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Abstract—Performance analysis of the p-norm detector to
date has been limited to ad hoc approximations, non-fading
channels and Rayleigh fading. To overcome these limitations, we
develop several analytical/numerical solutions for the detection
probability Pd and the false alarm probability Pf , which are
necessary to specify the receiver operating characteristic curves
of the p-norm detector. First, for non-fading channels (additive
white Gaussian noise only), the moment generating function
(MGF) of the decision variable is derived in two forms: (i)
closed-form for even-integer p and (ii) series-form for arbitrary
p. To evaluate Pd and Pf , a numerical method utilizing the
Talbot inversion is developed for case (i), and an infinite series
expansion with convergence acceleration based on the ϵ-algorithm
is derived for case (ii). As an alternative to MGF-based analysis,
a Laguerre polynomial series is also used to derive new Pd

and Pf approximations. Second, series-form MGF-based Pd

expressions are derived for κ-µ and α-µ fading channels. Third,
for antenna diversity reception, new p-law combining (pLC) and
p-law selection (pLS) schemes are proposed. The performance
of these combiners with the p-norm detector is derived for
Nakagami-m fading and is compared to that of the classical
maximal ratio combining (MRC) and selection combining (SC).
Interestingly, both pLC and pLS perform similarly to SC at
low signal-to-noise ratio (SNR) but outperform it at relatively
high SNR, with pLC performing closer to the optimal MRC.
Numerical results are presented to verify the derived results and
to provide further insights.

Index Terms—p-norm detector, energy detector, detection
probability, false alarm probability, moment generating function,
diversity combining.

I. INTRODUCTION

W IRELESS signal detection is essential for applications
such as radar [1], spectrum sensing in cognitive radios

(CRs) [2], and impulse radio-based ultra-wideband (UWB)
communications [3]. Three most popular signal detection
techniques are matched filter detector, energy detector, and
cyclostationarity-based detector [2]. Matched filtering is a
coherent detection technique requiring demodulation of the
signal under test (SUT) and thus needs a priori information
about the SUT (e.g., modulation format, pulse shaping, phase,
etc.). However, in practice, such information may not always
be available at the receiver thus rendering the matched filter
detector infeasible. The cyclostationarity-based detector ex-
ploits the built-in periodicity (if any) in the modulated signal
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resulting due to sine wave carriers, pulse trains or cyclic
prefixes [2]. Thus, while periodicity may be used to distinguish
a modulated signal from noise, identification of periodicity
requires a large sampling rate and high computational com-
plexity. Moreover, such technique is highly sensitive to the
sampling clock errors [4]. These facts motivate the use of
non-coherent detectors like the energy detector (ED) [5] which
operates without any a priori SUT information and has a low
implementation complexity. Recently, the decision variable of
ED was generalized as

T =
1

N

N∑
i=1

|yi|p, (1)

where yi ∀i ∈ {1, 2, ..., N} is the i-th received signal sample,
p > 0 is an arbitrary constant, and N is the total number of
samples [6], [7]. This detector, also known as the improved
energy detector [6], [8], [9] or the Lp-norm detector [7], is re-
ferred to as the p-norm detector throughout this work. Clearly,
ED, whose performance has been analyzed extensively [10]–
[17], is a special case of the p-norm detector (i.e. p = 2).

Recent results indicate the advantages of the p-norm de-
tector compared to ED. First, choosing p ̸= 2 may yield a
performance gain and hence the best p value depends upon the
probability of correct detection, the probability of false alarm,
the signal-to-noise ratio (SNR), and the received signal sample
size [6]. Second, adaptive optimization of p yields remarkable
performance gain over the ED with the resulting performance
closer (than ED) to the locally optimal detector1 at very low
SNRs [7]. Moreover, the optimal p that minimizes the total
error rate is not equal to 2 in general, and other p values may
provide more reliable (less erroneous) detection performance
[8], [9].

However, the existing p-norm detector performance analyses
are limited by some ad hoc assumptions. For example, refer-
ence [6] assumes T as Gamma distributed, an approximation
that is more accurate for lower p, higher N and relatively
low SNR. For CR networks operating at low SNRs, reference
[7] assumes a large N (N ≫ 1) such that the central-limit
theorem (CLT) holds, and thus T is approximately Gaussian.
However, in practice, the requirement of a low sensing time
conflicts with the large sample assumption. The assumption
of a single received signal sample (N = 1) per CR and per
antenna used in [8] and [9] severely limits the reliability of
detection. Overall, what is lacking is a more exact and general
performance analysis of the p-norm detector.

1A locally optimal detector is asymptotically optimal at low SNR.
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Moreover, the existing analyses are limited to additive white
Gaussian noise (AWGN) (non-fading) [6] and Rayleigh-fading
[7], [8], [9]. However, spatially correlated non-homogeneous
scattering occurs in real propagation environments [18], which
are better modeled by the κ-µ and the α-µ distributions. The
κ-µ distribution is a small-scale fading model with line-of-
sight (LOS) conditions (indicated by κ) and µ is associated
with the number of multipath clusters [18]. The κ-µ model
includes the Rayleigh, Rician and Nakagami-m fading models
as special cases. On the other hand, the α-µ fading model
relates α and µ to the non-linearity and to the number of
multipath components, respectively [19]. Likewise, the α-
µ model includes Weibull, Gamma, Nakagami-m, Rayleigh,
exponential and one-sided Gaussian models as special cases.
Moreover, field trials have confirmed that the κ-µ and the
α-µ distributions outperform the classical fading models in
fitting the experimental data due to the comprehensive range
(versatility) of these models’ parameter values [18], [19].
Thus, evaluation of the p-norm detection performance in these
generalized fading models is useful

(i) to quantify the performance loss (relative to the non-
fading case) incurred in realistic fading channels and,
potentially, to help in designing detectors robust to such
impacts, and

(ii) to determine the required SNR and related parameter val-
ues necessary to achieve a prescribed performance in non-
homogeneous and non-linear propagation environments.

In addition, as wireless fading fundamentally limits perfor-
mance, antenna diversity-combining techniques are used to
mitigate its impact [20]. Thus, achievable performance gains
by integrating these techniques with the p-norm detector
must be quantified. Hence, the p-norm detection performance
analysis in generalized fading channels and with diversity
reception is of interest.

Such analysis is challenging because the distribution of T
in (1) appears intractable (in general). This distribution is
necessary to obtain the detection probability (Pd) and the
false alarm probability (Pf ), which are essential to specify the
receiver operating characteristic (ROC) curves of the detector
(see Section V). Since the exact probability density function
(PDF)-based analysis appears intractable, we consider utilizing
the moment generating function (MGF) of T . Fortunately,
the MGF of T can be obtained as a product of MGFs of
its summands (for statistically independent summands) and
thus is more amenable to a tractable analysis. Furthermore,
we show that this approach facilitates analysis in fading
and diversity reception. To the best of our knowledge, no
such comprehensive p-norm detection performance analysis is
currently available. This paper addresses the aforementioned
issues in the following ways:

• First, for non-fading channels (i.e. channels with AWGN
only), three solutions for Pd and Pf are developed: (i)
for even-integer values of p, a closed-form MGF of
the decision variable T is derived. Then, by using the
Talbot’s method for Laplace transform inversion [21],
which is highly accurate and easy to program [22], a
computationally efficient solution is developed; (ii) for

any arbitrary p, series-based MGF of T is derived and
utilized to obtain accurate infinite series expressions with
convergence acceleration based on the ϵ-algorithm [23];
(iii) a generalized Laguerre polynomial series [24] for
the distribution of T is used to derive new approximate
expressions. This approximation is more versatile than
the Gamma approximation [6] and more accurate than
the CLT approximation (for a few samples).2

• Second, to characterize the p-norm detector performance
across a wide range of realistic multipath fading envi-
ronments, the series MGF-based analysis is extended to
obtain accurate series-form expressions for the average3

probability of detection over κ-µ and α-µ fading.
• Third, to assess the performance with antenna diver-

sity reception (in fading), two non-coherent combining
schemes, p-law combining (pLC) and p-law selection
(pLS), are proposed. These combiners are compared
against two classical diversity-combining techniques,
maximal ratio combining (MRC) and selection combining
(SC), by deriving their performance in Nakagami-m
fading channels. Interestingly, both pLC and pLS perform
similarly to the traditional SC at low SNR but outperform
it at relatively high SNR, with pLC performing closer to
the optimal MRC. Furthermore, since pLC and pLS do
not require any channel state information (CSI), they are
more useful than classical MRC and SC schemes for the
p-norm detector (which functions without any CSI).

