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Abstract—Performance analysis of the energy detector (ED)
in fading channels has received enormous attention recently.
However, averaging the generalized Marcum-Q function over
fading statistics often results in complicated special functions
and/or infinite series based expressions. Motivated by the need
for simple expressions without compromising the accuracy, we
propose a new representation for the probability density function
(PDF) of the fading channel gain. This representation is then
used to derive simple, unified expression for asymptotic miss-
detection probability in closed-form. The derived expression is
evaluated for several fading channels and antenna diversity
schemes. Numerical results reveal its high accuracy over a wide
range of signal-to-noise-ratio (SNR) (as low as 0 dB) unlike the
existing asymptotic expression which is accurate only for high
SNR regime (say, SNR ≥ 20 dB).

Index Terms—Energy detector, fading, diversity combining.

I. INTRODUCTION

Signal detection is a fundamental requirement in traditional

wireless applications such as target detection in radar [1],

as well as in emerging applications such as ultra-wide band

(UWB) radio [2] and cognitive radio (CR) networks [3]. One

of the most popular techniques used for signal detection is the

energy detector (ED) which simply compares the energy of the

received signal against a detection threshold to decide on the

presence or absence of the signal of interest [4]. Thus, the ED

is a non-coherent device which does not require any a priori

information (such as modulation format) of the transmitted

signal and has a low hardware complexity. These features have

made the ED a highly active research topic [5]–[7].

The performance of ED was first considered in [4] by

assuming a flat, band-limited Gaussian noise channel and

deriving the detection probability (Pd) and the false alarm

probability (Pf ). However, in wireless multipath fading chan-

nels, Pd, which depends upon random fading gain (β), must be

averaged over the distribution of the received signal-to-noise

ratio (SNR) γ = γβ, where γ is the average (unfaded) SNR,

to quantify the overall detection performance. This problem

has been extensively analysed recently. In [8], the average

probability of detection (P d) is derived in closed-form for

Rayleigh fading channels but the results for Nakagami-m and

Rician fading channels involve a numerical integration and an

infinite summation, respectively. In [9] and [10], closed-form

expressions for P d over various fading channel models without

and with antenna diversity reception are derived. However,

the results for multiple antenna reception are restricted only

to Rayleigh fading channels. This limitation is overcome in

[11] by utilizing an alternative representation of the Marcum-Q
function along with the moment generating function (MGF) of

the received SNR to derive P d for several diversity combining

schemes such as maximal ratio combining (MRC), equal gain

combining (EGC) and selection combining (SC).

Although the aforementioned works are exact in the sense

that no limiting assumptions on the critical parameters of inter-

est such as the sample size and/or SNR are made, complicated

special functions (e.g., confluent hypergeometric function,

hypergeometric function of two variables, etc.) and/or infinite

series sums appear in the final expressions and the impact of

fading and diversity combining on the detection performance

is not explicitly visible. To derive explicit expressions, [12]

utilizes the asymptotic analysis originally presented in [13]

to quantify the impact of the fading channels and antenna

diversity combining on the ED performance at high SNR

(γ → ∞). The key idea of [13] is to approximate the exact

probability density function (PDF) of the fading channel gain

β, denoted by f(β), by a monomial term as

f(β) = aβt +O(βt+ǫ), (1)

where O(x) is the error term as x→ 0+, ǫ > 0, a is a positive

constant and parameter t represents the order of smoothness

of f(β) as β → 0+ (β tends to zero from above) [13]. The

parameters a and t are completely determined by the fading

channel model and can be derived from the exact PDF or

MGF of β. By using (1), [12] derives asymptotic expression

for average miss-detection probability (Pmd) which is highly

accurate as γ → ∞ and can also be used for determining the

“sensing gain”. It is defined as the negative slope of Pmd vs.

γ in a log-log plot as γ → ∞ (which is equal to the negative

exponent of γ occuring in Pmd as γ → ∞) and thus serves

as a single figure of merit to quantify the ED performance in

fading and/or diversity combining at high SNR.

