
Outage analysis of ZFB-MRT/MRC Underlay

Two-Way Relay Systems

Yun CAO and Chintha Tellambura, Fellow, IEEE

Abstract—We analyse the end-to-end (E2E) outage proba-
bilities (OPs) of zero-forcing beamforming and maximal-ratio-
transmission/combining (ZFB-MRT/MRC) for an underlay net-
work, which consists of a single-antenna fixed-gain amplify-and-
forward (AF) two-way relay and two multi-antenna terminals.
Assuming both path loss effects and small-scale fading and
considering both secondary-to-primary (S2P) and primary-to-
secondary (P2S) interferences, the exact and asymptotic E2E OPs
are derived.

Index Terms—amplify-and-forward relaying, cognitive radio,
outage probability, underlay, ZFB-MRT/MRC

I. INTRODUCTION

The cognitive underlay concept yields improved spectral

efficiency and spectrum utilization. However, these improve-

ments may be limited due to secondary transmitters having

to reduce their transmit power to comply with the S2P inter-

ference constraint and secondary receivers are being subject

to P2S interferences. To mitigate the first effect, beamforming

and one-way relays were used and their OPs were analysed

[1]–[3]. However, the performance of beamforming for under-

lay two-way AF relay networks considering both S2P and P2S

interferences has not been analysed.

Therefore, we study an underlay two-way AF relay network,

which consisting of two terminals (SU1 and SU2) with M1 and

M2 antennas, respectively, and a single-antenna half-duplex

relay (R) co-exists with a primary transmitter (A) and receiver

(B) (Fig. 1). A similar system configuration but with one-way

relay was studied in [3]. We consider AF relaying due to its

advantages of low complexity and short processing time [4].

In our study, however, the relay is limited to a single-antenna

device for two reasons: (1) multi-antenna relays may face the

size and cost constraints [5], and (2) the analysis of the multi-

antenna relay case is beyond the scope of this letter.

In this configuration, the SUj →B and A→SUj interference

signals are mitigated via ZFB-MRT and ZFB-MRC, respec-

tively. However, since mutual information exchange between

SU1 and SU2 requires two time slots, the A→R interference

in time slot one will propagate to SU1 and SU2 in time slot

two. To the best of our knowledge, a comprehensive analysis

considering both P2S and S2P interference links (Fig. 1)

has not yet been furnished. Therefore, considering all those

effects, we derive both the exact and asymptotic E2E OPs

and important insights are: (1) The location of the relay
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significantly impacts the outage; (2) As the secondary transmit

power Ps → ∞, the diversity order is zero if the interference

threshold Ith is finite; (3) As Ps → ∞, if Ith
Ps

is constant, a

diversity of order (min(M1,M2)− 1) is achieved.

Notations: (•)∗, (•)T , ‖ • ‖F , and E{•} represent com-

plex conjugation, transpose, Frobenius norm, and expectation,

respectively. I is the identity matrix. Regularized incom-

plete Gamma function P (a, b) =
∫

b

0
ta−1e−tdt

∫

∞

0
ta−1e−tdt

, incomplete

Beta function B(x; α, β) [6, Eq. (8.391)] and Beta func-

tion B(α, β) = B(1, α, β). The probability density function

(PDF) and cumulative distribution function (CDF) of X are

fX(x) and FX(x). If fX(x) = λe−λx, x ≥ 0, we write

X ∼ Exp(λ). X ∼ Gamma(k, θ) (k > 0, θ > 0), if

FX(x) = P (k, x
θ
), x > 0. X ∼ Beta(α, β) (α > 0, β > 0),

if fX(x) = xα−1(1−x)β−1

B(α, β) , 0 ≤ x ≤ 1. CN (µ, σ2) denotes

complex Gaussian with mean µ and variance σ2. Kν(x) is the

modified Bessel function of the second type of order ν. C is

the set of complex numbers.

II. UNDERLAY RELAY SYSTEMS AND SIGNAL FLOW

A. System Configuration and Signal Flow
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Fig. 1. Underlay Two-way Relay Model.

