic (ROC) curve (AUC), a
single figure of merit useful for characterizing the detection
performance.

Notations
fZ (·), P(·), E(·), Var(·) denote the probability density

function (PDF) ofZ, probability measure, expectation, and
variance, respectively.χ2

k
and χ2

k
(ǫ ) denote the central and

non-central chi-square distributions, respectively, with k be-
ing the degree of freedom andǫ being the non-centrality
parameter.CN (m, σ2) denotes complex Gaussian variable
with mean m and varianceσ2. Γ(z) =

∫ ∞
0

tz−1e−t dt,
and Γ(z, x) =

∫ ∞
x

tz−1e−tdt are the Gamma function and
upper-incomplete Gamma function, respectively.Ql (a, b) =
∫ ∞
b

xl

al−1 e−(x2+a2)/2Il−1(ax)dx is the l-th order generalized

Marcum-Q function with Iν (z) =
∑∞

k=0
(z/2)2k+ν

k!Γ(ν+k+1) denot-
ing the modified Bessel function of first kind of orderν.

Q(x) =
∫ ∞
x

e−t
2/2
√

2π
dt is the Gaussian-Q function.1F̃1(a; b; z) =

∑∞
k=0

(a)k zk

Γ(b+k)k! is the regularized hypergeometric function and

2F1(a, b; c; z) =
∑∞

k=0
(a)k (b)k zk

(c)k k! is the Gauss hypergeometric
function, with (x)y denoting the Pochhamer symbol.

II. Problem Statement
In an ED, the decision variable is given asT = 1

n

∑n
i=1 |yi |2,

whereyi is thei-th sample of the received signal andn is the
number of samples. Then,T is compared against a detection
thresholdλ to decide on the absence (H0) or presence (H1) of
the primary user (PU) signal. For deterministic signals, false
alarm probability,Pf , is Pf = Γ(n, λ/2)/Γ(n), while detection
probability, Pd , is [9]

Pd = Qn (
√

2γ,
√
λ), (1)

whereγ is the SNR. The conditional decision variablesT |H0

and T |H1 are distributed asχ2
2n and χ2

2n (2γ), respectively.
Thus, the problem at hand is to find accurate approximations
to (1) for arbitrary sample size, unlike CLT, which is limited
to large sample size (n ≫ 1).

III. N ew Approximations
As expression (1) results from the complementary cumula-

tive distribution function (CCDF) ofT |H1 which is χ2
2n (2γ)

distributed, we seek accurate approximations for this CCDF
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by approximating the distribution ofT |H1. Let Y denote
T |H1. Among the numerous approximations available in the
statistical literature, we next consider five important ones to
find accurate approximations to the distribution ofY [16]–
[20]. Note that for some of our derivations, the cumulant
generating function ofY is needed which is obtained as [21]
g(t) = lnE

(

etY
)

= t/(1− 2γt) − n ln(1− 2γt), t ≤ 1/(2γ).
Then, the Taylor expansion ofg(t) yields the first three cumu-
lants ofY to beκ1 = 2(n+γ), κ2 = 4(n+2γ), κ3 = 16(n+3γ).
The r-th moment ofY is mr = 2r e−γΓ(r + n)1F̃1(r + n; n; γ).
Next, we present the five approximations for derivingPd .

A. Patnaik’s approximation
Patnaik [16] proposed approximating the non-central chi-

square random variable (RV)Y by a scaled central one denoted
Z1 ∼ χ2

v , as
Y ≈ ρZ1. (2)

The problem then is to find the scaling factorρ and the new
degree of freedomv. By matching the first two moments of
both sides of (2), these parameters are found to beρ = 2(n +
2γ)/(n+γ) andv = 2(n+γ)2/(n+2γ). Then, the approximate
detection probability, denotedPpn

d
, can be expressed as

Ppn
d
= P(ρZ1 > λ)=

∫ ∞

λ/ρ

fZ1 (z)dz =
1

Γ(v/2)
Γ

(

v

2
,
λ

2ρ

)

. (3)

Clearly,Ppn
d

is in terms of the upper-incomplete Gamma func-
tion (as opposed to the more complicated Marcum-Q function
(1)) and thus may further lead to tractable analysis (e.g., when
averaging Pd over fading, shadowing, antenna/cooperative
diversity, or in other applications such as sensing-throughput
tradeoff in cognitive radios) for arbitrary sample size unlike the
CLT which is valid only for large sample sizes. The accuracy
of (3) will be investigated in Section IV.