The organization of this paper is as follows. The system
model is described in Section II. The detection and false alarm
probabilities in the AWGN channel are derived in Section
III. The series MGF-based analysis is utilized to derive the
average detection probabilities over κ-µ and α-µ fading and
with antenna diversity reception over Nakagami-m fading in
Section IV. Numerical results are discussed in Section V.
Concluding remarks are made in Section VI.

II. SYSTEM MODEL

Notations CN (x, σ2
x), P(·), u(·), E [·], Var[·], ℜ{·}, ȷ and

L−1[·], respectively, denote complex Gaussian distribution
with mean x and variance σ2

x, probability of an event, unit step
function, mathematical expectation, variance, real part of a
complex quantity, imaginary unit (

√
−1), and inverse Laplace

transform.
The problem of signal detection can be formulated as a

binary hypothesis test where hypotheses H0 and H1 represent
the cases when the SUT is absent and present, respectively.
After baseband down conversion and a sampling process, the
i-th signal sample ∀i ∈ {1, 2, ..., N} can be written as

yi =

{
wi : H0,
hiSi + wi : H1,

where hi, Si and wi are i-th sample of the complex fading
channel gain, SUT and noise, respectively. The signal and

2The CLT approximation is a reference benchmark. It is considered for
p-norm detection in [7] and in general, for signal detection, in [25].

3The term “average” implies the mathematical expectation with respect to
the multipath fading distribution.
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the noise samples are independent and identically distributed
(i.i.d.) with Si ∼ CN (0, σ2

S)
4 and wi ∼ CN (0, σ2

w). The
channel samples are i.i.d as well.5 The signal, noise and the
channel gain are statistically independent of each other.

In a recent study [6], it is argued that the ED, which is
based on the maximization of the likelihood function, does
not necessarily maximize the probability of correct detection
or minimize the probability of erroneous decision. This fact
has led to the introduction of the p-norm detector [6], [7]. After
normalizing the decision variable in (1), the p-norm decision
rule may be written as

T =
1

N

N∑
i=1

Y p
i

H1

R
H0

λ, (2)

where we define Yi , |yi|/σw and λ is the detection threshold.
Under the system model considered, the distribution of the i-
th received signal sample under H0 and H1 follows complex
Gaussian distribution with yi|H0 ∼ CN (0, σ2

w) and yi|H1 ∼
CN (0, σ2

w(1+ γi)), respectively, with γi , |hi|2σ2
S/σ

2
w being

the instantaneous received SNR of the i-th sample.
Two important performance metrics of the detector are the

detection probability Pd, and the false alarm probability Pf ,
which are defined as

Pd , P(T > λ|H1) = 1− FT |H1
(λ),

Pf , P(T > λ|H0) = 1− FT |H0
(λ).

(3)

Here Pd and Pf are the complementary cumulative distribution
functions (CCDFs) of T under hypothesis H ∈ {H1,H0},
respectively, with FT |H(·) denoting the CDF under hypothesis
H . The baseline objective of this work is to develop expres-
sions for both Pd and Pf . Note that Pd depends on the received
SNR whereas Pf does not. Thus, in the fading channels, only
the detection probability needs to be averaged over the PDF
of the received SNR.

III. DERIVATION OF Pd AND Pf IN AWGN
In AWGN, hi = 1,∀i ∈ {1, 2, ..., N} and thus we define

γ , σ2
S/σ

2
w dropping the subscript ‘i’. The results for AWGN

derived in this section establish an upper bound on the achiev-
able detection performance and also facilitate the subsequent
extension to multipath fading and diversity reception scenarios.
Moreover, these results are important for a fair comparison
with the existing Gamma approximation [6].

As the distribution of yi under each hypothesis is complex
Gaussian, the squared amplitude of normalized i-th sample Y 2

i

4Gaussian signal assumption is valid, for example, in an Orthogonal
Frequency Division Multiplexing (OFDM) signal having a large number of
sub-carriers [26], [27]; in frequency-shift keying (FSK) signals that can be rea-
sonably approximated as Gaussian process due to the complex time-structure;
in radio-spectroscopy where the radiation process can be approximated as a
Gaussian process due to collision-broadening or other atomic effects; or in
radio-astronomy where the signals generated from radio-stars or gas clouds
can be modeled as Gaussian which has varying intensities over the radio
spectrum [28].

5This assumption is valid for time-selective fading channels, which are
typical in some practical situations (e.g., when there is relative motion between
the transceiver pair [29], or when the transceiver pair have a carrier frequency
offset due to their oscillators’ mismatch [30]). Nevertheless, the analytical
approach developed in the paper can be readily extended for time-flat fading
channels as well.

is exponentially distributed as Y 2
i |H0 ∼ e−xu(x) for H0, and

Y 2
i |H1 ∼ [1/(1 + γ)]e−x/(1+γ)u(x) for H1. The MGF of the

detector’s decision variable T under hypothesis H is defined
as MT |H(s) , ET |H

[
e−sT

]
. Since the noise samples as well

as the signal samples are i.i.d. and mutually independent of
each other, the MGF of T can be expressed as a product of
the MGFs of Y p

i /N ∀i ∈ {1, 2, ..., N}, given as

MT |H(s) =

[
ET |H

(
e−

s
N

(
|yi|
σw

)2· p
2
) ]N

=

[ ∫ ∞

0

e−
s
N xp/2

·AHe−AHxdx

]N
,

(4)

where AH is a parameter under hypothesis H defined as

AH ,
{

1 H0,
1/(1 + γ) H1.

A. Closed-form MGF-based analysis for even-integer p

Considering even-integer p and using [31, eq. (4)] to solve
the integral in (4) results in a closed-form MGF of the form

MT |H(s)=

[ √
p/2

(
√
2π)p/2−1

G
p
2 ,1

1, p2

(
2p/2A

p/2
H N

pp/2s

∣∣∣∣∣ 1
2
p ,

4
p , ..., 1

)]N
,

(5)

where G·,·
·,·(·) is the Meijer’s G-function [32, eq. (4)]. Then,

the CDF of T under H , FT |H(λ), can be obtained from the
inverse Laplace transform of MT |H(s)/s as

FT |H(λ) =
1

2πȷ

∫
B

MT |H(s)

s
esλds

=
1

2πȷ

∫
B

M̂T |H(s) esλds,

(6)

where B is the Bromwich contour [21] and we define
M̂T |H(s) = MT |H(s)/s. An analytical expression for
FT |H(λ) appears intractable. Moreover, a direct computation
of the above integral over B is impractical due to possible
oscillations of esλ (where s = c + ȷw) as |w| → ∞, and
thus Talbot suggested a deformation of the contour [21] for
evaluating such integrals. To improve the numerical stability of
such evaluation in a fixed-precision computing environment, a
multi-precision method termed the “fixed Talbot method” was
proposed in [22], which suggests an alternative form of the
integral as

FT |H(λ) =
1

2πȷ

∫ π

−π

M̂T |H [s(θ)] · s′(θ)eλs(θ)dθ, (7)

where s(θ) = rθ(cot θ + ȷ) with |θ| < π, s′(θ) being the
derivative of s(θ) w.r.t. θ, and r = 2W/(5λ) with integer W
controlling the desired precision for the fixed Talbot method
[22]. The integral in (7) can then be evaluated by using the
trapezoidal rule with step size π/W and θk = kπ/W , and
hence the CDF FT |H(λ) can be computed as [22], [33]

FT |H(λ) =
r

W

(
1

2
M̂T |H(r)erλ

+
W−1∑
k=1

ℜ{eλs(θk)M̂T |H [s(θk)] (1 + ȷσ(θk))}
)
,

(8)
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where σ(θ) = θ + (θ cot θ − 1) cot θ. Based on [22], the
number of significant digits of FT |H(λ) calculated in (8) is
approximately equal to 0.6W .