As mentioned before, in our underlay cognitive setup

(Fig. 1), the two secondary multi-antenna transceivers SUj

have Mj ≥ 2 antennas (j = 1, 2), and the half-duplex single-

antenna AF relay is R. No direct link is assumed between

SU1 and SU2. As in [2], [3], perfect time synchronization is

assumed between the primary and secondary networks. Thus,

our results characterize the worst-case interference scenario.

This work considers both path loss and small-scale fading.

Consider two nodes x and y with nx and ny antennas at

a distance dx,y in Fig. 1. The channel from x to y is thus

denoted by a C
ny×nx matrix with independent and identical

distributed CN (0, λx,y) entries, where λx,y accounts for the

path loss and satisfies λx,y ∝ d−ω
x,y , where ω is the path loss

exponent. Therefore, vectors gj ∈ CMj×1, hj ∈ CMj×1 and

fj ∈ CMj×1 (j = 1, 2) are the reciprocal SUj ↔R channel,

the SUj →B and A→SUj interference channels with gji ∼
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CN (0, λj), hji ∼ CN (0, λSUj ,B) and fji ∼ CN (0, λA,SUj
)

(i = 1, 2, ...,Mj), respectively. hr ∼ CN (0, λ3) and fr ∼
CN (0, λ0) are the R→B and A→R interference channels,

respectively. Here, λ0 = λA,R, λj = λSUj ,R (j = 1, 2), and

λ3 = λR,B. mj , dj ∈ CMj×1 are the normalized transmit and

receive beamforming vectors at SUj (j = 1, 2), respectively.

In [1]–[3], channel gains of the whole network, e.g. all

the secondary-to-secondary (S2S), P2S and S2P channels,

are assumed known at secondary nodes. However because

such full CSI requirement necessitates a large overhead, we

assume that every secondary node x∈{SU1, SU2, and R}
obtains channel gains only of channels involving itself, e.g.

x→B, A→x, x→R/SUj (if x=SUj/R, j = 1, 2), via a suitable

channel estimation process [7]. With this assumption, SUj can

calculate its own beamforming vectors mj and dj (j = 1, 2),

and the relay (R) could adapt its relay gain G ∈ C if SUj

communicates mj to R. However, to reduce this overhead,

we assume SUj sends only the average (E{|gT
j mj|2}) to R,

then R calculates G and feeds it back to SUj (j = 1, 2). Such

averages are more static than the actual instant channel gains

themselves, and thus we obtain a fixed-gain relay. However,

our numerical comparisons with a relay using a channel-

assisted gain are also provided.

Without loss of generality, zero-mean complex additive

white Gaussian noise (AWGN) with N0 variance and unit

symbol power are assumed. Ith denotes the interference tem-

perature limit. Ps and Pp denote the transmit power at SUj

(j = 1, 2) and A, respectively.
The two-way relay requires two time slots. In time slot

one, SUj (j = 1, 2) and A transmit symbols sj and x(1),
respectively. Given nr as the noise at R, the signal yr and

interference signal x
(1)
int received at R and B are then given as,

yr =
√

Psg
T
1 m1s1 +

√

Psg
T
2 m2s2 +

√
Ppfrx

(1) + nr, (1)

x
(1)
int =

√

Psh
T
1 m1s1 +

√

Psh
T
2 m2s2. (2)

In the second time slot, R transmits Gyr. The interference

signal x
(2)
int received at primary receiver B is given as

x
(2)
int =hrGyr . (3)

Because the underlay mode requires the interference power at
B below the interference temperature limit (Ith), we choose

G such that E{|x(2)int|2} ≤ Ith. Therefore, the fixed relay gain
G must satisfy,

G2=
Ith

E{|hr|2}[PsE{|gT1 m1|2}+ PsE{|gT2 m2|2}+ PpE{|fr |2}+N0]
.

(4)

Also in time slot two, A transmits x(2). Knowing G and
gj (j = 1, 2), SUj can eliminate the self-interference part
gjGg

T
j mjsj in its received signal perfectly. After that and

receive beamforming, the resulting signal ŷj is represented as

ŷj =
√

PsGdTj gjg
T
j̄
mj̄sj̄

︸ ︷︷ ︸

Signal

+GdTj gjnr + dTj nj
︸ ︷︷ ︸

Noise

+
√
PpGdTj gjfrx

(1) +
√
Ppd

T
j fjx

(2)

︸ ︷︷ ︸

P2S Interference

(5)

where nj ∈ CMj×1 is the AWGN at SUj . And j̄ = 1, if

j = 2, and vise versa.