However, such analysis is accurate only for the high SNR

regime (say, γ ≥ 20 dB) and fails to accurately capture the ED

performance in moderate to low SNR, the region of interest

for current wireless systems (e.g., the IEEE 802.16 local and

metropolitan area networks operate at 3-20 dB SNR [14]).

Hence, a more accurate asymptotic expression valid over a

wide SNR range and without complicated special functions

and/or infinite series is of interest to wireless engineers and

researchers.

We thus propose a new representation for the exact PDF

f(β) which yields highly accurate (over 0 ≤ γ dB < ∞),



unified asymptotic expression in closed-form which: (i) is a

simple, finite order (without infinite series) expression, and

(ii) reveals the sensing gain explicitly.

The basic energy detection model is described in Section II.

The new representation for f(β) is presented in Section III.

Unified asymptotic expression for the average miss-detection

probability is derived in Section IV. Application examples for

analysing ED performance in fading channels and antenna

diversity are presented in Section V. Concluding remarks and

future directions are highlighted in Section VI.

II. ENERGY DETECTION OVER FADING CHANNELS

The problem of detecting the presence or absence of the

signal-under-test (SUT) can be classified as a binary hypoth-

esis test of the form, y(t) =

{

w(t) : H0,
hS(t) + w(t) : H1,

where

w(t) is the additive white Gaussian noise (AWGN) with mean

zero and variance N0, S(t) is the unknown transmit SUT with

energy Es, h is the fading channel coefficient, and hypotheses

H0 and H1 respectively denote the absence and presence of

the transmit signal. In energy detection, the received signal

y(t) is passed through a noise pre-filter of bandwidth W ,

squared, and then fed to a finite-time integrator of duration

T (u = TW is called the time-bandwidth product). The result

is then compared against a pre-determined threshold λ to

decide on the presence/absence of the SUT [4] such that two

fundamental performance metrics, the detection probability Pd

and the false alarm probability Pf are given by [9]: Pd(γ) =
Qu(

√
2γ,

√
λ), and Pf = Γ(u, λ/2)/Γ(u) respectively, where

Qu(·, ·) is the generalized Marcum-Q function of u-th order;

Γ(a, z) =
∫

∞

z
xa−1e−xdx and Γ(a) = Γ(a, 0) respectively

denote the upper-incomplete and complete Gamma functions

[15], and γ , |h|2Es/N0 = γβ is the received (instan-

taneous) SNR with γ being the average SNR. Equivalently,

the ED performance can be characterized via miss-detection

probability Pmd, which is given by Pmd(γ) = 1 − Pd(γ) =
1−Qu(

√
2γ,

√
λ). Clearly, it depends upon the instantaneous

SNR γ, which in turn depends upon the random fading channel

gain β. To quantify the ED performance over fading channels,

the average miss-detection probability Pmd is obtained by

averaging Pmd(γ) over the fading PDF f(β) as

Pmd = 1−
∫

∞

0

Qu(
√

2γβ,
√
λ)f(β)dβ. (2)

Due to complicated nature of the Marcum-Q function, closed-

form solutions for (2) are limited to very few fading channel

models and diversity combiners. Thus, existing solutions are

either: (i) in closed-forms but involve complicated special

functions (e.g., confluent hypergeometric function, hypergeo-

metric function of two variables, etc.), or (ii) are expressed in

terms of infinite series expansions, and sometimes even involve

both (i) and (ii).
As well, since Pmd is useful for obtaining the sensing

gain which is critical to characterize the ED performance at

high SNR, for numerical analysis, we are interested in the

logarithmic plots of Pmd vs. γ, whose slopes at high SNR

yield the sensing gains [12]. Since a low probability of false

alarm is desirable (for example, in CR networks, a Pf ≤ 0.1
is preferred [16]), the detection threshold λ is determined by

solving Pf = Γ(u, λ/2)/Γ(u) for a specific Pf (and u) and

used for evaluating Pmd. We thus consider Pmd vs. γ curves

at a fixed Pf = 0.01 throughout our numerical analysis.