Then, the CCDF of T |H can immediately be expressed as

P(T ≥ λ|H) = 1− r

W

(
1

2
M̂T |H(r)erλ

+

W−1∑
k=1

ℜ{eλs(θk)M̂T |H [s(θk)] (1 + ȷσ(θk))}
)
.

(9)

By substituting AH = 1/(1 + γ) and AH = 1, respectively,
into (5) and subsequently using (9), Pd and Pf can be com-
puted accurately. Note that a numerical software package such
as MATHEMATICA can be readily used for the evaluation of
(9). Hence, (9) offers a computationally attractive solution for
both Pd and Pf when p is an even-integer.

B. Series MGF-based analysis for arbitrary p

In this section, starting from the derivation of a series-form
MGF of T , novel series solutions are obtained for Pd and
Pf which are valid for any arbitrary p. Substituting e−x =∑∞

v=0 (−1)vxv/v! inside the integral in (4), interchanging
the order of integration and summation, and using [32, eq.
(3.326.2)], we have

MT |H(s) =

[
2

p

∞∑
v=0

(−1)vAv+1
H N2(v+1)/p

v! s2(v+1)/p
Γ

(
2(v + 1)

p

)]N
,

(10)
where Γ(x) =

∫∞
0

tx−1e−tdt is the Gamma function [34, eq.
(6.1.1)]. By using [32, eq. (0.314)] to further simplify (10),
the series-form MGF can be obtained as

MT |H(s) =
2N

pN

∞∑
v=0

Cv|HN2(v+N)/p

s2(v+N)/p
, (11)

where

Cv|H =
1

v Γ(2/p)AH

v∑
k=1

(kN − v + k)
(−1)k

k!

× Γ

(
2(k + 1)

p

)
Ak+1

H Cv−k|H , v ≥ 1,

and C0|H = [Γ(2/p)AH ]N . The CDF FT |H(λ) can then be
obtained by using the inverse Laplace transform

L−1

[
Γ(a+ 1)

sa+1

]
= ta, a > −1,

on MT |H(s)/s, and subsequently, the CCDF under hypothesis
H can be expressed as

P(T > λ|H) = 1− 2N

pN

∞∑
v=0

Cv|H(Nλ)2(v+N)/p

Γ
(

2(v+N)
p + 1

) . (12)

Thus, the use of (12) after substituting AH = 1/(1 + γ)
and AH = 1 for hypothesis H1 and H0 in the expression for
Cv|H yields the detection probability Pd and the false alarm
probability Pf , respectively. For the sake of brevity, we omit
re-writing similar expressions.

TABLE I: The ϵ-table.

c = −2 c = −1 c = 0 c = 1 ...

0 ϵ(0, 0) = S0 ϵ(0, 1) ϵ(0, 2) ...
0 ϵ(1, 0) = S1 ϵ(1, 1) ϵ(1, 2) ...
...

...
...

... . .
.

0 ϵ(η − 3, 0) = Sη−3 ϵ(η − 3, 1) ϵ(η − 3, 2)
0 ϵ(η − 2, 0) = Sη−2 ϵ(η − 2, 1)
0 ϵ(η − 1, 0) = Sη−1

Moreover, (12) can be expressed as an alternating series-
sum such that the CCDF under hypothesis H is P(T >
λ|H) = 1−

∑∞
v=0(−1)vDv|H , with

Dv|H , 2N

pN
·
|Cv|H |(Nλ)2(v+N)/p

Γ
(

2(v+N)
p + 1

) .

Our experiments show that Dv|H is readily decreasing with
increasing v. Thus, the infinite sum S∞ =

∑∞
k=0(−1)nDk|H

can be estimated by a partial sum of its nt terms of the
form Snt =

∑nt

k=0(−1)nDk|H , and the truncation error Etr

can thus be upper-bounded as |Etr| < |Dnt+1|H |. Although
the absolute truncation error |Etr| readily decreases with
increasing nt, the rate of convergence may be accelerated by
using the powerful ϵ-algorithm. The ϵ-algorithm transforms
the original series into convergents of its associated continued
fractions thus resulting in a faster rate of convergence (i.e.
fewer terms to achieve a given precision) [23].

The objective of the ϵ-algorithm is to estimate S∞ by using
as few partial sums as possible. This algorithm generates a
two-dimensional triangular array called the ϵ-table as shown
in Table I with entries ϵ(k, c+ 1), where k = 0, 1, 2, ... is the
row index and c = −2,−1, 0, 1, 2, ... determines the column
index. The first two columns (column ‘-2’ and column ‘-1’) are
initialized as ϵ(k,−1) = 0, ϵ(k, 0) = Sk ∀k ∈ {0, 1, ..., η−1},
with η representing the total number of terms used in the
partial sum. The remaining columns are updated as

ϵ(k, c+ 1) = ϵ(k + 1, c− 1) + [ϵ(k + 1, c)− ϵ(k, c)]−1,

where c ≥ 0. As the value of η is increased (which leads
to the corresponding increase in the number of columns),
the even columns of the ϵ-table contain increasingly accurate
estimates of S∞ [23]. The algorithm stops (no further increase
in η) when the desired precision is attained at a particular
even column (i.e., the values in the column converge with
the desired precision). Then any value in the column can be
used as an estimated S∞ and the corresponding value of η
represents the number of terms needed in the ϵ-algorithm.
For example, for a 2.5-norm detector at SNR of 0 dB, with
N = 4 at Pf = 0.01, η = 21 terms are sufficient for the ϵ-
algorithm applied to (12) for computing Pd with 4-decimal
points accuracy, as compared to nt = 33 terms without
convergence acceleration. More examples in Table II (obtained
with accuracy of 4-decimal points) clearly show the advantage
of the ϵ-algorithm in increasing the convergence rate (hence
reducing the computation time).
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TABLE II: Number of terms needed in (12) for computation of Pd with and without (w.o.) using ϵ-algorithm.

γ = −15 dB, λ = 5 γ = 0 dB, λ = 7 γ = 10 dB, λ = 7

p 1.8 2.5 3.5 1.8 2.5 3.5 1.5 4

N 2 4 2 4 2 4 4 4 4 5 10 5 10

Eq. (12) w.o. ϵ-algorithm 41 79 25 47 19 33 59 33 23 29 59 7 7
ϵ-algorithm 21 63 15 23 13 19 27 19 13 15 33 5 3

C. Generalized Laguerre polynomial series-based approxima-
tion

In this section, we derive approximate expressions for the
detection and false alarm probabilities based on a generalized
Laguerre polynomial series representation of the decision
variable.

We propose approximating the PDF of the decision variable
T by a weighted sum of the generalized Laguerre polynomials
of the form [24] 6

fT (z)≈
βzαe−z

Γ(α+ 1)

Ng∑
n=0

rnL
α
n(z), z ≥ 0, α ≥ −1, (13)

in which

Lα
n(z) ,

n∑
u=0

(−1)u

u!