B. ZFB-MRT/MRC Beamforming at Transmision/Reception

With ZFB-MRT, mj (j = 1, 2) is determined to nullify the

SUj →B interference while maximizing the SUj →R signal

power. Consequently, mj is computed as the projection of the

SUj →R channel gj onto the sub-space Φj = I − h∗

jh
T
j

‖hj‖2
F

,

which is orthogonal to the SUj →B interference channel hj .

Thus, mj =
Φjg

∗

j√
gT
j Φjg

∗

j

, where the denominator is the normal-

izing factor. Similarly, ZFB-MRC is employed to compute the

receive beamforming vector dj (j = 1, 2) as dj =
Ψjg

∗

j√
gT
j Ψjg

∗

j

,

where Ψj = I − f∗

j f
T
j

‖fj‖2
F

.

After receive beamforming, the processed signal has the

residual accumulated interference of x(1), which must be

considered in performance analysis.

III. END-TO-END OUTAGE PROBABILITY

In this section, the exact and asymptotic E2E OPs and the

fixed relay gain G are derived.

A. E2E Outage Probability

After substituting the beamforming vectors mj and dj into
(5), the SINR Sj at SUj (j = 1, 2) may be represented as

Sj =
γj̄RγRj

γRj(γ3 + 1) + C
, (6)

where γjR = γ̄‖gj‖2F ρhj
, ρhj

= 1 − |hT
j g∗

j |
2

‖hj‖2
F ‖gj‖2

F

, γRj =

γ̄‖gj‖2F ρfj
, ρfj

= 1 − |fT
j g∗

j |
2

‖fj‖2
F
‖gj‖2

F

, γ3 = γ0|fr|2, C = γ̄
G2 ,

γ̄ = Ps

N0
, and γ0 =

Pp

N0
.

Theorem 1. The random variables γjR and γRj (j = 1, 2)

are Gamma(Mj − 1, γ̄λj) distributed.

Proof. Define ĥj =
hj√

λSUj ,B
and ĝj =

gj√
λj

(j = 1, 2). Both

ĥj and ĝj are thus CN (0, 1) distributed and ρhj
remains

unchanged when hj and gj are replaced by ĥj and ĝj ,

respectively. It has been proven in [8] that the random variable

X =
|ĥT

j ĝ∗

j |
2

‖ĥj‖2
F
‖ĝj‖2

F

is Beta(1, Mj − 1) distributed and is

independent from both ĝj and ĥj because X is the normalized

correlation between ĝj and a uniformly distributed variable

υ =
ĥj

‖ĥj‖F

. Since the Beta distribution has the property that

if X ∼ Beta(α, β), then 1−X ∼ Beta(β, α), ρhj
= 1−X is

Beta(Mj − 1, 1)-distributed.
The random variable Yj = ‖gj‖2F is a sum of Mj absolute

square CN (0, λj) terms and as such is Gamma(Mj, λj)

distributed. Then by expanding P (s, x) = 1−∑s

i=1
xs−ie−x

(s−i)! ,

given s is a positive integer, the CDF of γjR is derived as,

FγjR (γ)=

∫ γ
γ̄

0
fYj (y)dy+

∫
∞

γ
γ̄

(
γ

γ̄y
)Mj−1 yMj−1e

−
y
λj

∫
∞

0
tMj−1e−tdtλ

Mj

j

dy

=1−

Mj∑

i=1

γMj−ie
−

γ
γ̄λj

(γ̄λj)
Mj−i (Mj − i)!

+
γMj−1e

−
γ

γ̄λj

(γ̄λj)
Mj−1 Γ(Mj)

=P (Mj−1,
γ

γ̄λj
) (7)

The proof for γRj is analogous and omitted here.
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Theorem 2. Given γth > 0 as the minimum SINR required at

SUj to decode the received signal, the E2E OP P out
j (γth) =

Pr[Sj ≤ γth] at SUj (j = 1, 2) is given by (8).