B. Pearson’s approximation
Pearson’s method is a generalization of Patnaik’s idea where

Y is approximated with a linear transformation of a central
chi-square RV denotedX ∼ χ2

v′ , asY ≈ Z2 = aX + b, where
a, b and v

′ are to be determined via moment matching. By
matching the first two moments on both sides, we get [17]

Z2 =
X − v′
√

2v′
Var(Y ) + E(Y ) =

n + 3γ
n + 2γ

X − 2γ2

n + 3γ
. (4)

Parameterv′ is obtained by matching the third moments ofZ2

(4) andY asv′ = 2(n+2γ)3/(n+3γ)2. Then, the approximate
detection probability,Pps

d
= P(aX + b > λ), is obtained as

Pps
d
=

1
Γ(v′/2)

Γ

(

v
′

2
,

(

λ +
2γ2

n + 3γ

)

· n + 2γ
2(n + 3γ)

)

. (5)

Despite matching the first three moments, the finalPps
d

ex-
pression has a form similar toPpn

d
(3) and thus has the same

computational ease. Intuitively, we expect (5) to be highly
accurate as it utilizes the first three exact moments.

C. Three-parameter Gamma

This method approximates the PDF ofY by a three-
parameter Gamma PDF [18] as

fY (y) =
(y − δ)α−1e−(y−δ)/β

βαΓ(α)
, (6)

where δ < y < ∞, α = 4κ32/κ
2
3, β = κ3/(2κ2) and δ =

κ1−2κ22/κ3. Thus, the parametersα, β andδ in (6) are readily
obtained from the cumulants ofY . The approximate detection
probability, Ptg

d
, can hence be expressed as

Ptg
d
=

∫ ∞

λ

fY (y)dy =
1
Γ(α)

Γ

(

α,
λ − δ
β

)

. (7)

Since both (7) and (5) utilize third-order statistics, their
accuracy should be similar.

So far, we have presented all the approximations based
on moment/cumulant matching. In contrast, the next two
approximations are based upon finding a rapid transformation
of Y that approaches a Gaussian RV. The basis is as follows.
If we denoteY asY (n) (a function ofn), then we knowY (n)
converges to a Gaussian RV whenn → ∞. However, this
condition requires a large number of samples. Alternatively, if
a transformG(·) can be found which makesG(Y ) Gaussian
without the large-sample assumption, that forms the basis
for approximating the non-central chi-square tail probability.
Transforms of typeG(x) = (ax + b)β have been used in the
literature as discussed in the following sub-sections.

D. Sankaran’s third approximation

Following the basis above, Sankaran [19] proposed the

following transformation ofY : X =
(

Y
2(n+γ)

)h

to be Gaussian

with meanµsk = 1+ h(h−1)(n+2γ)
2(n+γ)2 − h(h−1)(2−h)(1−3h)(n+2γ)2

8(n+γ)4 , and

varianceσ2
sk =

h2(n+2γ)
(n+γ)2

[

1 − (1 − h)(1 − 3h) (n+2γ)
2(n+γ)2

]

, where

h = 1 − [2(n + γ)(n + 3γ)]/[3(n + 2γ)2]. As X is Gaussian
distributed, the desired approximate detection probability, Psk

d
,

can thus be obtained in terms of the Gaussian-Q function after
some algebraic manipulations to be

Psk
d = P(Y > λ) = Q

(

λh − µsk2h (n + γ)h

σsk2h (n + γ)h

)

. (8)

Like the CLT approximation, expression (8) avoids occurrence
of the Marcum-Q function (in Pd), yet does not invoke the
large-sample assumption needed for the CLT. Thus, expression
(8) should work for any number of samples (low to high).