Γ(α+ n+ 1)

Γ(n− u+ 1)Γ(α+ u+ 1)
zu

is the generalized Laguerre polynomial [38], and the coeffi-
cient rn is given by7

rn =
n! Γ(α+ 1)

β Γ(n+ α+ 1)

n∑
ν=0

(−1)ν Γ(α+ n+ 1)βνmν

ν! Γ(n− ν + 1)Γ(α+ ν + 1)
,

(14)
where mν = E(T ν) is the ν-th moment of T , and the
parameters α and β are given by

α =
2m2

1 −m2

m2 −m2
1

, β =
m1

m2 −m2
1

.

Note that the moment mν depends on the hypothesis H ∈
{H0,H1} and can be obtained by multinomial expansion of
(2) followed by some algebra as

mν |H =
1

Nν

∑
Λν

(
ν

k1, ..., kN

)
EY1,Y2,...,YN |H

[ N∏
i=1

Y kip
i

]
,

where Λν = [k1, ..., kN |k1 + ...+ kN = ν, k1, ..., kN ≥ 0].
Utilizing the i.i.d. property of Yi ∀i ∈ {1, 2, ..., N} followed
by evaluation of the mathematical expectation, we can show
that

mν |H =
1

Nν

∑
Λν

(
ν

k1, ..., kN

) N∏
i=1

A
− kip

2

H Γ

(
kip

2
+ 1

)
. (15)

By substituting the definition of Lα
n(z) into (13), integrating

the resulting expression from z = 0 to z = λ, and changing the

6In this paper, the usefulness of the Laguerre approximation is demonstrated
by using only a few summands Ng . For a detailed convergence analysis of
the approach, we refer the readers to [35]–[37].

7Note that the factor β in the denominator outside the summation in (14)
necessary to normalize the area under the PDF (13) to unity is missing in
[24, eq. (10)].

order of integration and summation followed by some algebra,
the CDF of T can be obtained as

F Lag
T (λ) =

Ng∑
n=0

rnβ

Γ(α+ 1)

n∑
u=0

ζ(u, n, α, λ), (16)

in which

ζ(u, n, α, λ) , (−1)uΓ(α+ n+ 1)

u!Γ(n− u+ 1)Γ(α+ u+ 1)
G(α+u+1, λ),

and G(a, x) =
∫ x

0
e−tta−1dt is the lower incomplete Gamma

function [34, eq. (6.5.2)].8 Since the moments mi of T are
different under the two hypotheses as revealed by (15), the
parameters α, β and rn are also hypothesis-dependent. Using
(15) for each hypothesis H ∈ {H0,H1} in the definition of α
and β, we get

α|H0 = α|H1 = (N+1)Γ2(p/2+1)−Γ(p+1)
Γ(p+1)−Γ2(p/2+1) ,

β|H0 = NΓ(p/2+1)
Γ(p+1)−Γ2(p/2+1) ,

β|H1 = A
p/2
H · β|H0.

Since α|H0 = α|H1, we simply denote them by α. Thus,
the probability of T exceeding λ under hypotheses H can be
expressed as the CCDF of (16) as

PLag(T > λ|H)=1−
Ng∑
n=0

rn|H · β|H
Γ(α+ 1)

n∑
u=0

ζ(u, n, α, λ), (17)

where rn|H for each H ∈ {H1,H0} is obtained from (14)
by replacing α, β|H1 and β|H0 for hypothesis H1 and H0,
respectively. Hence, the resulting expressions under H1 and
H0 yield the desired detection probability P Lag

d and false alarm
probability P Lag

f , respectively.
Note that (17) is obtained by approximating the PDF of

T by a weighted sum of a finite number (Ng) of identically
distributed Gamma random variables whose weights depend
on the corresponding Laguerre-polynomials. Interestingly, our
numerical results in Section V reveal that the Laguerre ap-
proximation is more versatile than the Gamma approximation
and more accurate than the CLT approximation (for a few
samples).

IV. ANALYSIS IN FADING AND DIVERSITY COMBINING

In this section, a unified approach based on the series-MGF
obtained in Section III-B is developed for deriving the average
detection probability in various fading and diversity reception
scenarios. Specifically, average detection probabilities over the
κ-µ and the α-µ fading are derived. As well, for a multiple-
antenna p-norm detector, the performance of the two proposed

8The superscript ‘Lag’ is used as shorthand notation for ‘Laguerre’.
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schemes, the pLC and the pLS, and of the classical MRC and
SC schemes are derived in Nakagami-m fading channels.

For fading channels, the instantaneous received SNRs
γi = |hi|2σ2

S/σ
2
w, ∀i ∈ {1, 2, ..., N} are random variables

whose PDFs depend on the fading channel (and/or diversity-
combining) model. Then, the probability of detection would
depend on the instantaneous SNRs γ = {γ1, γ2, ..., γN}.
Hence, the average probability of detection P d must be ob-
tained by integrating the instantaneous probability of detection
Pd(γ) over the joint PDF (JPDF) f(γ). Using (3) and (6),
Pd(γ) can be expressed as

Pd(γ) = 1− 1

2πȷ

∫
B

MT |H1
(s,γ)

s
esλds, (18)

where MT |H1
(s,γ) is the MGF of T |H1 conditioned on γ.

Then, P d can be obtained by integrating (18) over the JPDF
f(γ) as

P d = 1− 1

2πȷ

∫
γ

∫
B

MT |H1
(s,γ)

s
esλf(γ)dsdγ. (19)

Interchanging the order of integrations, (19) can be written as

P d = 1− 1

2πȷ

∫
B

esλ
MT |H1

(s)

s
ds, (20)

where MT |H1
(s) =

∫
γ
MT |H1

(s,γ)f(γ)dγ is the uncondi-
tional9 MGF of T |H1. Thus, (20) suggests that the average
detection probability can be easily obtained once we have the
inverse Laplace transform of the unconditional MGF of T |H1.

To evaluate (20), first, the need is to find MT |H1
(s).

For independently faded samples, the JPDF f(γ) can
be expressed as the product of each individual PDFs
f(γi), ∀i ∈ {1, 2, ..., N}. Thus, we have MT |H1

(s) =∏N
i=1 MY p

i /N |H1
(s), in which MY p

i /N |H1
(s) is the uncon-

ditional MGF of Y p
i /N under H1 given as MY p

i /N |H1
(s) =∫∞

0
MY p

i /N |H1
(s, γi)f(γi)dγi with f(γi) being the marginal

PDF of the instantaneous SNR of the i-th sample and
MY p

i /N |H1
(s, γi) being the conditional (on γi) MGF of Y p

i /N
under H1. Here MY p

i /N |H1
(s, γi) can be expressed in a series-

form following the steps similar to those used in the derivation
of (10) after replacing AH = 1/(1 + γi) as

MY p
i /N |H1

(s, γi)=
2

p

∞∑
v=0

(−1)vN2(v+1)/p

v! s2(v+1)/p

Γ
( 2(v+1)

p

)
(1 + γi)v+1

. (21)

Thus, for i.i.d. fading, we can write MT |H1
(s) =

[MY p
i /N |H1

(s)]N . Then, the only need is to obtain
MY p

i /N |H1
(s). As we will consider various statistical models

for f(γi), we rewrite the unconditional MGF MY p
i /N |H1

(s),
with the abuse of notations as

Mfd
Y p
i /N |H1

(s) =

∫ ∞

0

MY p
i /N |H1

(s, γ) ffd(γ)dγ, (22)

where the script ‘fd’ denotes the corresponding fading (and/or
diversity-combining) model under consideration. Solution of

9Henceforth, the term “unconditional” implies averaging (integration) over
the JPDF f(γ).