P outj (γth) = 1− 2

Mj̄∑

i=2

Mj̄−i∑

k=0

k∑

l=0

e
−

γth
γ̄λ

j̄ (γth
λj̄

)
M1+M2−i+k−1

2

(Mj − 2)!(Mj̄ − i− k)!(k − l)!

·
( C
λj

)
M1+M2−i−k−1

2 (γ0λ0)l

γ̄(M1+M2−i−l−2)(γthγ0λ0

λj̄
+ γ̄)l+1

KMj−Mj̄+i+k−1

(

2

√

Cγth

γ̄2λ1λ2

)

(8)

Proof. Since fr ∼ CN (0, λ0), γ3 is Exp( 1
γ0λ0

)-distributed.

Without loss of generality, due to the symmetric system
setup, we derive the CDF FS1

(γ) (γ > 0) here. Since in
Theorem 1, we have proved that γjR and γRj (j = 1, 2)
are identically distributed, both are denoted as γj here for
simplicity. Then FS1

(γ) is derived as follows.

FS1
(γ) =

∫
∞

0

∫
∞

0
Fγ2

((

γ3 + 1 +
C

γ1

)

γ

)

fγ3 (γ3)fγ1 (γ1)dγ3dγ1

(9)

By replacing Fγ2

((

γ3 + 1 + C
γ1

)

γ
)

in (9) with the ex-

pansion P (s, x) = 1 − e−x
∑s−1

t=0
xt

t! , given s is a positive

integer, we obtain (10), where the second equality follows the

Binomial expansion. Then applying [6, Eq. (3.351.3)] and [6,

Eq.(3.471.9)], the end-to-end OP (8) is derived.

Note that (8) includes only λi (i = 0, 1, 2, 3). Therefore,

only the location of the relay impacts the OP.

B. Calculation of Fixed Relay Gain G

Since (4) shows that the phase of G does not matter, we
assume G is positive real valued. Then substituting m1 and
m2 in Section II-B into (4), the relay gain is calculated as,

G =

√

Ith

λ3[Psλ1(M1 − 1) + Psλ2(M2 − 1) + Ppλ0 +N0]
, (11)

which results from the following two facts. First, because

ρhj
(j = 1, 2) is Beta distributed with parameter Mj − 1

and 1, and independent from both gj and hj , it is true that

E{‖gj‖2Fρhj
} = E{‖gj‖2F }E{ρhj

} and E{ρhj
} =

Mj−1
Mj

.

Secondly, we have E{|hr|2} = λ3, E{|fr|2} = λ0 and

E{‖gj‖2F} =Mjλj (j = 1, 2).

C. E2E Outage Probability with Ith → ∞
When Ith → ∞, the underlay network is equivalent to

a conventional two-way relay network, where the secondary
nodes can transmit freely and A is an interference source.
Then, to derive the asymptotic E2E OP, we expand Kν(z) as,

Kν(z) =
1

2
(
1

2
z)−ν

ν−1∑

p=0

(ν − p− 1)!

p!

(

−
1

4
z2
)p

+ (−1)ν+1

·
( z

2

)ν
∞∑

p=0

(
z2

4

)p [
ln
(
z
2

)
− 1

2
ψ(p + 1)− 1

2
ψ(ν + p+ 1)

]

p!(ν + k)!
(12)

where ψ(x) is the diagamma function. Then, substitute C =
γ̄
G2 and (11) into (12) and define α1 = λ3

Ith
[λ1(M1 − 1) +

λ2(M2−1)], α2 = λ3

Ith
(Ppλ0+N0), and b = γthN0

λ1λ2
(α1+

α2

Ps
).

There are three cases: (1)(Mj − 1) − (Mj̄ − i − k) < 0,

(2)(Mj−1)−(Mj̄−i−k) = 0, and (3)(Mj−1)−(Mj̄−i−k) >
0. Note that Kν(z) has the property that Kν(z) = K−ν(z).

