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Abstract—Missed-detection probability expressions for energy
detectors often involve infinite series and do not provide quick
insights into the effects of operating conditions. To overcome these
limitations, we develop novel asymptotic analyses by proposing
an approximate probability density function (PDF) of a random
variable β, which, in general, can characterize fading channels in
diverse operating conditions. The coefficients of the proposed ap-
proximate PDF of β are obtained by matching the coefficients
of the approximate PDF’s series expansion (or coefficients of the
approximate PDF’s moment generating function (MGF)) with
those of the exact PDF (or MGF) of β. By using the proposed
approximation, a unified closed-form asymptotic missed-detection
probability is derived. Its usefulness is then demonstrated for
fading channels without and with antenna diversity, for cooper-
ative detection, and in co-channel interference. For each case, the
sensing gain, which reveals the effect of the operating conditions on
the detection performance, is determined explicitly. Furthermore,
the asymptotic complementary area under the receiver operat-
ing characteristic curve, an alternative performance metric, is
derived, and found to reveal the sensing gain. Numerical results
verify the accuracy of our derived asymptotic expressions over a
wider signal-to-noise ratio (SNR) range compared to the existing
asymptotic solution, which is accurate only for high SNRs.

Index Terms—Diversity combining, energy detector, fading,
false alarm probability, missed-detection probability, moment gen-
erating function.

I. INTRODUCTION

THE exponential growth of mobile data traffic is demanding
more and more radio frequency (RF) spectrum, which

although being scarce, is underutilized across space and time.
Such situation necessitates the coexistence of multiple wireless
networks. To support such coexistence, it is critical to determine
whether or not users (for example, licensed users operating in
the 54–806 MHz TV band) are operating in a given portion of
the RF spectrum. For this purpose, the energy detector (ED) has
attracted massive wireless research interest due to its simple
structure and low hardware complexity [1]. The ED perfor-
mance is fundamentally measured by the false alarm probability,
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Pf , and the detection probability, Pd, or, equivalently, the
missed-detection probability Pmd = 1 − Pd. However, in fad-
ing channels, the average Pmd (Pd) denoted by Pmd (Pd) is the
critical measure. The process of determining Pmd (Pd) involves
two steps. First, Pmd(γ ) (Pd(γ )) for a fixed channel realization
is given in terms of the Marcum-Q function (see (2) in
Section II), which depends on the random (instantaneous)
signal-to-noise ratio (SNR) γ . By definition, γ can be expressed
as γ = γ β, where γ is the average SNR (referred to as “SNR”
henceforth),1 and β is a non-negative random variable, which in
turn depends on the operating conditions (including the fading
channel, antenna diversity, co-operative diversity, interference,
and others). Thus, β is characterized by a probability density
function (PDF) f (β). In the second step, Pmd(γ ) (Pd(γ )) is in-
tegrated over f (β) to obtain the average detection performance
(see details in Section II).

This process has been extensively used for accurately char-
acterizing the ED performance in a wide variety of operating
conditions [2]–[7]. Although these results are exact (without
any approximations), they have some limitations. For example,

(i) The multiple-antenna based results in [2] and [3] are
restricted to the Rayleigh fading model only, due mainly
to the intractability of Marcum-Q integrals, in general.

(ii) The results for Nakagami-m and Rician fading de-
rived by utilizing contour-integral representation of
the Marcum-Q function consist of complicated higher-
order derivatives of composite functions [5].

(iii) The unified expressions presented in [6] and [7] involve
infinite series, which require truncation (to finite terms).
However, tight bounds on the truncation error are often
analytically intractable, and hence, trial-and-error meth-
ods are needed to determine the truncation point for the
desired level of precision.

(iv) None of the derived expressions provide quick insights
into the impact of the operating conditions, but require
numerical analysis to reveal such insights.

These limitations, however, can be mitigated by using
asymptotic techniques. Before discussing their advantages, we
will briefly elaborate on the meaning of the term “asymp-
totic.” For example, 1/x is an asymptotic of 1/(x + 1) be-
cause lim

x→∞
x

x+1 = 1. More specifically, if x → 0+ (x tends to 0

from above), then the notation h(x) = g(x) + O(xN+1), where
g(x) = ∑N

n=0 anxn, implies that the difference |h(x) − g(x)|
1For brevity, in the remainder of this paper, the term “SNR” without

“instantaneous” means the “average SNR.”
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is smaller than C|xN+1| for a constant C as x → 0+. Then,
g(x) is called an asymptotic (approximation) of h(x) with an
error term O(xN+1) as x → 0+. Similarly, for x → ∞, a series
of x−n forms an asymptotic expansion. Thus, for an ED, if
P

exact
md is the exact missed-detection probability, and P

asy
md is an

approximation at high SNR (γ � 1), assume

P
exact
md = P

asy
md + O

(
1

γ M

)
,

where M is a non-negative integer. Then, P
asy
md is called an

asymptotic (approximation) of P
exact
md with error term O(1/γ M).

Moreover, since the error term decays as 1/γ M , for sufficiently
large γ , the accuracy of P

asy
md is good enough for all practical

engineering applications. Hence, to derive such P
asy
md , we first

note that as the SNR becomes large (γ � 1), detection errors
occur only if the channel fades deeply. Since a deep fading is
equivalent to β → 0+, a suitable polynomial representation of
f (β) near β = 0 can be used to derive the average asymptotic
missed-detection probability P

asy
md .

Despite having such advantages, the existing asymptotic
analysis of ED is limited only to [8]. This work utilizes the
simple, approximate analysis presented in the seminal work by
Wang and Giannakis [9] to derive the asymptotic Pmd, which is
accurate for the high SNR regime (γ � 1). The results of [8]
are important for determining the “sensing gain,” which is the
magnitude of the slope of the log-log plot of Pmd vs. γ at high
SNR. More importantly, the sensing gain provides quick in-
sights into how fading impacts the ED, and thus is a useful per-
formance indicator.

However, the asymptotic analysis [8] is inherently limited to
the high SNR regime (say, γ ≥ 20 dB). In practice, the operat-
ing SNR can be well below 20 dB, in, for example, the IEEE
802.16 local and metropolitan area networks [10]. Thus, the
analysis in [8] is not sufficient for characterizing the ED perfor-
mance over a wider SNR range (optimistically, 0≤γ dB<∞).
Moreover, a unified expression for Pmd, which would be appli-
cable to a multitude of wireless communication scenarios thus
providing an effective platform for designing practical detection
systems, is needed. However, such a platform is lacking. To ad-
dress these requirements, we propose a new simple approxima-
tion for the PDF of β as β → 0+ and derive the corresponding
asymptotic Pmd. The attractive features of the results derived by
using our proposed analysis are the following:

1) Unified expressions for multipath fading channels with-
out and with antenna diversity, with multiple cooperative
relays, with interferers, and in other operating conditions;

2) Explicit sensing gain expressions;
3) Closed-form expressions without infinite-series sums or

higher order derivatives; and
4) High accuracy over wider SNR ranges.

These features are achieved by our proposed approximation
f app(β) (6), whose parameters can be obtained from the oper-
ating conditions by matching f app(β) to the exact f (β) or by
matching the moment generating function (MGF) of β obtained
by using f app(β) to that obtained by using the exact f (β)

(see details in Section III). Besides these benefits, performance

metrics other than Pmd can also be analyzed. For example,
we derive a unified asymptotic expression for the average
complementary area under the receiver operating characteristic
(ROC) curve (CAUC), which serves as a single figure of merit
for characterizing the ED performance [11].