(22) would subsequently yield Mfd
T |H1

(s) and then the ap-

plication of inverse Laplace transformation on Mfd
T |H1

(s)/s
(similarly to the application in Section III-B) yields the
average probability of detection Pd,fd for the corresponding
fading (and/or diversity combining) scenario. In the following
sections, the unconditional MGF (22) is derived for different
channel models and various diversity-combining schemes on
a case-by-case basis.

A. The κ-µ Fading-No Diversity

The κ-µ distribution can model a wide variety of fading
environments with LOS propagation. The PDF of the instan-
taneous SNR for this fading model is given by [39]

fκ-µ(γ) =
µ(1 + κ)

µ+1
2 e−µκγ

µ−1
2

κ
µ−1
2 γ

µ+1
2 e−

µ(1+κ)
γ γ

Iµ−1

(
2µ

√
κ(1 + κ)γ

γ

)
,

(23)
where Iν(·) is the ν-th order modified Bessel function of first
kind [34], γ ≥ 0, and γ is the average received SNR. The
parameter κ > 0 is the ratio of the total power of the dominant
components to that of the scattered waves, and

µ =
E2{γ}
Var{γ}

(
1 +

2κ

(1 + κ)2

)
represents the number of multipath clusters. By replacing
the modified Bessel function of first kind in (23) with its
infinite series representation [34, eq. (9.6.10)], substituting the
resulting series for fκ-µ(γ) into (22), interchanging the order
of integration and summation, and finally, using the definition
of the confluent hypergeometric function of the second kind
[40],

U(a, b, z) =
1

Γ(a)

∫ ∞

0

e−ztta−1(1 + t)b−a−1dt, a, z > 0,

(24)
to solve the resulting integral, the unconditional MGF over
κ-µ fading Mκ-µ

Y p
i /N |H1

(s) can be derived to be

Mκ-µ
Y p
i /N |H1

(s) =
2µµ(1 + κ)µ

p eκµ γµ

×
∞∑
v=0

[
(−1)v

v!
Γ

(
2(v + 1)

p

)(
N

s

) 2(v+1)
p

×
∞∑
j=0

µ2jκj(1 + κ)j

γj j!
U

(
µ+ j, µ+ j − v,

µ(1 + κ)

γ

)]
.

(25)

The expression (25) is utilized to obtain the unconditional
MGF of T |H1 over κ-µ fading and subsequently used to
deduce the expression for the average detection probability
Pd,κ-µ in Section IV-D. Truncation of the resulting infinite
series occurring in Pd,κ-µ is discussed in Section IV-E.

Note that if the η-µ fading model [18] (which is a general-
ized fading model for non-LOS conditions) is considered, the
unconditional MGF similar to (25) can be obtained. Further,
the subsequent analysis would be similar and is thus omitted
for brevity.
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B. The α-µ Fading-No Diversity

In α-µ distribution, parameter α > 0 models the non-
linearity of the propagation medium, and parameter µ > 0
denotes the number of multipath clusters. The PDF of the
instantaneous SNR under this fading model is given by [41]

fα-µ(γ) =
αµµ

2Γ(µ)γ̃αµ/2
γαµ/2−1e−µ

(
γ
γ̃

)α/2

, (26)

where γ ≥ 0, and

γ̃ =
µ2/αΓ(µ)

Γ(µ+ 2/α)

Eb

N0
,

in which Eb/N0 is the energy per bit to noise power spectral
density ratio. Substituting the PDF (26) into (22) gives

Mα-µ
Y p
i /N |H1

(s) =
2

p

∞∑
v=0

[
(−1)v

v!
Γ

(
2(v + 1)

p

)(
N

s

) 2(v+1)
p

× 1

Γ(µ)

∫ ∞

0

αµµ

2γ̃αµ/2

γαµ/2−1e−µ
(

γ
γ̃

)α
2

(1 + γ)v+1
dγ

]
.

(27)

Unfortunately, an exact closed-form solution for the integral
in (27) appears to be intractable. However, by substituting

t =
µ

γ̃α/2
γα/2,

the integral can be alternatively expressed as I =∫∞
0

g(t)e−tdt with

g(t) = tµ−1

[
1 +

t2/α

µ2/α
γ̃

]−v−1

.

The integral I can then be approximated by a Gaussian-
Laguerre quadrature sum of the form

I =

∫ ∞

0

g(t)e−tdt ≈
NQ∑
q=1

wqg(tq),

where tq and wq are the abscissas and weight factors for the
Gaussian-Laguerre quadrature integration [34, eq. (25.4.45)].
Thus, (27) can be evaluated as

Mα-µ
Y p
i /N |H1

(s) ≈ 2/p

Γ(µ)

∞∑
v=0

[
(−1)v

v!
Γ

(
2(v + 1)

p

)

×
(
N

s

) 2(v+1)
p

NQ∑
q=1

wqg(tq)

]
.

(28)

The unconditional MGF (28) provides the basis for obtaining
the average detection probability Pd,α-µ in Section IV-D. As
(28) is derived using Gaussian-Laguerre approximation for the
integral in (27), the accuracy of the approximation is discussed
in conjunction with the expression for Pd,α-µ in Section IV-E.

C. Analysis for Antenna Diversity

In this section, the input to the p-norm detector comprises of
a total of L antennas. Two non-coherent combining techniques,
pLC and pLS, are proposed and compared against traditional
MRC and SC. Note that the proposed schemes can be readily
analyzed for κ-µ and α-µ channels. However, as the SNR of
the MRC output is given by the sum of the individual branch
SNRs (see Section IV-C3), its analysis in κ-µ or α-µ channel
requires an exact PDF of the sum of such variates. Such PDFs
are not available in the literature.10 As we are interested in
analyzing the effect of diversity-combining on the p-norm
detection performance and in determining the performance
of pLC and pLS relative to classical MRC and SC, i.i.d.
Nakagami-m fading over the diversity branches is considered
for further analysis. Each of the diversity-combining scheme
is treated separately in the following.

1) p-Law Combining (pLC): A schematic diagram of the
proposed pLC scheme is shown in Fig. 1 above. The received
signal at each branch is input to its p-norm device, which
raises each sample to the p-th power followed by sample-
averaging. This yields a total of L independent decision
variables T1, T2, ..., TL, which are added together to obtain
the pLC decision variable

Tplc =
L∑

l=1

Tl =
1

N

L∑
l=1

N∑
i=1

(Yi,l)
p,

where Yi,l is the i-th normalized sample received at the l-
th branch (this definition is similar to the definition of Yi in
(2) for a single branch).11 The final decision is made after
comparing Tplc against the threshold.

The PDF of the received SNR over a single branch
Nakagami-m fading is given by [20]

fNak(γ) =
1

Γ(m)

(
m

γ

)m

γm−1e−
m
γ γ , γ ≥ 0. (29)

We define Mplc
(Yi,l)p/N |H1

(s) as the unconditional MGF of
(Yi,l)

p/N |H1, which can be obtained by substituting (29) into
(22) and using the definition of the confluent hypergeometric
function of the second kind (24) to solve the resulting integral
as

Mplc
(Yi,l)p/N |H1

(s) =
2

p

(
m

γ

)m

×
∞∑
v=0

(−1)v

v!
Γ

(
2(v + 1)

p

)(
N

s

) 2(v+1)
p

U

(
m,m− v,

m

γ

)
.