And with Ith → ∞, KMj−Mj̄+i+k−1

(

2
√

b
Ith

)

= 0 for case

(1) and (2). For case (3), the second term in (12) converges

to zero with Ith → ∞, and only the first term left.
Consequently, substituting C = γ̄

G2 and (11) into (8), it is
found that the non-zero terms are only when Mj̄ − i− k = 0
and p = 0. Thus, the asymptotic E2E OP with Ith → ∞ is

P outj (γth; Ith → ∞) = 1

−

Mj̄∑

i=2

Mj̄−i∑

l=0

e
−

γthN0
Psλ

j̄ (N0γth)
Mj̄−i(γ0λ0)l

λ
Mj̄−i

j̄
P
Mj̄−i

s (
Ppλ0γth
Psλj̄

+ 1)(l+1)(Mj̄ − i− l)!
(13)

As Ith → ∞, the E2E OP will converge to a constant (13)

due to A’s interference. Therefore, the diversity order is zero.

D. E2E Outage Probability with Ps → ∞
In this section, we derive the asymptotic E2E OP in high

transmit power region (Ps → ∞) for two cases: (1) when Ith
is fixed and (2) Ith = aPs, a > 0.

1) Fixed Ith: The asymptotic E2E OP P out
j (γth) in this

case is derived by substituting (11) into (8), and using the fact

that with Ps → ∞, α1+
α2

Ps
→ α1, e

−
N0γth
λ
j̄
Ps → 1, (

Ppλ0γth

λj̄Ps
+

1)(l+1) → 1, and the non-zero term in the sum is when k = 0
and consequently l = 0. Therefore, the E2E OP converges to

P outj (γth;Ps → ∞) = 1− 2

Mj̄∑

i=2

(
α1γthN0

Ithλ1λ2

)
Mj+M

j̄
−i−1

2

(Mj − 2)!(Mj̄ − i)!

· KMj−Mj̄+i−1

(

2

√

α1N0γth

Ithλ1λ2

)

, (14)

which is a constant. Therefore, the diversity order is zero in

this case.

2) Ith = aPs: In this case, the underlay setup is equivalent

to conventional two-way relay. We give the following theorem.

Theorem 3. If Ith
Ps

= a, (min{M1,M2}− 1) diversity can be

achieved in high transmit power region (Ps → ∞), and the
corresponding asymptotic E2E OP is given by,

P outj (γth;
Ith

Ps
= a, Ps → ∞)=φ(M1,M2)

(
b1

Ps

)min(M1,M2)−1

, (15)

where b1 = N0γthα1

aλ1λ2
and φ(M1,M2) is given in (16).

φ(M1,M2) =







−
∑Mj̄

i=1

(−1)i−1(Mj−Mj̄−1)!

(Mj̄−i)!(Mj−2)!(i−1)!
if Mj > Mj̄

−
∑Mj̄

i=1

(−1)i[ln
(

b1
Ps

)

−ψ(1)−ψ(i)]

(Mj̄−i)!(Mj−2)!(i−1)!
if Mj =Mj̄

−
∑Mj̄

i=1 ϕ(i) if Mj < Mj̄

(16)

ϕ(i)=







(−1)
Mj−M

j̄
+i

[ln
(

b1
Ps

)

−ψ(1)−ψ(Mj−Mj̄+i)]

(Mj−1)!(Mj̄−i)!(Mj−Mj̄+i−1)!
if Mj − 1 > Mj̄ − i

2ψ(1)−ln
(

b1
Ps

)

(Mj−1)!(Mj̄−i)!
if Mj − 1 =Mj̄ − i

(Mj̄−Mj−i)!

(Mj−2)!(Mj̄−i)!
if Mj − 1 < Mj̄ − i

Proof. Without loss of generality, the OP at SU1 is used here.