The rest of this paper is organized as follows. The back-
ground of energy detection is briefly discussed in Section II.
The new approximation for the exact PDF of β is proposed in
Section III. The unified asymptotic Pmd is derived in Section IV.
Analyses for fading channels without diversity, with antenna
diversity, with cooperative diversity, and in interference are pre-
sented in Section V, Section VI, Section VII, and Section VIII,
respectively. The asymptotic expression for the average CAUC
is derived in Section IX. Concluding remarks are made in
Section X.

Notations: P(·), E [·], Mβ(s) = E [e−sβ ], and j denote the
probability of an event, mathematical expectation, moment gen-
erating function of β, and imaginary unit (

√−1), respectively.

II. PROBLEM STATEMENT

The ED filters the observed signal over a bandwidth W, pre-
filtering the noise. This process is followed by squaring and
integration over a period T to yield a measure of its energy
Y , which is then compared against a detection threshold λ to
determine the presence or absence of the transmit signal under
test (SUT). We denote the presence and absence of the SUT
by using hypotheses H1 and H0, respectively. Based on the
sampling theorem approximation, given 2u samples (u = TW
is called the time-bandwidth product [2]), the false alarm prob-
ability Pf = P(Y > λ|H0) and the missed-detection probability
Pmd = 1 − P(Y > λ|H1) have well-known forms as [2]

Pf = �(u, λ/2)

�(u)
, (1)

Pmd(γ ) = 1 − Qu(
√

2γ ,
√

λ), (2)

where, recalling that the instantaneous SNR is expressed as
γ = γ β, with β being the random variable depending upon
the operating conditions (γ being the average SNR), Qu(·, ·) is
the u-th order generalized Marcum-Q function [12], �(c, ν) =∫ ∞
ν

xc−1e−xdx is the upper-incomplete Gamma function, and
�(c) = �(c, 0) is the Gamma function [13]. Clearly, the false
alarm probability (1) is independent of β while the missed-
detection probability (2) depends upon β (as γ = γ β) and
needs to be averaged over f (β) for evaluating the overall
(average) performance, as shown next.

A. Performance of Energy Detector Over Fading Channels

The average probability of missed-detection, denoted as Pmd,
is the expectation of (2) over f (β) which can be expressed as

Pmd = Eβ

[
Pmd(γ )

] = 1 −
∫ ∞

0
Qu(

√
2γ β,

√
λ)f (β)dβ, (3)

where Eβ [·] denotes the expectation with respect to β. Thus, the
main challenge in (3) is averaging the Marcum-Q function over
f (β). Since closed-form solutions for integrals involving the
Marcum-Q function are very limited [12], it is important to find
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an approximate form of f (β) that facilitates the evaluation of
(3) without leading to tedious analytical expressions involving
complicated special functions and/or infinite series.

B. Existing Approximation for f (β)

To this end, the work [8] utilizes the approximate f (β)

proposed by Wang and Giannakis [9], to derive the asymptotic
Pmd. The main idea of [9] is that if the exact PDF f (β) can be
expanded as a Taylor’s series as β → 0+ (Maclaurin’s series)
in the form

f (β) =
∞∑

i=0

aiβ
t+i, (4)

where ai for i = 0, 1, 2, . . . are coefficients in the expansion,
and t ≥ 0 represents the order of smoothness of f (β) at β = 0,
then f (β) can be approximated by a monomial [9] as

f wg(β) = aβ t + O(β t+1), (5)

where the parameters a and t in (5), which depend on the
operating conditions, are obtained by matching the first non-
zero term in (4) with (5). Here, we use the superscript “wg” to
indicate “Wang and Giannakis,” the authors of [9]. Note that
the expansion (4) holds for many practical fading models like
Rayleigh, Nakagami-q, Nakagami-n and Nakagami-m [9].

By utilizing f wg(β), the authors in [8] derive an asymptotic
Pmd and show that for large SNRs (γ � 1), the sensing gain is
equal to t + 1. However, their Pmd is accurate only in the high
SNR regime (say, γ ≥ 20 dB). Intuitively, this result suggests
that an approximation for f (β) other than f wg(β) is needed that
can yield a closed-form Pmd which is accurate over a wider
range of SNRs (say, 0 ≤ γ dB < ∞). Furthermore, the derived
Pmd at high SNR should also reveal the sensing gain. With these
goals in mind, we propose a new approximation for the exact
f (β) in the following section.

III. NEW APPROXIMATION FOR f (β)

The existing approximation (5) utilizes a single term in (4)
and is accurate only for high SNRs. One way to achieve a
better accuracy over wider SNR ranges may be to utilize more
number of terms in (4). However, simply considering more
number of terms in (4) may still lead to a diverging behavior
of the approximate f (β) at β → ∞ (similar to f wg(β) curve
shown in Fig. 1) which may further lead to the average (over
0 ≤ β < ∞) Pmd to exceed 1 for small SNRs (as explained in
Section III-B). Thus, in addition to improving the accuracy, it
is also necessary to ensure that the approximate f (β) does not
diverge as β → ∞. Additionally, the approximate f (β) should
facilitate a closed-form evaluation of (3).

A. Proposed Approximation

To this end, since an exponential function of the form e−β

would converge as β → ∞, we consider a new representation
of f (β) by combining (5) with a dual exponential sum to
propose an approximation f app(β) of the form

f app(β) = aβ t(e−θ1β + e−θ2β), as β → 0+, (6)

Fig. 1. f app(β), f wg(β), and exact f (β) for 4-branch SC in i.i.d. Rayleigh
fading.

where a > 0, t is a non-negative integer, θ1 ≥ 0, and θ2 ≥ 0 are
the parameters that can be chosen to match the operating con-
ditions (fading, antenna diversity, cooperative diversity, etc.).
Interestingly, the Maclaurin’s series expansion of (6) satisfies
(4) (details in Section III-B). Note that f wg(β) is a special case
of our f app(β) when θ1 = θ2 = 0. Also, f app(β) is equivalent
to [14, eq. (3)] for the case θ1 = θ2 = θ . Thus, f app(β) is more
general than either f wg(β) or [14, eq. (3)]. Moreover, f app(β),
just like f wg(β), is not a proper PDF; that is, the area under
f app(β) is not necessarily 1. Next, the parameters of f app(β) are
derived from two methods based on the availability of the exact
PDF or MGF of β.

B. Parameter Determination Using Exact PDF of β

In some cases of interest, the exact f (β) is known analyt-
ically. Then, if its Maclaurin’s series expansion follows (4),
the parameters of f app(β) can be readily obtained as stated in
Proposition 1.

Proposition 1: Given a0, a1, and a2 from (4), the parameters
of f app(β) can be expressed as

a = a0

2
(7)

(θ1, θ2) =
⎛
⎝b1 +

√
2b2 − b2

1

2
,

b1 −
√

2b2 − b2
1

2

⎞
⎠ , (8)

with b1 = −2a1/a0 and b2 = 4a2/a0.
Proof: By Maclaurin’s series expanding (6) and grouping

the resulting terms in ascending powers of β, we get

f app(β)=2aβ t−(θ1+θ2)aβ t+1+
(
θ2

1 +θ2
2

)
2

aβ t+2+O(β t+3).