(30)

As (Yi,l)
p/N are i.i.d. for all samples i ∈ {1, 2, ..., N}

and for all branches l ∈ {1, 2, ..., L}, the unconditional MGF
of the decision variable Tplc under H1 can be expressed as
a product of the unconditional MGFs Mplc

(Yi,l)p/N |H1
(s) such

that MTplc|H1
= [Mplc

(Yi,l)p/N |H1
(s)]NL. Note that the MGF

10Although approximations of the sum distributions of κ-µ and α-µ variates
are available, respectively, in [42] and [43], they require moment matching
for estimating the relevant parameters and are beyond the scope of this work.

11This scheme may be considered as a generalization of square-law
combining (SLC) scheme used in the conventional ED [10].
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Fig. 1: The proposed p-law combining (pLC) scheme

Fig. 2: The proposed p-law selection (pLS) scheme

of Tplc under H0 is MTplc|H0
(s) = [MT |H0

(s)]L, where
MT |H0

(s) is given by (10) with AH = 1. These MGFs form
the basis for obtaining the average detection probability Pd,plc
and the false alarm probability Pf,plc, respectively, in Section
IV-D.

2) p-Law Selection (pLS): The proposed pLS scheme is
shown in Fig. 2. In this scheme, the received signal at each
branch is passed through its p-norm device to obtain L
decision variables T1, T2, ..., TL. Then, only the branch with
the largest decision variable is selected such that the pLS
decision variable is given by Tpls = max{T1, T2, ..., TL}.12

The final decision is made after comparing Tpls against the
threshold. For the independent decision variables, the CDF of
Tpls can be expressed as

FT,pls = P(Tpls ≤ λ) = P(T1 ≤ λ, T2 ≤ λ, ..., TL ≤ λ)

=
L∏

l=1

[1− P(Tl > λ)].
(31)

Since the branches are i.i.d., the false alarm probability of the
pLS scheme can be expressed as

Pf,pls = 1− [1− Pf ]
L, (32)

where the Pf occurring in (32) is given by (12) for H = H0.
Similarly, it is easy to show that the average detection proba-
bility for the pLS scheme over Nakagami-m fading channels
can be obtained as

Pd,pls = 1− [1− Pd,Nak]
L, (33)

where Pd,Nak is the average detection probability of a single-
branch p-norm detector over Nakagami-m fading. Thus, to
evaluate (33), only Pd,Nak is needed, which can be obtained
from the unconditional MGF (30). The derivation of Pd,Nak is
discussed in IV-D.

12This scheme may be thought of as generalization of the square-law
selection (SLS) scheme used in the ED [10].

3) Maximal Ratio Combining (MRC): MRC is a coherent
combining scheme that requires the complete CSI at the
receiver [20]. Although the p-norm detector can function
without any CSI, the analysis in MRC is important mainly
because of its optimality, which helps to establish an upper
bound on the achievable detection performance against which
other combining schemes may be compared. In MRC, each of
the branches is weighted with the complex conjugate of the
corresponding fading coefficient and combined to yield the
signal ymrc(t) =

∑L
l=1 h

∗
l yl(t) where h∗

l and yl(t) denote the
complex conjugate fading coefficient and the received signal
respectively, for the l-th branch. The samples of ymrc(t) are
then fed into the p-norm detector.

For a total of L antennas, the MRC output SNR is given by
γmrc =

∑L
l=0 γl, where γl is the SNR of the l-th branch. For

i.i.d. branches in Nakagami-m fading, the MRC output SNR
is [20]

fmrc(γ) =
1

Γ(Lm)

(
m

γ

)Lm

γLm−1e−
m
γ γ , γ ≥ 0. (34)

Then, the unconditional MGF of the i-th sample of the
combined signal, Y p

i /N (with the abuse of notation), can be
obtained by substituting (34) into (22) as

Mmrc
Y p
i /N |H1

(s) =
2

p

(
m

γ

)Lm ∞∑
v=0

[
(−1)v

v!
Γ

(
2(v + 1)

p

)

×
(
N

s

) 2(v+1)
p

U

(
Lm,Lm− v,

m

γ

)]
,

(35)

where the definition of the confluent hypergeometric function
of second kind (24) is used to solve the resulting integral. The
unconditional MGF of T |H1 is then obtained as Mmrc

T |H1
(s) =

[Mmrc
Y p
i /N |H1

(s)]N , which will be used to derive the corre-
sponding average detection probability Pd,mrc in Section IV-D.

4) Selection Combining (SC): In SC, the branch with the
largest SNR is selected so that the resulting SNR is given by
γsc = max{γ1, γ2..., γL}. So, the SC is a reduced complexity
scheme which processes a single branch and thus, unlike
MRC, does not require a coherent sum of all branches’ signals
[20].

The PDF of output SNR for an SC receiver in i.i.d.
Nakagami-m fading channels with integer m is given by [44]

fsc(γ) =
L

Γ(m)

L−1∑
l=0

[
(−1)l

(
L− 1

l

)
e−

(l+1)m
γ γ

×
l(m−1)∑
ν=0

B(ν, l,m)

(
m

γ

)m+ν

γm+ν−1

] (36)

for γ ≥ 0, where B(ν, l,m) is defined as

B(ν, l,m) =
ν∑

ı=ν−m+1

B(ı, l − 1,m)

(ν − ı)!
I[0,(l−1)(m−1)](ı),

with B(0, 0,m) = B(0, l,m) = 1, B(ν, 1,m) = 1/(ν!),
B(1, l,m) = l, and

I[a,b](ı) =

{
1 a ≤ ı ≤ b,
0 otherwise.
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By substituting (36) into (22) and then using (24) to solve
the resulting integral, the unconditional MGF of Y p

i /N can
be expressed in the form

Msc
Y p
i /N |H1

(s) =
2L

pΓ(m)

∞∑
v=0

[
(−1)v

v!
Γ

(
2(v + 1)

p

)

×
(
N

s

) 2(v+1)
p

L−1∑
l=0

(−1)l
(
L− 1

l

) l(m−1)∑
ν=0

ρ(m, γ, l, v, ν)

]
,

(37)

where ρ(m, γ, l, v, ν) is defined as

ρ(m, γ, L, v, ν) , B(ν, l,m)

(
m

γ

)m+ν

Γ(m+ ν)

× U

(
m+ ν,m+ ν − v,

(l + 1)m

γ

)
.

Similar to MRC, the unconditional MGF of T |H1 is then given
by Msc

T |H1
(s) = [Msc

Y p
i /N |H1

(s)]N , which will be used to
derive the corresponding average detection probability Pd,sc
in Section IV-D.

D. Unified Expression for Average Detection Probability Over
Fading and Diversity Cases

The derived unconditional MGFs of the decision variables
for the respective cases can be expressed in a series-form
similar to (11) after using [32, eq. (0.314)]. We denote this
form by Mfd

T |H1
(s). Then, by applying the inverse Laplace

transform on Mfd
T |H1

(s)/s as in Section III-B, the average
detection probability for each of the fading and diversity-
combining cases, Pd,fd, can be expressed in a single compact
form as

Pd,fd = 1− 2Nξfd

pN

∞∑
v=0

Cv,fd · (Nλ)2(v+N)/p

Γ
( 2(v+N)

p

) , (38)

with

Cv,fd =
1

v Γ(2/p)a0,fd

v∑
u=1

(uN − v + u)
(−1)u

u!

× Γ

(
2(u+ 1)

p

)
au,fdCv−u,fd, u ≥ 1,

and C0,fd = [Γ(2/p)a0,fd]
N . The coefficients au,fd appearing in

the expression of Cv,fd are dependent on the respective fading
and diversity-combining cases and are derived to be

au,κ-µ =
∞∑
j=0

µ2jκj(1 + κ)j

γjj!
U

(
µ+ j, µ+ j − u,

µ(1 + κ)

γ

)
,

au,α-µ =

NQ∑
q=1

wqg(tq), au,mrc = U

(
Lm,Lm− u,

m

γ

)
,

au,sc =
L−1∑
l=0

(−1)l
(
L− 1

l

) l(m−1)∑
ν=0

ρ(m, γ, l, v, ν),

(39)

TABLE III: Number of terms in (38) for computing Pd,κ-µ with 4-
decimal points accuracy (λ = 7).