III. NEW REPRESENTATION FOR f(β)

A performance analysis with better accuracy and without

complicated special functions and/or infinite series is thus

needed. With these goals in mind, we thus propose the

following PDF f app(β) to represent the exact PDF f(β) when

β → 0+ as

f app(β) = aβt(e−θ1β + e−θ2β), (3)

where a > 0, t, {θ1, θ2} > 0 are constants dependent upon

the fading channel model under consideration and can be

determined by using the exact PDF f(β). Note that the PDF

(1) is a special case of (3) with θ1 = θ2 = 0. The two main

assumptions are stated below for completeness.

AS1) The instantaneous SNR at the receiver is expressed as

γ = γβ where γ is the average (unfaded) SNR and β > 0
is a randomly varying channel gain whose PDF depends

upon the fading model and/or the diversity combining

scheme under consideration (same as [12], [13]).

AS2) The exact PDF of β can be expanded in a series-form

f(β) =
∑2

i=0 aiβ
τ+i−1 +O(βτ+2) as β → 0+.

Next, we show how to determine the parameters a, t, θ1 and

θ2 of (3). The approach is formally stated in Proposition 1

below.

Proposition 1. Given the series expansion of the PDF f(β)
as β → 0+ in the form

f(β) = a0β
τ−1 + a1β

τ + a2β
τ+1 +O(βτ+2), (4)

the parameters of f app(β) are given by

t = τ − 1, a =
a0
2
, and (5)

(θ1, θ2) =

(

b1 +
√

2b2 − b21
2

,
b1 −

√

2b2 − b21
2

)

, (6)

where b1 = −a1/a and b2 = 2a2/a.

Proof: To determine the parameters of (3), we match the

series expansion of f app(β) as β → 0+ with that of the exact

PDF f(β) given by (4). The series expansion of f app(β) (3)

as β → 0+ followed by rearrangement of the resulting terms

in ascending powers of β yields

f app(β) = 2aβt−(θ1+θ2)aβ
t+1+

(θ21 + θ22)

2
aβt+2+O(βt+3).

(7)

Then, matching the coefficients of (4) and (7), we find that

t = τ − 1, a = a0/2 and {θ1, θ2} satisfy

θ1 + θ2 = −a1
a

, b1 and θ21 + θ22 =
2a2
a

, b2. (8)

The two simultaneous equations (8) can then be immediately

solved to yield (6).
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









1−∑2
i=1

aΓ(t+1)e−λ/2

(θi+γ)t+1

[

1
t!

∑t
k=0

(

t
k

)

ψ
(k)
ηi φ

(t−k)
ηi + 1

(u−t−2)!

∑u−t−2
k=0

(

u−t−2
k

)

χ
(k)
0 φ

(u−t−k−2)
0

]

for u > t+ 1

1−
∑2

i=1
aΓ(t+1)e−λ/2

(θi+γ)t+1t!

∑t
k=0

(

t
k

)

ψ
(k)
ηi φ

(t−k)
ηi for u ≤ t+ 1.

(9)

IV. AVERAGE PROBABILITY OF MISS-DETECTION

In order to derive the asymptotic miss-detection probability,

the average (2) must be performed by replacing f(β) with

f app(β). The result is a unified asymptotic expression for the

average miss-detection probability, denoted by P
asy

md, in closed-

form as given by Proposition 2.

Proposition 2. If the PDF of the channel gain is given by

fapp(β), then the average miss-detection probability P
asy

md can

be expressed as (9) shown on top of the page with

ψ(k)
ηi

=
(−1)k

ηu−t−1+k
i

k
∏

j=1

(u − t+ j − 2),

χ
(k)
0 =

(−1)−(t+1)

ηt+k+1
i

k
∏

j=1

(t+ j),

(10)

φ(n)z0 = e
λ
2 z0

n
∑

ν=0

(λ/2)n−ν

(1− z0)ν+1

n!

(n− ν)!
, (11)

where ηi = γ/(θi + γ), ∀i ∈ {1, 2} and z0 ∈ {0, ηi}.