E. Moschopoulos’ approach

This approach [20] exploits the following transformation

(abusing the notationX) of Y : X =
(

Y+b
κ1

)h

, whereh (abusing

previous notations) andb are determined from the first three
cumulants ofY as h = 1 − κ1κ3/(3κ22) and b = κ2/(2κ1) −
κ3/(4κ2). Then, X is Gaussian distributed with meanµmo =

1+ h
κ1

[ (h−1)κ2
2κ1

+b
]

, and varianceσ2
mo = h2κ2/κ

2
1. Then, similar

to (8), the desired approximate detection probability,Pmo
d

, can
be expressed as

Pmo
d = P(Y > λ) = Q

( (λ + b)h − κh1 µmo

κh1σmo

)

. (9)

Since the detection probabilities (8) and (9) both utilize up to
third-order statistics ofY and have the same functional com-
plexity, these approximations may possess similar accuracy.
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Fig. 1: ROC curves for various sample sizes forPf ≤ 0.1, γ = 10 dB.

IV. Numerical Results and Discussions

Section III presented five approximations for detection prob-
ability. In addition, the approximate detection probability using
CGA [15], Pcga

d
, can be derived to be (derivation omitted for

brevity)

Pcga
d
=Q

(

[ (

λ

2(n + γ)

)1/3
+

n + 2γ

9(n + γ)2
− 1

]

√

9(n + γ)2

n + 2γ

)

. (10)

Fig. 1 compares the ROC curves for the six approximations
(along with the CLT approximation) and the exactPd (1).
Note that we restrictPf ≤ 0.1 as per the specifications in
IEEE 802.22 standard for cognitive radios [2]. While the CLT
is the least accurate,Pcga

d
(10) andPpn

d
(Patnaik) almost match

the exact values and become more accurate with increasingn.
The other proposed approximations tightly match the exact
values.

Fig. 2 shows the absolute errors (AEs) of the six approxi-
mations and of the approximation method in [7] which uses
CGA for both Pd and Pf . Here, AE is given as|Pex

d
− Papp

d
|,

wherePex
d

is the exact (1) andPapp
d

is the approximate. Clearly,
for 4 ≤ γ dB ≤ 14, all except the Patnaik and the two CGA
approximations have AE≤ 10−3. The average (over all SNRs)
AEs of the Pearson’s and the three-parameter Gamma are the
lowest. Note that the CGA [7] has lower AE than CGA (10)
for γ < −1 dB. Another interesting observation is that for low
SNRs (γ ≤ −5 dB), the Patnaik approximation outperforms
Sankaran’s, Moschopoulos’ and the CGA approximations.

V. AUC of the p-norm Detector

Recently, thep-norm detector, whose decision variable is of
the form [1]Tp = 1/n

∑n
i=1 |yi |p , has received attention as the

more generalized version of the traditional ED (p = 2 reverts
to the ED) suitable for improving the detection performancein
non-Gaussian noise [6], fading [14], and co-operative spectrum
sensing [22]. However, the general form of thep-norm detector
decision variable makes its exact closed-form performance
analysis intractable. To demonstrate the applicability ofone
of the approximations, we thus consider thep-norm detector
in this section and derive its approximate AUC performance,
its exact AUC being analytically intractable.
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Fig. 2: Absolute error forPd vs. γ for Pf = 0.01, n = 5.