SNR (dB) p N κ µ Vκ-µ J

−15 4.5 6 1.5 2.4 19 15
0 2.7 3 3.2 1.5 25 16
5 1.8 2 4 3.2 36 31
5 3.3 4 1.5 2.2 17 12

TABLE IV: Number of terms in (38) for computing Pd,α−µ with
4-decimal points accuracy.

(SNR (dB), λ) p N α µ Vα-µ NQ

(−10, 7) 4 3 1.5 2.5 18 21
(−5, 5) 3 3 1.5 1 23 10
(3, 5) 2.5 6 3 2 25 14
(3, 5) 1.8 6 2 3.3 74 5

with ξfd for the corresponding cases defined as

ξκ-µ ,
(
µ(1 + κ)

eκγ

)Nµ

, ξα-µ ,
(

1

Γ(µ)

)N

,

ξmrc ,
(
m

γ

)NLm

, ξsc ,
(

L

Γ(m)

)N

.

(40)

For the pLC scheme, the average detection probability Pd,plc
is given by (38) with au,plc = au,mrc|L=1, and the false alarm
probability Pf,plc is given by (12) (for H = H0), with each
N occurring in (38) and (12) replaced by NL except the one
occurring as Nλ inside the summation. For the pLS scheme,
the average detection probability Pd,pls in (33) requires only
Pd,Nak, which is given by (38) for MRC with au,mrc|L=1

and ξmrc|L=1. For the sake of brevity, we omit re-writing the
expressions.

E. Computation of Pd,fd in (38)

As is clear from (38) and (39), the final expressions for
Pd,plc Pd,pls, Pd,mrc and Pd,sc require the evaluation of only a
single infinite series-sum similar to that for the AWGN case
in (12). The series expression for these cases can then be
truncated with a finite number of terms, and the truncation
error can be upper bounded in a similar manner.

The expression of Pd,κ-µ contains two infinite series-sums
in v and j, which have to be truncated with a finite number
of terms for computation. A tight truncation error upper
bound for Pd,κ-µ is difficult to obtain due to occurrence
of infinite sums in both the numerator and denominator of
the recursively computed coefficients Cv,κ-µ. Nevertheless,
our numerical experiments reveal that the sums are readily
converging and can be truncated with a finite number of terms,
which can be chosen to achieve the desired precision. For
example, the number of terms in v and j (denoted by Vκ-µ and
J respectively) for computing Pd,κ-µ with 4-decimal points
accuracy are shown in Table III.

Similarly, the expression of Pd,α-µ requires the evaluation
of an infinite series-sum in v and further includes the com-
putation of the Gaussian-Laguerre quadrature sum. Accurate
computation of Pd,α-µ is possible by truncating the infinite
series in v with Vα-µ terms and simultaneously choosing a
suitable number of terms NQ in the quadrature sum to satisfy
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Fig. 3: Comparison of the derived Talbot solution (9), series solution
(12) and the Laguerre approximation (17) against the existing Gamma
(Appendix I) and CLT (Appendix II) approximations for AWGN.

the overall precision requirement. Some examples with various
sets of values for 4-decimal points accuracy are shown in Table
IV.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, the p-norm detector performance is char-
acterized with several Pd vs. SNR curves, and the receiver
operating characteristics curves (popularly known as ROC
curves), which are the plots of Pd against Pf . Since a low
probability of false alarm is highly desirable (e.g., in IEEE
802.22, a CR requires Pf ≤ 0.1 [45]), we set Pf = 0.01
for all of the Pd vs. SNR plots. The detection threshold λ
is determined based on this requirement and used for the
computation of Pd. On the other hand, the ROC curves are
obtained by varying the threshold from a low to a high value
(theoretically, from 0 to ∞), and plotting the corresponding
Pd against Pf . These curves are important to jointly observe
how Pd and Pf vary with the detector parameters (SNR, p,
sample size, fading severity, and/or the number of antennas).

A numerical analysis to provide insights into the derived
results is presented next. Results of Monte-Carlo simulation
performed in MATLAB with 106 iterations are included wher-
ever necessary for validating the analysis.

A. Performance in AWGN (Fig. 3)

In Fig. 3, the Talbot method (9), the series solution (12),
the Laguerre approximation (17), the Gamma approximation
[6] (see Appendix I), and the CLT-based approximation (see
Appendix II) are compared. The results plotted for two dif-
ferent combinations of (p,N), namely (p = 2, N = 2) and
(p = 4, N = 5), give the following insights:

(i) The Talbot solution (9) and the series-based solution (12)
match exactly with the simulation results for both sets of
(p,N), thus validating the accuracy (exactness) of these
solutions.
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Fig. 4: Average detection probability (Pd) vs. average SNR (γ) for
3.5-norm detector in Rayleigh fading (using (38) with κ → 0,
µ = 1) for various samples, compared to the CLT approximation
and simulation.

(ii) For p = 2, the Gamma approximation is exact since the
decision variable is then a Gamma-distributed sum of N
independent exponential random variables. However, for
another p (p = 4), the decision variable is no longer
Gamma distributed, and the Gamma approximation de-
viates from the simulation. Interestingly, the proposed
Laguerre approximation matches the simulation for both
p values.

(iii) The Laguerre approximation has remarkably better accu-
racy than the CLT approximation.

Hence, from (ii)-(iii), we can say that the Laguerre approxi-
mation is more versatile than the Gamma approximation and
is more accurate than the CLT approximation (for a few
samples).

B. Effect of sample size N (Fig. 4)
The sample size N is a critical performance-determining

parameter of the detector. Hence, the effect of N on the
detection probability (Pd) over the Rayleigh fading channel
(obtained from Pd,κ-µ in (38) with κ → 0, µ = 1) is studied
in Fig. 4 for a 3.5-norm detector. The CLT approximation is
plotted for comparison. The results reveal that

(i) The reliability of detection improves drastically with the
number of received signal samples as compared to the
reliability of the detector with one sample (N = 1)
considered in [8] and [9]. For example, at SNR of 10 dB,
the 2-samples-based detector (N = 2) yields about 45%
higher detection probability than the one-sample detector.
Furthermore, even at a low SNR of −10 dB, the 15-
samples-based detector obtains about an 86% gain in
detection probability compared to the single sample-
based detector.

(ii) The CLT approximation13 deviates significantly, although

13Obtained by numerically integrating Pd,CLT (see Appendix II) over the
Rayleigh fading PDF f(γ) = 1/γ · exp(−γ/γ), γ ≥ 0.
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Fig. 5: Average detection probability (Pd,κ-µ) vs. average SNR (γ)
in a κ = 1.5, µ = 2.2 fading channel for various p with N = 6.
The AWGN plot is included for comparison. Discrete marks indicate
simulation values.
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Fig. 6: ROC curves (in log-log scale) for a 3-norm detector with
N = 3 for various κ-µ channels at SNR of 7 dB. The discrete marks
indicate the simulation results.

its accuracy improves with an increase in sample size.