Proof: The proof is given in the Appendix A.

An important observation can be made from (9). As γ → ∞,

it can be shown that (9) can be expressed in the form P
asy

md ≈
1 − g(u, t, λ)γ−(t+1) where g(u, t, λ) is a term independent

of γ. Thus, the sensing gain is equal to (t + 1), which is

in agreement with that of [12]. Hence, the parameter t fully

characterizes the sensing gain for any given PDF f(β) of the

fading channel gain β.

It is important to note that the derived asymptotic (9)

provides a unified expression for a wide range of fading

channels and diversity reception schemes. In the following

sections, we show that the parameters t, a, θ1 and θ2 of

f app(β) can be readily determined for various fading and

diversity combining cases by using Proposition 1. Once these

parameters are obtained, Proposition 2 can be readily used to

evaluate P
asy

md for each case.

V. APPLICATION EXAMPLES

A. Nakagami-m fading

For Nakagami-m fading, the instantaneous SNR is a

Gamma random variable and thus the exact PDF of β is given

by f(β) = mm/Γ(m)βm−1e−mβ, β > 0, with the parameter

m ≥ 1/2 representing the fading severity index. The series

expansion of f(β) as β → 0+ can be written as

f(β) ≈ mm

Γ(m)
βm−1−mm+1

Γ(m)
βm+

mm+2

2Γ(m)
βm+1+O(βm+2).

Then, using Proposition 1, we obtain the parameters of f app(β)
to be t = m− 1, a= mm/[2Γ(m)], a1=−mm+1/Γ(m) and
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Fig. 1: Pmd vs. γ in Nakagami-m fading for u = 3 and in Nakagami-
q fading with q = 0.7, u = 7; exact, existing [12] and derived (9).

a2= mm+2/[2Γ(m)]. This gives b1 = 2m and b2 = 2m2,

which substituted into (6) immediately yields θ1 = θ2 = m.

Subsequently, Proposition 2 can be applied to evaluate P
asy

md.

B. Nakagami-q (Hoyt) fading

The Nakagami-q distribution can typically model satellite

links subject to strong ionospheric scintillation [17]. The PDF

of β for this model is given by

f(β) =
1 + q2

2q
e
−

(1+q)2

4q2
β
I0

(

1− q4

4q2
β

)

(12)

where I0(·) is the zero-th order modified Bessel function of

first kind and q is the fading parameter which can range from

0 to 1. The series expansion of (12) as β → 0+ followed by

re-arrangement of the terms in the ascending powers of β and

comparison with (4) yields: t = 0, and

a0 =
1 + q2

2q
, a1 = − (1 + q2)

2q

(

q4 + 2q2 + 1

4q2

)

,

a2 =
(1 + q2)

2q

(

3q8 + 8q6 + 10q4 + 8q2 + 3

64q4

)

.

(13)

Then, the desired parameters of f app(β) can be readily ob-

tained by using Proposition 1, and Proposition 2 yields P
asy

md.

The derived asymptotic (9) is extremely accurate for both

Nakagami-m and Nakagami-q fading (Fig. 1). For instance,

(9) is virtually identical to the exact values over the entire

SNR range (0-20 dB) while the asymptotic result of [12] is
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Fig. 2: Pmd vs. γ for dual branch EGC and SC in Nakagami-3 fading
with u = 2: exact, existing [12] and derived (9).

accurate only in the high SNR region (say, SNR ≥ 20 dB).

Moreover, the gap between [12] and the exact value is 2 dB

even at SNR = 17 dB for m = 1 while (9) is identical (7-

significant digit accuracy) to the exact values over the whole

SNR range (0-20 dB). Note that the exact Pmd for Nakagami-

m fading obtained from P d derived in [11, (eq. 5)] involves an

infinite series and its truncation to a finite number of terms to

satisfy the desired precision requirement is needed. In contrast,

(9) does not involve truncations or other approximations.

Further, the negative slopes of the curves corresponding to

cases q = 0.7, m = 1 and m = 2 at high SNR (≥ 19 dB)

are equal to 1, 1 and 2 respectively, which are equal to the

corresponding sensing gains given by (t+ 1).