(9)

Then, by matching the coefficients of the first three terms in (4)
with the corresponding coefficients in (9), the parameter a in
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(6) is immediately given by (7) while the other two parameters,
θ1 and θ2, satisfy the simultaneous equations

θ1 + θ2 = −2a1

a0

	= b1 and θ2
1 + θ2

2 = 4a2

a0

	= b2, (10)

which can be easily solved to yield (8). �
To quickly gain insights into the benefits of f app(β), we

compare it against f wg(β) for selection combining (SC)
in independent and identically distributed (i.i.d.) Rayleigh
fading with L = 4 antennas (Fig. 1). The exact f (β) is
given by (25), and the parameters of f app(β) are derived in
Section VI-B. Fig. 1 reveals that f wg(β) widely diverges from
the exact f (β) as β gets large. Thus, f wg(β) works only for
β → 0+, which implies the deep fading condition. Thus f wg(β)

requires the operating SNR to be large (γ � 1) in order to yield
low detection error probabilities. Furthermore, this result inher-
ently suggests that when f wg(β) is used in (3) for averaging
the missed-detection probability, the resulting probability can
even exceed 1 for small SNRs (γ → 0+). This finding indicates
the breakdown of the asymptotic approach of [8] (demon-
strated later in Sections IV–IX). In contrast, Fig. 1 shows
that our proposed f app(β) follows the exact f (β) more closely
(without diverging) over 0 ≤ β < ∞. Thus, we can expect
the resulting P

asy
md expression to not break down even as

γ → 0+. These advantages of f app(β) have two causes:

(i) f app(β) matches the first three terms of the series ex-
panded exact f (β) (4) while f wg(β) utilizes only the first
term of (4). Thus, f app(β) uses more information from
the exact f (β), and this feature leads to highly accurate
asymptotic results (see Section IV-A).

(ii) f app(β) does not diverge as β → ∞ because of the factor
(e−θ1β + e−θ2β), a sum of two exponentials. This charac-
teristic extends the valid SNR range of the resulting P

asy
md ,

thus maintaining reasonable accuracy even as γ → 0+.

These advantages are numerically verified with some practical
examples presented in Sections V–IX. Next, an alternative
method to obtain the parameters of f app(β) based on the MGF
of β is presented.

C. Parameter Determination Using the Exact MGF of β

Proposition 1 is applicable only when the exact analytical
f (β) is known. However, f (β) may be unknown or may not al-
ways be expressible as (4). On the other hand, if the exact MGF
of β is readily obtainable (for example, when β is given by a sum
of independent random variables, its MGF can readily be ex-
pressed as the product of MGFs of those random variables, and
thus, the MGF may be easier to obtain than the corresponding
PDF), then the parameters of f app(β) can be derived as follows.

Proposition 2: If the exact MGF of β, Mβ(s), s > 0 is
expandable in the series-form

Mβ(s) = X0

sα
+ X1

sα+1
+ X2

sα+2
+ O

(
1

sα+3

)
, (11)

then as s → ∞, the parameters t and a of f app(β) are given by

t = α − 1, a = X0

2�(α)
, (12)

with the parameters θ1 and θ2 satisfying

θ1 + θ2 = − 2X1

X0α

	= b1,

θ2
1 + θ2

2 = 4X2

X0α(α + 1)

	= b2.

(13)

Then, substitution of b1 and b2 from (13) into (8) immediately
yields θ1 and θ2.

Proof: From the initial value theorem for (one-sided)
Laplace transforms, the behavior of f (β) at β → 0+ depends
on its MGF at s → ∞ [9]. Thus, the idea is to match the exact
MGF of β with the MGF obtained by using f app(β) as s → ∞,
provided the MGFs exist. The MGF corresponding to f app(β),
denoted by Mapp

β (s), can be obtained as

Mapp
β (s) = a

∫ ∞

0
e−sββ t(e−θ1β + e−θ2β)dβ

= a�(t + 1)

[
1

(s + θ1)t+1
+ 1

(s + θ2)t+1

]
(14)

where the definition of Gamma function �(·) is used. Expand-
ing (14) in a series-form as s → ∞, and re-arranging the terms,
we get

Mapp
β (s) = 2a�(t + 1)

st+1
− a(t + 1)�(t + 1)(θ1 + θ2)

st+2

+ a(t + 1)(t + 2)�(t + 1)
(
θ2

1 + θ2
2

)
2st+3

+ O

(
1

st+4

)
. (15)

Thus, matching (11) and (15) yields the parameters (12) and the
two simultaneous equations in (13), which have the same form
as (10) with the solution given by (8). �

Having shown how the parameters of f app(β) are retrieved,
we next derive the corresponding asymptotic missed-detection
probability, P

asy
md .

IV. AVERAGE MISSED-DETECTION PROBABILITY

To derive P
asy
md , we need to substitute f app(β) into (3) and

evaluate the resulting integral. However, direct evaluation of this
integral would yield an infinite series expression [5, eq. (5)]. To
eliminate this problem, we use the MGFMapp

β (s) (14) along with
the contour integral representation of the Marcum-Q function
[15] to derive P

asy
md . Although such an approach has been utilized

by [5], the results are given in terms of higher-order derivatives.
In contrast, we derive a simpler closed-form P

asy
md expression

which does not contain infinite series sums and/or higher-order
derivatives. Furthermore, the derived P

asy
md unifies the analy-

sis for fading channel models without diversity (Section V),
with antenna diversity (Section VI), with cooperative diversity
(Section VII), and in interference (Section VIII). Moreover, the
excellent numerical match of our derived P

asy
md with the exact

results is reported in the corresponding sections. Next, we give
one of our principal results in Proposition 3 below.

Proposition 3: Based on the proposed approximation
f app(β), the average missed-detection probability P

asy
md can be
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expressed as

P
asy
md

=
{

1−a�(t+1)e−λ/2 ∑2
i=1

1
(θi+γ )t+1 [�(i)+�(i)] for u> t+1

1−a�(t+1)e−λ/2 ∑2
i=1

1
(θi+γ )t+1 �(i) for u≤ t+1,

(16)

with �(i) and �(i) given by

�(i) = eληi/2

t!
t∑

k=0

[(
t

k

)
(−1)k ∏k

j=1(u − t + j − 2)

ηu−t−1+k
i

×
t−k∑
ν=0

(λ/2)t−k−ν

(1 − ηi)ν+1

(t − k)!
(t − k − ν)!

]
,

�(i) = (−1)−(t+1)

(u−t−2)!
u−t−2∑

k=0

[(
u − t − 2

k

)∏k
j=1(t + j)

ηt+k+1
i

×
u−t−k−2∑

ν=0

(λ/2)u−t−k−2−ν(u−t−k−2)!
(u − t − k − 2 − ν)!

]
,

(17)

with ηi = γ /(θi + γ ), i = 1, 2.
Proof: The proof is given in Appendix A. �

At a sufficiently high SNR (γ � 1), P
asy
md (16) reduces to the

form P
asy
md ≈ 1 − g(u, t, λ)γ −(t+1), where g(u, t, λ) is a function

independent of γ . Clearly, the sensing gain, which is equal
to the magnitude of the slope of the log-log plot of P

asy
md vs.

γ at high SNR, is given by magnitude of the exponent of γ

occurring in P
asy
md , which is equal to (t + 1). This observation

is consistent with the sensing gain given by [8]. Hence, our
derived asymptotic explicitly reveals the sensing gain.