C. Analysis in κ-µ fading (Fig. 5 and Fig. 6)

The effect of p on the detection probability Pd,κ-µ in (38)
for a fixed LOS (κ = 1.5) and fixed multipath (µ = 2.2)
condition is illustrated in Fig. 5. The following observations
are made:

(i) The ED (p = 2) does not necessarily yield the best
detection performance in κ-µ fading channels compared
to other detectors with p ̸= 2. For example, at SNR of
7 dB with N = 6, the 2.5-norm detector achieves 7%
higher Pd,κ-µ than that of the ED. The 3.3-norm detector
is the second-best one, when the SNR exceeds 2 dB. Even
the 4.5-norm detector possesses a higher Pd,κ-µ than that
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α = 2, µ = 2: ED

Fig. 7: ROC curves of a 2.7-norm detector for various α-µ channels
at SNR = 3 dB, N = 5. The ED (p = 2) plot is included for
comparison. The discrete marks on the graphs indicate the simulation
results.

of the ED for a received SNR above 6 dB. Thus, the ED
is not necessarily the best choice among all p in non-
homogeneous LOS propagation.

(ii) The comparison with the AWGN (no fading) reveals that
multipath fading severely affects the p-norm detection
performance. For example, at an SNR of 2 dB, the de-
tection probability reduces by as much as 40% compared
to the corresponding case without fading for a 2.5-norm
detector.

In Fig. 6, the ROC curves (plotted in log-log scale for clarity)
of a 3-norm detector with N = 3 for several LOS and
multipath conditions are shown. For a fixed multipath effect
(fixed µ), the detector performs better at stronger LOS (higher
κ) conditions. Likewise, the performance improves with the
increased multipath effect (higher µ) for a given LOS strength
(fixed κ). These results indicate the advantages of propagation
environments having a stronger LOS and a higher number of
multipath components on the detection performance.

D. Analysis in α-µ fading (Fig. 7)

The effect of non-linear propagation on the p-norm detection
performance (p = 2.7) is presented in Fig. 7 for various
instances of the α-µ fading channel. Additionally, an ED
(p = 2) plot and the simulation results are included for
comparison. The following observations are made:

(i) The analytical results for Pd,α-µ in (38) and the sim-
ulation results match, thus validating the accuracy of
the Gaussian-Laguerre quadrature integration used for
deriving Pd,α-µ.

(ii) The increased non-linearity of the propagation medium
(higher α) for a fixed multipath effect (fixed µ) has a
positive effect on the detection performance. As well, the
performance is better for a larger multipath effect (higher
µ) at a given non-linearity (fixed α). For example, at
Pf ≈ 0.1, when α increases from 1.5 to 2 at µ = 2, an
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Fig. 8: Two sets of ROC curves at SNR −10 dB (p = 2.5, N = 3)
and 0 dB (p = 3, N = 4) for various diversity-combining schemes
in Nakagami-3 fading channels with L = 3. No-diversity curves are
included for comparison. The discrete marks on the graphs indicate
the simulation results.

approximately 11% gain in Pd,α-µ is obtained. Likewise,
about a 20% increase in Pd,α-µ results when µ increases
from 1 to 1.5 at α = 2.

(iii) The results also suggest that ED (p = 2) is not neces-
sarily the best choice (among all p) for detecting signals
affected by the non-linearity of the wireless channel. For
example, at Pf ≈ 0.1, over a channel with α = 2 and
µ = 2, the 2.7-norm detector yields about a 7.5% higher
Pd,α-µ than the ED.

E. Analysis with diversity-combining (Fig. 8)

The boost in p-norm detection performance due to antenna
diversity is depicted in Fig. 8. Furthermore, to assess the
relative performance gains of the pLC, pLS, MRC and SC
schemes, they are compared against each other and with
the no-diversity (single-antenna) case as well. The following
insights are evident:

(i) Antenna diversity boosts the detection performance: Even
at a low SNR of −10 dB with Pf ≈ 0.1, the 2.5-norm
detector deploying a 3-branch MRC has about a 53%
increase in detection probability compared to the no-
diversity case.

(ii) Performance of pLC, pLS, MRC and SC: As expected,
MRC has the best performance among all the schemes.
Interestingly, the proposed pLC and pLS schemes per-
form quite similarly to the traditional SC at low SNR
(plots at −10 dB), while both of them outperform SC
at a relatively high SNR (plots at 0 dB). For instance,
at an SNR of 0 dB for Pf ≈ 0.1, the 3-norm detector
(N = 4) with SC, pLS, pLC and MRC schemes yields,
respectively, about 28%, 40%, 54% and 66% increase in
detection probability compared to the no-diversity case.
Note that the pLC performs closer (than pLS and SC)
to the optimal MRC. As a final note, the MRC relies on

the availability of full CSI for each branch while the SC
requires constant monitoring of all the branches in order
to find the branch with the maximum SNR [20]. However,
these requirements lead to higher complexity and cost for
practical implementation. Thus, the proposed pLC and
pLS schemes may offer better alternatives than the MRC
and SC schemes, particularly, for a non-coherent device
like the p-norm detector.

VI. CONCLUSION AND FUTURE WORK

In this paper, a comprehensive p-norm detector performance
analysis for non-fading (AWGN), generalized fading and with
several antenna diversity-combining schemes is presented by
developing several analytical/numerical solutions for Pd and
Pf . To evaluate Pd and Pf for AWGN channels, the MGF
of the decision variable is derived in two forms: (i) closed-
form for even-integer p, and (ii) series-form for arbitrary p. A
numerical method utilizing the Talbot inversion is developed
for case (i), and infinite series expansion with convergence
acceleration based on the ϵ-algorithm is derived for case (ii).
Additionally, a new approximation based on the Laguerre
polynomial series is shown to be more versatile compared to
the existing Gamma approximation and more accurate than
the CLT approximation. To quantify the impact of the fading
channels, the series MGF-based analysis is extended to cover
the κ-µ and α-µ fading channels, thus helping to quantify the
detection performance in more realistic fading environments.
To capitalize on antenna diversity, non-coherent pLC and pLS
schemes which do not require any CSI are proposed. Their
performances along with those of the traditional MRC and
SC schemes are derived for Nakagami-m fading. Interestingly,
both pLC and pLS perform similar to the SC at low SNR,
while outperforming it at relatively high SNR. Further, pLC
performs the closest (among all the schemes) to the optimal
MRC at higher SNR. Moreover, the proposed pLC and pLS
schemes are more suitable than the MRC and SC schemes for
the p-norm detector, which can function without any CSI.

Future research directions include fine-tuning p to maximize
the detection performance, and investigation of the detection
performance of a cooperative network of detectors, each
deploying an optimized p-norm detector operating in generic
fading environments.

APPENDIX: GAMMA APPROXIMATION (I) AND CLT
APPROXIMATION (II) FOR AWGN

(I) If we assume the decision variable T to be Gamma
distributed, the detection probability (Pd,Gam) and false
alarm probability (Pf,Gam) can be derived on the basis
of [6] as Pd,Gam = 1−G(λ/θ1, k1)/Γ(k1) and Pf,Gam =
1−G(λ/θ0, k0)/Γ(k0), where the parameters are given
by k0 = k1 = NΓ2(p/2+1)/[Γ(p+1)−Γ2(p/2+1)],
θ0 = [Γ(p + 1) − Γ2(p/2 + 1)]/[NΓ(p/2 + 1)], and
θ1 = (1 + γ)p/2θ0.

(II) When the number of samples is very large (N ≫ 1), the
CLT may be invoked such that T is Gaussian distributed
with mean µ0 = Γ(p/2 + 1) and variance σ2

0 = [Γ(p+
1) − Γ2(p/2 + 1)]/N under H0, or with mean µ1 =
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(1+γ)p/2µ0 and variance σ2
1 = (1+γ)pσ2

0 under H1. It
is straightforward to show that the CDF of T under both
hypotheses can be expressed in terms of the Gaussian-
Q function Q(x) = (1/

√
2π)

∫∞
x

e−t2/2dt. Then, the
detection and false alarm probabilities utilizing the CLT
approximation can be easily expressed as

Pd,CLT = Q

(
λ− µ1

σ1

)
, Pf,CLT = Q

(
λ− µ0

σ0

)
.
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