C. Dual branch EGC in Nakagami-m fading

In EGC scheme, the received signals at each branch are

weighted by their corresponding phases and combined to yield

a new signal which is fed to the ED input. For this case, the

PDF of β can be easily obtained from that of γ given in [11,

eq. (32)] using the transformation of random variables to be

f(β) =
22−2m

√
πΓ(2m)m2m

Γ2(m)Γ(2m+ 1/2)
β2m−1e−2mβ

× 1F1

(

2m; 2m+ 1/2;mβ
)

.

(14)

Performing the series expansion of (14) as β → 0+

and comparing the result with (4) yields t = 2m − 1,

a0 = [22−2m
√
πΓ(2m)m2m]/[Γ2(m)Γ(2m + 1/2)], a1 =

−[2m(2m + 1)]/[4m + 1]a0, a2 = [2m2(4m2 + 6m +
3)]/[(4m+1)(4m+3)]a0. Then, application of Proposition 1

followed by Proposition 2 gives P
asy

md.

D. Dual branch SC in Nakagami-m fading

Unlike EGC, the SC only selects the antenna branch having

the largest SNR and thus has a reduced complexity. For this

case, using [11, eq. (50)] with L = 2, we can write the PDF

of β after transformation of random variables, to be

f(β) =
2mm

Γ2(m)
βm−1e−mβG(m,mβ), (15)

where G(a, z) =
∫ z

0 x
a−1e−xdx is the lower-incomplete

Gamma function [15]. Series expanding f(β) as β → 0+

and comparing the resulting expression with (4), we get:

t = 2m− 1, a0 = [2m2m−1]/[Γ2(m)], a1 = −[2m2m(2m+
1)]/[(m+1)Γ2(m)] and a2 = [2m2m+1(2m2+4m+1)]/[(m+
1)(m+ 2)Γ2(m)]. Thus, Proposition 1 and Proposition 2 can

be readily applied to yield P
asy

md.

The remarkably high accuracy of our derived results for both

EGC and SC is clear (Fig. 2). Note that the exact Pmd for EGC

and SC are obtained from P d derived in [11, eq. (38)] and

[11, eq. (55)] respectively, as infinite series expressions with

hypergeometric function of two variables. Such expressions

are highly complicated and do not reveal the sensing gain

explicitly. In contrast, our expressions clearly show the sensing

gain (given by t+1) to be 2m (also given by negative slopes

of the graphs in Fig. 2 at high SNR (≥ 19 dB).

VI. CONCLUSION AND FUTURE WORK

A new representation for the PDF of the fading channel

gain has been proposed and utilized to derive simple, uni-

fied, closed-form asymptotic expression for the miss-detection

probability of an ED. Several examples for fading channels and

antenna diversity combining demonstrate the high accuracy

(e.g., 7-significant digit accuracy over 0 ≤ γ dB <∞) of our

analysis compared to the existing asymptotic [12] in addition

to explicitly revealing the sensing gain. Our analysis may

also be extended to cases when the PDF of β is unknown

but its MGF is known, and to cases when cooperative and

non-cooperative (interfering) transmissions take place. Further,

our analysis may well be utilized to evaluate performance

metrics such as the error probability, probability of outage

and ergodic capacity which are often used to characterize

the performance of coherent/non-coherent modulation schemes

over fading channels. These results will be provided in a

forthcoming paper.