A. Accuracy of (16)

The accuracy of the derived P
asy
md (16) and P

wg
md (asymptotic

Pmd of [8]) is depicted in terms of the log-log plots of the abso-
lute error vs. γ in Fig. 2 for a 5-branch SC in i.i.d. Rayleigh fad-
ing channels. The exact PDF f (β) (25) and the corresponding
parameters of f app(β) are given in Section VI-B. The absolute
errors for P

asy
md and P

wg
md are defined as the difference |Pasy

md −
P

exact
md | and |Pwg

md − P
exact
md |, respectively, where P

exact
md is com-

puted from [2, eq. (30)]. At high SNR (say, γ ≥ 14 dB), the rate
of decrease of the absolute error of P

asy
md (slope = −6) is greater

by an order of magnitude than that of P
wg
md (slope = −5). As

well, the absolute error of P
asy
md is 10−5 or less for γ ≥ 12.5 dB

while P
wg
md attains the same accuracy only for γ ≥ 19 dB.

Therefore, the SNR gain of P
asy
md in attaining an absolute error of

10−5 is at least 6.5 dB relative to P
wg
md. Furthermore, for SNRs

as low as 0 dB, |Pasy
md − P

exact
md | is still very small (≤ 0.1), while

|Pwg
md − P

exact
md | is far more than 1 (the breakdown mentioned in

Section III-B). Thus, P
asy
md is more accurate than P

wg
md throughout

the practical SNR range. This result can be attributed to our
finding that f app(β) can indeed approximate the exact PDF
more accurately for any β > 0, unlike f wg(β), which is accurate
for mainly β → 0+ (as discussed previously in the context of
Fig. 1 in Section III-B).

Fig. 2. Absolute error vs. SNR for a 5-branch SC in i.i.d. Rayleigh fading:
Proposition 3 and [8].

Now that the accuracy of the derived P
asy
md has been numer-

ically verified, next we will assess the ED performance for
various cases without and with antenna diversity reception,
with cooperative detection, and in interference. We will first
apply Proposition 1 or Proposition 2 (whichever most readily
applies) to determine the parameters of f app(β) and then use
Proposition 3 to compute P

asy
md . To evaluate the performance, we

consider log-log plots of Pmd vs. γ . The magnitude of the slopes
of these plots at large SNR (say, γ ≥ 20 dB) yields the sensing
gain. As well, since low false alarm probability is needed (for
example, Pf ≤ 0.1 for cognitive radio networks [16]), we fix
Pf = 0.01. The detection threshold λ is then determined by
solving (1) for the given Pf and used for evaluating Pmd.

V. FADING CHANNELS WITHOUT DIVERSITY

A. Nakagami-m Fading

One of the most versatile fading channel models, the
Nakagami-m distribution, fits empirical data and provides a
better match than other models to some experimental data. For
example, it accurately models land-mobile and indoor-mobile
propagation environments [17]. For this model, the exact f (β)

is given by

f (β) = mm

�(m)
βm−1e−mβ, β > 0, (18)

where parameter m ≥ 1/2 represents the fading severity in-
dex with the special case m = 1 yielding the Rayleigh fading
channel. By comparing (18) with (6), it is clear that f app(β)

exactly represents (18) when a = mm/[2�(m)], t = m − 1 and
θ1 = θ2 = m. Nevertheless, we will extract these parameters by
using our Proposition 1 for verification.

Thus, performing the Maclaurin’s series expansion of (18),
we get

f (β)= mm

�(m)
βm−1 − mm+1

�(m)
βm + mm+2

2�(m)
βm+1+O(βm+2). (19)
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Fig. 3. Pmd vs. SNR in Nakagami-m fading channel for u = 3: exact, existing
[8] and Proposition 3.

Then, comparing (19) with (9) and using Proposition 1, we
get t = m − 1, a = mm/[2�(m)], b1 = 2m and b2 = 2m2. The
substitution of b1 and b2 into (8) then gives θ1 = θ2 = m, as
expected. This result validates our Proposition 1.

Now that the parameters of f app(β) have been extracted, the
use of Proposition 3 gives the desired expression for P

asy
md . In

Fig. 3, our derived P
asy
md (16) is compared against the exact Pmd

computed from [5, eq. (5)] and against the asymptotic Pmd of
[8]. As discussed in Section III-B, the asymptotic Pmd of [8]
breaks down below a certain SNR. For instance, at γ ≤ 8 dB for
m = 1, the asymptotic Pmd of [8] exceeds 1. In contrast, our de-
rived P

asy
md does not suffer from such a drawback. In fact, P

asy
md is

virtually identical to the exact values computed from [5, eq. (5)]
over the entire SNR range (0 ≤ γ dB ≤ 20), whereas the
asymptotic Pmd of [8] approaches the exact values only for γ ≥
19 dB. Also, the exact Pmd computed from [5, eq. (5)] contains
an infinite series, which requires series-truncation. Moreover,
the number of terms in such series has to be experimentally
determined for a given precision requirement for each set
of parameters and must be updated whenever the parameters
change. In contrast, our derived solution (16) does not require
such computations. Finally, the magnitude of the slopes of
the curves corresponding to m = 1 and m = 2 at high SNR
(say, γ ≥ 19 dB) are observed to be 1 and 2, respectively, thus
verifying that the sensing gain is equal to m(= t + 1).

B. Nakagami-q (Hoyt) Fading

This fading is observed on satellite links suffering from
strong ionospheric scintillation and spans from one-sided
Gaussian (q = 0) to Rayleigh fading (q = 1) [17]. For the
Nakagami-q fading channel, the exact f (β) is of the form

f (β) = 1 + q2

2q
e
− (1+q)2

4q2 β
I0

(
1 − q4

4q2
β

)
, (20)

where I0(·) is the zero-th order modified Bessel function of the
first kind. By Maclaurin’s series expanding (20), grouping the

Fig. 4. Pmd vs. SNR in Nakagami-q channel with q = 0.7 for different u.

terms in ascending powers of β, and comparing the result with
(4), we find that t = 0 and

a0 = 1 + q2

2q
, a1 = − (1 + q2)

2q

(
q4 + 2q2 + 1

4q2

)
,

a2 = (1 + q2)

2q

(
3q8 + 8q6 + 10q4 + 8q2 + 3

64q4

)
.

(21)

Then, Proposition 1 readily yields a, θ1, and θ2, and
Proposition 3 furnishes P

asy
md .

The comparative results for Nakagami-q fading are depicted
in Fig. 4. Clearly, our derived P

asy
md is virtually exact (it has

7-digit precision) over the entire SNR range (0 ≤ γ dB ≤ 20)
while the asymptotic Pmd of [8] is accurate for γ ≥ 19 dB only.
Also, the magnitude of the slopes of the graphs at high SNR
(γ ≥ 19 dB) are observed to be 1 (which equals the sensing
gain t + 1).

VI. FADING CHANNELS WITH ANTENNA DIVERSITY

Until now, only the single-antenna reception has been
treated. Next, L(≥ 1) antennas with mutually independent fad-
ing are considered. The parameters of f app(β) for maximal ratio
combining (MRC), equal gain combining (EGC), and SC are
derived. The MRC and SC are coherent combining schemes
which require channel-state information (CSI) at the ED. Al-
though the CSI availability requirement contradicts the premise
of ED (requiring no a priori information), these combining
schemes are important for establishing the ED performance
limits, a benchmark relative to which the performance of the
alternative diversity combiners can be measured. Thus, the
ED performance with antenna diversity combining assuming
perfect CSI availability has been investigated extensively in the
literature [2], [3], [5]–[7]. Moreover, as highlighted by [5] (and
the references therein), for cognitive radio networks, the CSI
may be available at the cognitive radios over control/broadcast
channels (for example, by using low-rate pilot signal exchanges
as shown in [18]). Nevertheless, since the purpose of this
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section is to demonstrate the applicability of our proposed
analysis to antenna diversity combining, we proceed with the
CSI availability notion for MRC and SC. On the other hand,
EGC operates without any CSI.