Section IV shows thatPpn
d

is highly accurate at low SNRs
(with AE < 3 × 10−6 at SNRs below−15 dB). For instance,
IEEE 802.22 requires spectrum sensing at SNRs as low as
−22 dB [2]. We thus adoptPpn

d
to derive the AUC of thep-

norm detector. The AUC varies from 1/2 to 1 and serves as a
single figure of merit of detection performance [23]. Similar
to [1], [6], we consider a random PU signal model [2], [3],
[5]. In this model, the PU signal samples and the additive
white Gaussian noise (AWGN) samples are assumed to be
si ∼ CN (0, σ2

s ) and ni ∼ CN (0, σ2
w ), respectively,∀i ∈

{1, 2, ..., n}. Thus, the distribution ofTp appears intractable as
p > 0 is an arbitrary real number. In contrast, the Patnaik’s
approximation forTp |H1 andTp |H0 yields (see Appendix)

Pd =
1

Γ(θ/2)
Γ

(

θ

2
,
λ

2ρ1

)

, Pf =
1

Γ(θ/2)
Γ

(

θ

2
,
λ

2ρ0

)

, (11)

with the parametersθ = 2nΓ2(p/2+1)/[Γ(p+1)−Γ2(p/2+1)]
and ρ j = [Γ(p+1)−Γ2(p/2+1)][2nΓ(p/2+1)Ap/2

j
], j = 0, 1,

with A0 , 1, A1 , 1/(1 + γ), and γ , σ2
s/σ

2
w . Then, by

substituting (11) into the definition of the AUC [2] AUC=
−

∫ ∞
0

Pd (γ, λ)
∂P f

∂λ
dλ, and then using [24, eq. (6.455.1)] to

solve the integral, the AUC can be expressed as

AUC =
2Γ(θ)(1+ γ)pθ/4

2F1

(

1, θ; θ
2 + 1; (1+γ)p/2

(1+γ)p/2+1

)

θΓ2(θ/2)(1+ (1+ γ)p/2)θ
. (12)

This new expression (12) helps to study the dependence of
AUC on SNR,n and p as depicted in Fig. 3 and Fig. 4.

In Fig. 3, (12) is compared against the simulation results
for p = 1.5 and p = 2.5. The close match between (12) and
the simulation results is evident, thus validating its accuracy.

The dependence of AUC onp is depicted in Fig. 4 for a wide
range of parameter values: SNRs as low as−20 dB andn in
the orders of 101 to 104. For all the cases, increasingp beyond
p = 2 has a negative impact on the sensing performance of
the p-norm detector since it lowers the AUC. Further, a 15 dB
drop in SNR (from−5 dB to−20 dB) requiresn to be increased
by 3 orders of magnitude (101 to 104) to maintain a similar
performance.

Thus, (12) accurately facilitates thep-norm AUC perfor-
mance analysis for any SNR and anyn. Importantly, the
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Pearson and three-parameter Gamma approximations (also
very accurate for all SNRs) may also be adopted for the AUC
analysis. However, we omit similar analyses for brevity.

VI. Conclusion
The CLT approximation forPd , although offering com-

putational ease, is not accurate for small sample sizes. A
previous remedy has been the CGA. This paper investigates
five more classical approximations. As a further application,
the Patnaik’s approximation is utilized to derive a novel AUC
expression of thep-norm detector, thus indicating its suitability
to problems other than energy detection. This paper thus
introduces these important but unnoticed approximations to
the research community. Other than detection performance
analysis, these approaches may be applicable to more general
performance analysis problems involving antenna/co-operative
diversity, stochastic interference networks, relaying schemes,
etc., which remain as interesting open research problems for
further exploration.

Appendix: Derivation of (11)
We haveyi |H0 ∼ CN (0, σ2

w ), and yi |H1 ∼ CN (0, σ2
w (1+

γ)). Thus, |yi |2 normalized with respect toσ2
w under hy-

pothesisH j , |yi |2/σ2
w |H j , is exponentially distributed with

parameterAj , j = 0, 1. Since the samples are independent and
identically distributed, the mean ofTp |H j , denotedMj , can
be expressed as (after interchanging the order of integration
and summation)Mj = 1/n

∑n
i=1

∫ ∞
0

xp/2e−A j xdx = Γ(p/2+

1)/Ap/2
j
. Similarly, the variance ofTp |H j , denoted byσ2

j
, can

be obtained to beσ2
j
= [Γ(p+1)− Γ2(p/2+1

)

]/[nAp

j
]. Then,

use of the transformation (2), matching the corresponding
means and variances, and solving forθ and ρ j yields (11).
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