APPENDIX

A. Derivation of P
asy

md (9)

Utilizing an alternative representation of the Marcum-Q
function, the integral in (2) can in general be expressed in

terms of a contour integral of the form [11]

Pmd = 1− e−
λ
2

2π

∮

∆

Mγ

(

1− 1

z

)

e
λ
2 z

zu(1− z)
dz, (16)

where ∆ is a circular contour of radius r such that 0 < r < 1,

and  denotes the imaginary unit. After expressing the MGF of

γ, Mγ(s), in (16) in terms of the MGF of β using Mγ(s) =



Mβ(sγ), and substituting the MGF of f app(β): Mapp

β (s) ,

E [e−sβf app(β)], which can be derived to be

Mapp

β (s) = aΓ(t+ 1)

[

1

(s+ θ1)t+1
+

1

(s+ θ2)t+1

]

, (17)

into the resulting expression, followed by some steps of

algebraic manipulations, we get

P
asy

md = 1− aΓ(t+ 1)e−
λ
2

2π

∮

∆

[g1(z)dz + g2(z)]dz, (18)

where for i = {1, 2},

gi(z) =
1

(θi + γ)t+1

eλz/2

(z − ηi)t+1zu−t−1(1− z)
,

and ηi , γ/(θi + γ) represents the i-th pole of gi(z) having

an order of (t + 1). To evaluate the contour integral in (18),

residue of the pole at z = 0 of order (u− t− 1) and residues

of poles at z = {η1, η2} of order (t+1) need to be evaluated.

In general, two cases must be treated separately.
Case I: u > t + 1: In this case, the function gi(z), ∀i =

{1, 2} contains (t+1)-th ordered pole at z = ηi and (u−t−1)
ordered pole at z = 0. Thus, P

asy

md for this case is given by

P
asy

md = 1− aΓ(t+ 1)e−
λ
2

×
2

∑

i=1

[

Res(gi; ηi, t+ 1) + Res(gi; 0, u− t− 1)
]

,
(19)

where Res(gi; z0, p) denotes the Residue of the function gi(z)
at pole z = z0 of order p which is defined as [18]

Res(gi; z0, p) ,
1

(p− 1)!

dp−1

dzp−1
[gi(z)(z − z0)

p]

∣

∣

∣

∣

z=z0

=
1

(p− 1)!
ξ(p)z0 ,

(20)

where we use ξ
(p)
z0 to denote the p-th order derivative of a

function ξ(z) with respect to z evaluated at z = z0.
Case II: u ≤ t+1: For this case, there is no pole at z = 0

and only the poles at z = {η1, η2} contribute to the integral

which thus leads to

P
asy

md = 1− aΓ(t+ 1)e−
λ
2

2
∑

i=1

[

Res(gi; ηi, t+ 1)
]

. (21)

Thus, for both cases, evaluation of the respective residues is

needed. The residues Res(gi; ηi, t + 1), ∀i = {1, 2} can be

expressed in closed-form to be (Appendix B)

Res(gi; ηi, t+ 1) =
1

(θi + γ)t+1t!

t
∑

k=0

(

t

k

)

ψ(k)
ηi
φ(t−k)
ηi

, (22)

where ψ(z) , 1/(zu−t−1) and φ(z) , eλz/2/(1 − z).
Following similar steps, Res(gi; 0, u− t−1) can be expressed

as (similar details omitted for brevity)

Res(gi; 0, u− t− 1) =
1

(θi + γ)t+1(u− t− 2)!

×
u−t−2
∑

k=0

(

u− t− 2

k

)

χ
(k)
0 φ

(u−t−k−2)
0 , (23)

where χ(z) , 1/(z − ηi)
t+1. Then, (19) and (21) along with

(22)-(23) yield (9).

B. Derivation of (22)

Using the definition of the Residue (20), Res(gi; ηi, t+ 1)
can be expressed as

Res(gi; ηi, t+ 1) =
1

(θi + γ)t+1t!

dt

dzt
[ψ(z)φ(z)]

∣

∣

∣

∣

z=ηi

. (24)

Then, applying the general Leibniz rule for t-th order deriva-

tive of a product [15, eq. (3.3.8)] on the right hand side of

(24) followed by evaluating the resulting expression at z = ηi
yields (22). Note that ψ

(k)
ηi (and χ

(k)
0 ) can be derived by

mathematical induction to be as in (10). For deriving φ
(t−k)
ηi ,

the Leibniz rule can be re-applied after expressing φ(z) as a

product of the terms eλz/2 and 1/(1− z) then following some

steps of manipulations to yield (11).
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