A. MRC With L Independent Antennas

The optimal combining scheme in the absence of interference
is the MRC which thus establishes an upper-bound performance
for antenna diversity combining [17]. The MRC receiver com-
bines all the diversity branches after weighting each branch
with the complex conjugate of the corresponding fading chan-
nel coefficient to yield ymrc(t) = ∑L

l=1 h∗
l yl(t), where yl(t) is

the received signal at the l-th branch, and h∗
l is the complex con-

jugate of the l-th fading channel coefficient. The overall channel
gain can then be expressed as β = ∑L

l=1 βl, where β1, β2, . . . ,

βL are statistically independent fading channel gains. Regard-
less of the fading channel model under consideration, if the
MGF of each βl as s → ∞ can be expressed in the form2

Mβl(s) = cl

sμl
+ dl

sμl+1
+ el

sμl+2
+ O

(
1

sμl+3

)
, (22)

then, the MGF of β as s → ∞ can be expressed as

Mβ(s) =
L∏

l=1

[
cl

sμl
+ dl

sμl+1
+ el

sμl+2
+ O

(
1

sμl+3

)]
,

which after some algebraic manipulations, can be expressed as
(23), shown at the bottom of the page. Then, comparing (23)
with (11) yields

α =
L∑

l=1

μl; X0 =
L∏

l=1

cl; X1 =
L∑

j=1

dj

L∏
l=1,l 
=j

cl,

X2 =
L∑

j=1

ej

L∏
l=1,l 
=j

cl +
L−1∑
j=1

dj

⎛
⎝ L∑

k=j+1

dk

L∏
l=1,l 
=k,l 
=j

cl

⎞
⎠ . (24)

Thus, Proposition 2 readily gives the desired parameters t, a,
θ1, and θ2, and Proposition 3 yields the corresponding P

asy
md .

To demonstrate the usefulness of (23), let us consider an
example when the channel gains of the branches are indepen-
dent and non-identically distributed (i.n.i.d.) Rayleigh random
variables such that fβl(x) = 1/l · e−x/l. Then, the MGF for each
βl is Mβl(s) = 1/(1 + ls). Performing the series expansion of
Mβl(s) as s → ∞ and comparing the result with (22), we get
μl = 1, cl = 1/l, dl = 1/l2, and el = 1/l3. Substituting these

2For the cases of practical interest (for example, multi-branch reception in
Rayleigh fading, Nakagami-m fading), the MGF of each branch can be written
in the form (22). This is demonstrated with an example, shortly.

Fig. 5. Pmd vs. SNR for MRC in i.n.i.d. Rayleigh fading channels for different
{u, L}.

coefficients in (24) immediately yields α, X0, X1, and X2. Then,
the use of Proposition 2 followed by Proposition 3 gives P

asy
md .

The high accuracy of our derived P
asy
md (16) over 0 ≤ γ dB≤20

is visible in Fig. 5 while the asymptotic Pmd of [8] is accurate
only for say, γ > 14 dB. Also, the magnitude of the slopes
of the graphs observed at γ ≥ 14 dB are 2 and 5, respec-
tively, for L = 2 and L = 5. These results are equal to the
corresponding sensing gains (thus verifying t + 1 = L).

B. SC in Rayleigh Fading

The SC is a reduced complexity scheme where only the
branch with the largest SNR is selected and processed. For an
L-branch SC in i.i.d. Rayleigh fading, the PDF of β is given by

f (β) = Le−β(1 − e−β)L−1, β ≥ 0. (25)

The Maclaurin’s series expansion of (25) followed by some al-
gebraic manipulations and comparison of the resulting expres-
sion with (4) yields t = L − 1, ai = D(L − 1 + i)/(L − 1 + i)!
for i = 0, 1, 2, and D(·) is defined as:

D(n) = L
L−1∑
k=0

(
L − 1

k

)
(−1)k+n(k + 1)n. (26)

Then, the use of Proposition 1 provides a, θ1, and θ2, and
Proposition 3 subsequently yields P

asy
md . The graphs in Fig. 6 yet

again depict the remarkable accuracy of our P
asy
md (16) compared

against the asymptotic Pmd of [8] and the exact Pmd obtained
from [2, eq. (30)]. The observed sensing gain from all the

Mβ(s)=
∏L

l=1 cl

s
∑

l μl
+

∑L
j=1dj

∏L
l=1,l 
=j cl

s
∑L

l=1 μl+1
+

∑L
j=1ej

∏L
l=1,l 
=j cl + ∑L−1

j=1 dj

(∑L
k=j+1dk

∏L
l=1,l 
=k,l 
=j cl

)
s
∑L

l=1 μl+2
+ O

(
1

s
∑L

l=1 μl+3

)
(23)
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Fig. 6. Pmd vs. SNR for SC in i.i.d. Rayleigh fading.

graphs at high SNR (γ ≥ 15 dB) is clearly equal to L (con-
sistent with t + 1 = L).

C. EGC and SC in Nakagami-m Fading

EGC, unlike MRC, does not require estimation of the fading
amplitudes and hence has a lower complexity than MRC [19].
For a 2-branch EGC in Nakagami-m fading, the exact f (β) can
be obtained from [5, eq. (32)] to be

f (β) = 22−2m√
π�(2m)m2m

�2(m)�
(

2m + 1
2

) β2m−1e−2mβ

× 1F1

(
2m; 2m + 1

2
; mβ

)
, (27)

where 1F1(·; ·; ·) is the confluent hypergeometric function [20].
Maclaurin’s series expansion of (27) followed by comparison
with (4) gives t = 2m − 1, a0 = [22−2m√

π�(2m)m2m]/
[�2(m)�(2m + 1/2)], a1 = −[2m(2m + 1)a0]/[4m + 1], a2 =
[2m2(4m2 + 6m + 3)a0]/[(4m + 1)(4m + 3)]. Then, use of
Proposition 1 and Proposition 3 subsequently yields the de-
sired P

asy
md . Note that we consider the 2-branch EGC case here

because the PDFs of SNR for the L(> 2)-branch EGC in
Nakagami-m fading do not have a closed-form and rather con-
tain one or more infinite series (see [5, eq. (40)], [5, eq. (45)])
for which the number of terms needed for obtaining a de-
sired precision (accuracy) is unknown. Thus, the parameters of
f app(β) for such cases will be in terms of infinite series, and the
number of terms needed for precise truncation of the infinite
series is unknown.

Next, we consider 3-branch SC in Nakagami-m fading. Using
[5, eq. (50)] with L = 3, we can write the exact PDF of β to be

f (β) = 3mm

�3(m)
βm−1e−mβ [G(m, mβ)]2 , (28)

where G(a, z) = ∫ z
0 xa−1e−xdx is the lower incomplete Gamma

function [13]. Maclaurin’s series expansion of f (β) gives t =
3m − 1, a0 = [3m3m−2]/[�3(m)], a1 = −[3m3m−1(2m + 1)]/
[(m + 1)�3(m)] and a2 = [3m3m(9m3 + 24m2 + 15m + 2)]/

Fig. 7. Pmd vs. SNR for 2-branch EGC (u = 5) and 3-branch SC (u = 2) in
Nakagami-2 fading.