Substituting Ith = aPs into (14) results in (17).
If M1 ≥ M2, M1 − 1 −M2 + i > 0 always holds. Then

after applying the expansion (12) of Kv(·), the lowest order of
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FS1
(γ) =1−

M2∑

i=2

∫
∞

0

∫
∞

0

e
−(γ3+1+ C

γ1
) γ
λ2γ̄ ( γ

γ̄λ2
)M2−iγ

M1−2
1

(M1 − 2)!(M2 − i)!(γ̄λ1)M1−1γ0λ0

(

γ3 + 1 +
C

γ1

)M2−i

e
−

γ3
γ0λ0 e

−

γ1
γ̄λ1 dγ3dγ1 (10)

=1−

M2∑

i=2

M2−i∑

k=0

k∑

l=0

(M2 − i

k

)(k

l

) ( γ
γ̄λ2

)M2−ie
−

γ
γ̄λ2 CM2−i−k

γ0λ0(γ̄λ1)M1−1(M1 − 2)!(M2 − i)!

∫
∞

0
γl3e

−γ3(
γ

γ̄λ2
+ 1

γ0λ0
)
dγ3

∫
∞

0
γ
M1−M2+i+k−2
1 e

−(
γC

γ̄λ2γ1
+

γ1
γ̄λ1

)
dγ1
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1
Ps

is given by (M2− 1) when M1 =M2 and p in the second

term of (12) is zero. If M1 > M2, the lowest order of 1
Ps

is
given by (M2−1) when p in the first term of (12) takes value
of i− 1. If M1 < M2, when M1− 1−M2+ i ≥ 0, the lowest
order of 1

Ps
is given by (M1 − 1) with p in the second term

of (12) being zero. When M1 − 1 −M2 + i < 0, using the
Kv(·) = K−v(·) property, the lowest order of 1

Ps
is given by

(M2 − 1) with p in the first term of (12) being i− 1.

P out1 (γth)=1−2

M2∑

i=2

( b1
Ps

)
M1+M2−i−1

2

(M1 − 2)!(M2 − i)!
KM1−M2+i−1

(

2

√

b1

Ps

)

. (17)

Comparatively, the underlay setup is equivalent to the

conventional two-way relay networks consisting of two multi-

antenna terminals and one single-antenna fixed gain AF relay

[9]. In [9], the two terminals use MRT/MRC and a diversity of

order min(M1,M2) is achieved in high transmit power region.

But in our study, ZFB-MRT/MRC applied at the two terminals

achieves reduced diversity order (Theorem 3), which is due to

orthogonality requirement to enforce ZFB resulting in a small

loss of degrees of freedom.

IV. NUMERICAL RESULTS

This section provides numerical results to validate the

preceding analysis. The parameters N0, Pp and γth, ωx,y are

set to 0 dB, 10 dBm and 3 dB, 3.5 respectively. We also assume

that dSUj ,R = d (j = 1, 2) and dA,R = dR,B = d1.

Fig. 2 shows the E2E OPs as a function of Ps with d1 = d

and d1 = 1.5d. For comparisons, simulation results of CSI-

Assisted gain are provided as well, where R adapts gain as

G =
√

Ith
|hr|2[Ps|gT

1
m1|2+Ps|gT

2
m2|2+Pp|fr|2+N0]

. It is shown

that the E2E OPs of CSI-Assisted gain overlap those of fixed

gain in lower Ps region, e.g. Ps ≤ 5 dBm. With increasing

Ps, fixed gain outperforms CSI-Assisted gain. This is because

with CSI-Assisted gain, G is chosen such that the interference

power at B below Ith in each transmission, while fixed gain

considers the average interference power. It is also shown that

when R-A/B distance is larger (1.5d), lower OP is achieved.
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Fig. 3. P oute2e v.s. Ith with d1 = 1.5d and Ps = 10 dBm

Fig. 3 plots a E2E OPs as the function of Ith for M1 =
M2 = 8 and M1 = 8, M2 = 16, respectively. With increasing

Ith, the OPs at SU2s in both setups converge to the same OP

floor since both SU1s are equipped with 8 antennas.

V. CONCLUSION

The exact and asymptotic OPs of an underlay multi-antenna

network with a two-way relay has been analysed. Both path

loss effect and Rayleigh fading were considered, and ZFB-

MRT/MRC were used to mitigate interference effects. The

location of the relay is shown to significantly impact OP. As

Ps → ∞, the diversity order is zero if Ith is finite, but if Ith
Ps

is constant, (min(M1,M2)− 1) diversity is achieved.
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