[2�3(m)(m + 1)2(m + 2)]. Then, the use of Proposition 1 fol-
lowed by Proposition 3 subsequently gives P

asy
md . It is worth

noting that SC cases with L ≥ 4 can be treated similarly be-
cause the exact f (β) (obtained using [5, eq. (50)]) can still be
Maclaurin’s series expanded in the form (9), however, at the
expense of additional algebraic manipulations. Nevertheless,
those cases are not treated any further for brevity.

The comparative results for the 2-branch EGC and 3-branch
SC in Nakagami-2 fading are depicted in Fig. 7 where the ben-
efit of our P

asy
md (16) over the asymptotic Pmd of [8] is clear. The

exact Pmd for EGC and SC are obtained by using [5, eq. (38)]
and [5, eq. (59)], respectively, which are infinite series expres-
sions involving the hypergeometric functions and thus the sens-
ing gains from such expressions are not explicit. Unlike the use
of these equations, application of Proposition 1 clearly suggests
a sensing gain of 2m (= 4) for EGC and 3m(= 6) for SC,
respectively (given by slopes of the graphs at, say, γ ≥ 19 dB).

VII. COOPERATIVE DETECTION WITH MULTIPLE RELAYS

In the previous section, the performance of an ED equipped
with co-located multiple antennas has been characterized for
several antenna diversity combining schemes. Although the
benefits of co-located multiple antennas are widely accepted,
deploying them may be impractical in situations where size,
cost, or hardware pose limitations. Examples include handsets
(where size is a limitation) and low-power, small-size nodes in
a wireless sensor network [21]. In these scenarios, a different
form of spatial diversity can be more practical. In this form, a
number of wireless nodes at different locations independently
relay their received signal (which is the desired signal at the
destination receiver) to a central (destination) receiver. More-
over, in the context of signal detection, such cooperation among
multiple relays and the central receiver gives rise to a coopera-
tive detection network where the central receiver, called the fu-
sion center (FC), combines the signals forwarded by the relays
and makes a final decision on the presence/absence of the SUT.
Such a set-up yields a significant gain in detection performance
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compared to that of the system with a single detector [22]. We
thus consider a cooperative detection network where a number
(n ≥ 1) of relays amplify-and-forward their received signals
(which are multiple copies of the transmit SUT) to the FC,
which then makes the final decision on the presence/absence of
the SUT based on these n observations. This scenario fits, for
example, in the context of cooperative spectrum sensing with
cognitive relay networks. Furthermore, the FC may have access
to CSI of the channels from the primary user (PU) to the relays
and from relays to the FC. This may be possible via channel
estimation at the relays through the use of low-rate pilot signals
[18] and control channel signalling [23].

The total instantaneous SNR γ of such a network can be
upper-bounded by γup as γ ≤ γup = ∑n

i=1 γ min
i , where γ min

i =
min{γpri, γrid}; γpri and γrid are the instantaneous SNRs of the
links from the transmitter to the i-th relay ri and from ri to the
FC, respectively [24].3 Assume the channels from each relay to
the FC are statistically independent Rayleigh fading. The MGF
of γup, Mγup(s), is given by [24, eq. (10)]

Mγup(s) =
n∏

i=1

γ pri
+ γ rid

γ pri
γ rid

· 1(
s + γ pri

+γ rid

γ pri
γ rid

) , (29)

where γ pri
and γ rid are the average SNRs of the respective

links. In general, the series expansion of the MGF (29) at s→∞
would result in MGF of the form (23), which was derived for the
MRC with L independent antennas. Without loss of generality
and for the sake of brevity, we omit similar details, and,
instead, provide an example where the link SNRs are identical,
i.e., γ pri

= γ rid = γ . This set-up allows (29) to be expressed in
the form

Mγup(s) = (2/γ )n

sn
[
1 + 2/(γ s)

]n .

We define γup = γ βup. Then, by using the transformation of the
random variables, the MGF of βup can be obtained from that of
γup as Mβup(s) = Mγup(s/γ ). Performing a series expansion
of the resulting expression for Mβup(s) at s → ∞ gives

Mβup(s) = 2n

sn
− n2n+1

sn+1
+ n(n + 1)2n+1

sn+2
+ O

(
1

sn+3

)
.

Then, applying Proposition 2, we get α = n, X0 = 2n, X1 =
−n2n+1 and X2 = n(n + 1)2n+1. These findings readily yield
the parameters t, a, θ1 and θ2. Thus, Proposition 3 can be ap-
plied to obtain P

asy
md . The results comparing the exact Pmd (based

on γup) obtained from [24, eq. (11), the asymptotic Pmd of [8],
and our derived P

asy
md (16) are depicted in Fig. 8. Clearly, these

results indicate the benefit of our derived P
asy
md over the asymp-

totic Pmd of [8]. Also, the magnitude of the slopes of the graphs
at high SNR (≥19 dB) are found to be same as the number
of cooperating relays n, which is equal to the sensing gain
(t + 1 = n).

3Since use of the exact MGF of γ to obtain a closed-form Pmd is analytically
intractable [24], we use γup instead, which can lead to a closed-form upper
bound for Pmd .

Fig. 8. Pmd vs. SNR for multiple relays based detection (u = 2).

VIII. DETECTION IN INTERFERENCE

In the previous sections, as in existing works on ED per-
formance analysis [2]–[8], [24], the presence of interfering
transmissions has been disregarded. In emerging broadband
technologies (such as LTE-Advanced), small cells (pico- and
femto-cells) are commonly deployed by overlaying them over
the traditional macrocells of cellular networks, thus extending
the wireless coverage and capacity [25]. This set-up results
in a heterogeneous network consisting of a large number of
wireless nodes such that the reception (at the destination) of
undesired transmissions (that have leaked in space over rel-
atively large distances) occurs inevitably [26]. Thus, all the
heterogeneous nodes sharing the same spectrum suffer from in-
terference. In such situations, an ED equipped node will receive
interfering transmissions, which will deteriorate its detection
performance [27].

Thus, in the presence of interference, the received signal
(at the ED) is composed of the faded version of the SUT,
numerous interfering signals from other users, and additive
noise (which is generally assumed to be white Gaussian). In
this situation, rather than SNR, the signal-to-interference-plus-
noise ratio (SINR) has to be taken into account, which is defined
(with abuse of the notation γ ) as

γ = h0P0∑NI
i=1 hiPi + N0

, (30)

where N0 is noise variance, h0 and P0 are the desired
transmitter-to-receiver channel gain and the average power of
the desired signal, respectively, while hi and Pi, ∀i ∈ {1, 2, . . . ,

NI}, are the channel gain and average power of the i-th in-
terfering link, respectively, with NI being the total number of
interferers. We assume all the channels undergo Rayleigh fad-
ing. Furthermore, the detector is equipped with L ≥ 1 antennas,
whose signals are combined by using MRC. Hence, SINR can
still be expressed as γ = γ β, where γ = P0/(Itotal + N0) is the
average SINR with Itotal = ∑NI

i=1 Pi and β = h0(Itotal + N0)/
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Fig. 9. Pmd vs. γ for u = 2 in presence of NI = 8 interferers with powers
{P1, P2, P3, P4, P5, P6, P7, P8} = {−5,−3,−1, 1, 3, 5, 7, 9} dB, N0 = 0 dB.

[∑NI
i=1 Pihi + N0]. This set-up leads to the following PDF of

β [28]:

f (β)= βL−1

(L−1)!
NI∑

i=1

AieCiBL
i

(1 + Biβ)L+1
�(L + 1, Ci(1 + Biβ)) , (31)

where Ai =∏NI
k=1,k 
=iPi/(Pi−Pk), Bi =Pi/[Itotal+N0], and Ci =

N0/Pi. With the abuse of notations, we use β and γ here for
presentation simplicity and for notational consistency. Then, the
Maclaurin’s series expansion of (31) yields t = L − 1, a0 =∑NI

i=1AiBL
i eCi�(L+1, Ci), a1 =−∑NI

i=1AiBL+1
i [CL+1

i + eCi ×
(L + 1)�(L + 1, Ci)], and a2 = ∑NI

i=1
1
2AiBL+2

i [eCi(L2 + 3L +
2)�(L+1, Ci)+CL+1

i {2+ 2L−eCi�(L+1)1F̃1(L+1; L;−Ci)}],
where 1F̃1(·; ·; ·) is the regularized confluent hypergeometric
function of the confluent hypergeometric function 1F1(·; ·; ·)
[29]. Thus, Proposition 1, and subsequently, Proposition 3 can
be used to obtain the desired parameters and P

asy
md , respectively.

A numerical example for this case is depicted in Fig. 9, which
indicates significantly better accuracy of our derived P

asy
md over

0 ≤ γ dB ≤ 30, in contrast to the asymptotic Pmd of [8], which
is accurate only for say, γ ≥ 18 dB. Furthermore, the sensing
gains are equal to the number of antennas L (the magnitude of
the slopes of the graphs at γ ≥ 20 dB are equal to 1 and 2 for
L = 1 and L = 2, respectively).

IX. AVERAGE CAUC

Thus far, we have considered the problem of averaging the
Marcum-Q function over f app(β) (Proposition 3). However,
we emphasize that the application of f app(β) goes beyond
Proposition 3. Its wider applications could include analyses of
the outage probability, bit error rates, average capacity, and
symbol error rates, which are critical performance metrics of
practical digital wireless systems. However, due to the page
limitation, we omit these analyses. Nevertheless, we will con-
sider one more application, the analysis of CAUC for ED.

Although the well-known ROC curves (the plots of Pd vs.
Pf ) graphically represent the ED performance, a single figure

of merit for concisely representing the ED’s overall detection
capability is desirable. For this purpose, the area under the ROC
curve (AUC), which varies between 1/2 and 1, was recently
proposed [11]. If the AUC is 1/2, then the decision is as reliable
as that of a coin toss, meaning Pmd = 0.5. Thus, a larger AUC
implies a better detector. However, neither the ROC curves nor
the AUC graphs explicitly reveal the order of improvement in
detection performance with increasing SNR. This shortcoming
led to the introduction of yet another single figure of merit,
CAUC, which reveals the order of improvement in detection
performance with increasing SNR, explicitly. The instanta-
neous CAUC for ED is given by [30]

A′(γ ) =
u−1∑
k=0

1

2kk!γ
ke− γ

2 −
u−1∑

k=1−u

�(u + k)

2u+k�(u)

× e−γ
1F̃1

(
u + k; k + 1; γ

2

)
. (32)

Intuitively, a lower CAUC implies a better detection capability.
We are interested in evaluating the average asymptotic

CAUC, denoted by A′
asy, which can be obtained by integrating

A′(γ )|γ=γβ over f app(β) as

A′
asy =

∫ ∞

0
A′(γ β)f app(β)dβ, (33)

which can be derived to be (34) (see Appendix C for derivation
details),

A′
asy = a

u−1∑
k=0

γ k

2kk!�(t + k + 1)

2∑
i=1

1

(θi + γ /2)t+k+1

− a
u−1∑

k=1−u

�(u + k)�(t + 1)

2u+k�(u)

2∑
i=1

1

(θi + γ )t+1

× 2F̃1

(
t + 1, u + k; k + 1; γ

2(θi + γ )

)
(34)

where 2F̃1(·, ·; ·; ·) is the regularized confluent hypergeometric
function of the confluent hypergeometric function 2F1(·, ·; ·; ·)
[31]. At large SNRs (γ � 1), (34) reduces to the form A′

asy ≈
gauc(u, t)γ −(t+1), where gauc(u, t) is a term independent of γ .
Thus, magnitude of the exponent of γ occurring in A′

asy at
large SNRs is equal to (t + 1), which in fact is the sensing
gain obtained from our derived asymptotic missed-detection
probability P

asy
md (16) at high SNR. The same exponent is

equivalently defined as the “detection diversity gain order” in
[30]. Hence, the sensing gain is also given by the magnitude of
the slope of the log-log plot of A′

asy vs. γ at high SNR.
A numerical example for the average CAUC (denoted by A′)

for SC in i.i.d. Rayleigh fading (for which the parameters of
f app(β) were derived in Section VI-B) is shown in Fig. 10 where
our derived asymptotic CAUC A′

asy (34) is compared against
the approximate and exact CAUCs computed by using the
approximation f wg(β) (5) and the exact f (β) (25), respectively.
Interestingly, our A′

asy is virtually identical to the exact values
over the entire SNR range (0 ≤ γ dB ≤ 20), while A′ computed
by using f wg(β) is accurate for only γ ≥ 19 dB. Furthermore,
the sensing gains obtained from the graphs at high SNR (γ ≥
19 dB) are 2 and 4 for L = 2 and L = 4, respectively (thus
verifying t + 1 = L). Thus, the proposed f app(β) serves as a
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Fig. 10. A′ vs. SNR for SC in i.i.d. Rayleigh fading with u = 2.

unified approximation for the exact PDF of β, which can also be
applied for deriving the average performance metrics from the
instantaneous ones involving functions other than the Marcum-
Q function.

X. CONCLUSION

In this paper, a new approximation f app(β) with parameters
matching the operating conditions (the fading channel, antenna
diversity, cooperative diversity, among others) is proposed.
These parameters are obtained using the exact PDF or MGF of
β. By utilizing the MGF corresponding to f app(β) along with
the contour integral representation of the Marcum-Q function,
the unified asymptotic missed-detection probability P

asy
md of

the ED is derived in closed-form. The derived P
asy
md is then

specialized to single-antenna systems, antenna diversity,
multiple-relay-based cooperative detection, and to interference
environments. Our P

asy
md is found to be highly accurate (achiev-

ing up to 7-digit precision for some cases), and valid over a
wider SNR range than that derived by using the approximation
in [8]. Thus, compared with [8], although our approximation
requires only a simple additional step for extracting more
information, this step improves both the accuracy and valid
SNR range of the asymptotic analysis. Moreover, the derived
P

asy
md also explicitly reveals the sensing gain. To show another

application of our proposed f app(β), we also derive the asymp-
totic CAUC, the result being highly accurate, and additionally
revealing the sensing gain. Thus, we have developed a unified
comprehensive analytical framework to characterize the ED
performance in different practical communication scenarios.
This framework may subsequently help in designing robust
detectors in state-of-the-art and future wireless communication
networks.

Fig. 11. Possible poles of gi(z), i = 1, 2, in the z-plane.

In this work, we consider f app(β) for analyzing ED perfor-
mance only. However, the application of our proposed f app(β)

to analyze other crucial metrics such as the symbol error rate,
outage probability, or channel capacity (which are useful for
characterizing wireless systems deploying space-time coding
and modulations, multiple-input and multiple-output technol-
ogy, antenna/relay selection schemes, and numerous other tech-
niques [32]–[36]) may be of interest to wireless communication
researchers and engineers. Thus, this paper opens up interesting
and diverse future research opportunities.

APPENDIX

A. Derivation of P
asy
md (16)

Substituting the contour integral representation for the
Marcum-Q function given by [15, eq. (1)] into (3), we get

Pmd = 1 − e− λ
2

2πj

∮
	

Mγ

(
1 − 1

z

)
e

λ
2 z

zu(1 − z)
dz, (35)

where 	 is a circular contour of radius r such that 0 < r < 1,
and j denotes the imaginary unit. The MGF of γ , Mγ (s), in
(35) can be expressed in terms of the MGF of β as Mγ (s) =
Mβ(sγ ). Then, substituting the MGF Mapp

β (s) from (14) into
the resulting expression, and following some algebraic manip-
ulations, we get

P
asy
md = 1 − a�(t + 1)e− λ

2

2πj

∮
	

[
g1(z) + g2(z)

]
dz, (36)

where gi(z) = 1
(θi+γ )t+1

eλz/2

(z−ηi)t+1zu−t−1(1−z)
, for i = 1, 2, with

ηi
	= γ /(θi + γ ). As gi(z), for i = 1, 2, may contain a pole of

order (u − t − 1) at z = 0 (for u > t + 1) and a pole of order
(t + 1) at z = ηi (see Fig. 11), in order to evaluate the contour
integral in (36), we need the residues of gi(z) at these poles.
Thus, two cases arise as follows.

Case I: u > t + 1 : In this case, the function gi(z), i = 1, 2,
contains a (t + 1)-th ordered pole at z = ηi and a (u − t − 1)-th
ordered pole at z = 0.

Case II: u ≤ t + 1 : For this case, gi(z), i = 1, 2, does not
have any pole at z = 0, and only the pole at z = ηi contributes
to the contour integral.

The two cases thus lead to P
asy
md of the form (37), shown at the

bottom of the page, where the notation Res[g(z); z0, p] denotes

P
asy
md =

{
1 − a�(t + 1)e− λ

2
∑2

i=1 Res
[
gi(z); ηi, t + 1

] + Res
[
gi(z); 0, u − t − 1

]
for u > t + 1

1 − a�(t + 1)e− λ
2
∑2

i=1 Res
[
gi(z); ηi, t + 1

]
for u ≤ t + 1

(37)
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the residue of the function g(z) at pole z = z0 of order p. This
residue is defined as [37]

Res
[
g(z); z0, p

] 	= 1

(p − 1)!
dp−1

dzp−1

[
g(z)(z − z0)

p]∣∣∣∣
z=z0

. (38)

The residue Res(gi; ηi, t + 1), i = 1, 2, can thus be expressed
in closed-form as (see Appendix B)

Res
[
gi(z); ηi, t + 1

]= 1

(θi + γ )t+1t!
t∑

k=0

(
t

k

)
ψ(k)

ηi
φ(t−k)

ηi
, (39)

where ψ
(k)
ηi is the k-th order derivative of ψ(z)

	= 1/(zu−t−1)

with respect to z, and φ
(t−k)
ηi is the (t − k)-th order derivative of

φ(z)
	= eλz/2/(1 − z) with respect to z, both evaluated at z = ηi,

which are given by

ψ(k)
ηi

= (−1)k

ηu−t−1+k
i

k∏
j=1

(u − t + j − 2), (40)

φ(t−k)
ηi

= e
λ
2 ηi

n∑
ν=0

(λ/2)n−ν

(1 − ηi)ν+1

n!
(n − ν)! . (41)

By following the steps similar to those used in deriving
Res[gi(z); ηi, t + 1], Res[gi(z); 0, u − t − 1], i = 1, 2, can be
obtained to be (details omitted for the sake of brevity)

Res(gi(z); 0, u − t − 1) = 1

(θi + γ )t+1(u − t − 2)!
×

u−t−2∑
k=0

(
u − t − 2

k

)
χ

(k)
0 φ

(u−t−k−2)
0 , (42)

where χ
(k)
0 is the k-th order derivative of χ(z)

	= 1/(z − ηi)
t+1

with respect to z, evaluated at z = 0 and can be derived to be

χ
(k)
0 = (−1)−(t+1)

ηt+k+1
i

k∏
j=1

(t + j), (43)

and φ
(u−t−k−2)
0 is the same as φ

(t−k)
ηi with (t − k) and ηi replaced

by (u − t − k − 2) and 0, respectively. Then, using (39)–(43) in
(37) results in (16).

B. Derivation of (39)

By applying the definition of the residue given in (38),
Res[gi(z); ηi, t + 1], i = 1, 2, can be expressed as

Res
[
gi(z); ηi, t+1

]= 1

(θi+γ )t+1t!
dt

dzt
[ψ(z)φ(z)]

∣∣∣∣
z=ηi

. (44)

Then, utilizing the general Leibniz rule for finding the t-th
order derivative of a product [13, eq. (3.3.8)] on the right-hand
side of (44), followed by evaluating the resulting expression at
z = ηi gives:

dt

dzt
[ψ(z)φ(z)]

∣∣∣∣
z=ηi

=
t∑

k=0

(
t

k

)
ψ(k)

ηi
φ(t−k)

ηi
. (45)

Thus, substituting (45) into (44) yields (39). The coefficients
ψ

(k)
ηi of (45) can be derived by mathematical induction to be as

in (40). For deriving φ
(t−k)
ηi , the Leibniz rule can be re-applied

after expressing φ(z) as a product of the terms eλz/2 and 1/(1−z)
and then, following some algebraic manipulations, to yield (41).

C. Derivation of A′
asy (34)

By substituting (6) into (33), the average CAUC over f app(β)

can be expressed as

A′
asy = 1 − a

u−1∑
k=0

γ k

2kk!I1 + a
u−1∑

k=1−u

�(u + k)

2u+k�(u)
I2, (46)

where I1 is defined as

I1
	=

2∑
i=1

∫ ∞

0
β t+ke−(θi+ γ

2 )βdβ =
2∑

i=1

�(t + k + 1)

(θi + γ /2)t+k+1
, (47)

where the definition of Gamma function �(·) is used to solve
the integral, and I2 is defined as

I2
	=

2∑
i=1

∫ ∞

0
β t

1F̃1

(
u + k; k + 1; γ

2
β

)
e−(θi+γ )βdβ =

2∑
i=1

I2,i.

(48)

To solve the integral I2,i, i=1, 2, in (48), we proceed as
follows. Given the generalized hypergeometric function pFq(a1,

. . . , ap; b1, . . . , bq; z), the corresponding regularized hyperge-
ometric function is given by [38] (with the abuse of notation) as

pF̃q(a1, . . . , ap; b1, . . . , bq; z)= pFq(a1, . . . , ap; b1, . . . , bq; z)

�(b1) . . . �(bq)

=
∞∑

v=0

∏p
j=1(aj)vzv

v!∏q
j=1�(v+bj)

, (49)

where (aj)v =�(aj+v)/�(aj) is the Pochammer’s symbol. Then,
using (49) with p = q = 1 and substituting the resulting series

expression into I2,i, we get I2,i = 2F̃1

(
t + 1, k + u; k + 1;

γ
2(θi+γ )

)
/(γ +θi)

t+1, where the definition of Gamma function

�(·) is applied to solve the resulting integral followed by the use
of (49) for p=2, q=1. Thus, substituting I2,i into (48) gives

I2 =
2∑

i=1

1

(γ + θi)t+1 2F̃1

(
t + 1, k + u; k + 1; γ

2(θi + γ )

)
.

(50)

Then, substituting (47) and (50) into (46) yields A′
asy (34).
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