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Abstract—This paper proposes and analyzes cognitive multi-
hop decode-and-forward networks in the presence of interference
due to channel estimation errors. To reduce interference on the
primary network, a simple yet effective back-off control power
method is applied for secondary multihop networks. For a given
threshold of interference probability at the primary network,
we derive the maximum back-off control power coefficient,
which provides the best performance for secondary multihop
networks. Moreover, it is shown that the number of hops for
secondary network is upper-bounded under the fixed settings of
the primary network. For secondary multihop networks, new
exact and asymptotic expressions for outage probability (OP),
bit error rate (BER) and ergodic capacity over Rayleigh fading
channels are derived. Based on the asymptotic OP and BEP,
a pivotal conclusion is reached that the secondary multihop
network offers the same diversity order as compared with the
network without back off. Finally, we verify the performance
analysis through various numerical examples which confirm the
correctness of our analysis for many channel and system settings
and provide new insight into the design and optimization of
cognitive multihop networks.

Index Terms—Decode-and-forward, dual-hop cognitive relay
network, spectrum sharing, multihop, imperfect channel state
information, Rayleigh fading, outage probability, bit error rate,
ergodic capacity.

I. INTRODUCTION

TO alleviate the wireless spectrum scarcity problem cog-
nitive radio has been proposed where an unlicensed user

(also known as a cognitive user) is allowed to opportunistically
utilize the white space of a licensed spectrum band (called
a spectrum hole) for data transmissions [1]. Among existing
cognitive protocols, the underlay approach is of particular
interest to both the academia and industry due to its advantage
in providing concurrent cognitive and non-cognitive commu-
nication [2].

In designing spectrum sharing underlay systems, one of the
major challenges is to fulfill the two conflicting objectives: i)
protecting the primary (licensed) user (PU) from interference
and ii) satisfying the quality of service (QoS) requirement of
secondary (non-licensed) users (SUs). Between these objec-
tives, the former is of higher priority, making strict regulation
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of secondary transmit powers necessary. Since the allowable
interference level on primary receivers (PU-Rxs) is small,
secondary network coverage is limited. In order to extend it,
an efficient secondary transmission mechanism is required.

Such a mechanism is multihop relay technology, (see, e.g.,
[3]–[10]). In [3] and [4], the outage probability (OP) of
a multi-hop decode-and-forward (DF) relaying system over
Rayleigh and Nakagami-m fading channels under the inter-
ference temperature constraint was respectively presented to
capture the impact of fading parameters at the interfering
links as well as the interference temperature constraint on
OP. Thanks to low complexity and easy deployment, amplify-
and-forward relaying could be a promising candidate with
its outage performance exceeding that of the conventional
cognitive radio direct transmission [5]. Over Nakagami-m
channels, it was shown in [6] that for the same system
model as in [5], the diversity order is strictly defined by
the minimum fading severity between the two hops of the
secondary network; and the secondary network achieves the
full diversity order regardless of the transmit power constraint.
For two different types of interference power constraints at the
PU-Rx including fixed and proportional interference power
constraints, the authors in [7] studied cooperative diversity
gain of secondary networks with multiple relays. It is found
that the diversity order of the secondary relay network is lost
under a fixed interference power constraint and increasing
transmit power does not improve the outage performance. In
[9], the optimization problem of secondary relay positions is
considered.

To the best of our knowledge, most existing works con-
sider perfect channel state information of interference links
between the secondary transmitters and the PU-Rx. However,
secondary networks may not acquire perfect channel state
information (CSI) due to, for example, channel estimation
errors and/or the slack cooperation between SUs and the PU.
Recently, the performance of cognitive radio networks under
imperfect CSI has been considered for single-hop and dual-
hop in [11] and [12], respectively.

Motivated by these considerations, we investigate the per-
formance of cognitive multihop networks with imperfect
knowledge of interference channels. In particular, we consider
the effect of imperfect CSI on the PU-Rx under primary
interference probability constraints. Our main contributions
are as follows:

1) We analyze the interference probability for primary
networks over similar and dissimilar Rayleigh channels.
The interference probability is shown to increase with
the number of secondary hops.
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Fig. 1. Secondary underlay multihop transmission.

2) We characterize the effect of imperfect CSI on the
performance of secondary networks, which is given by
the number of maximum hops and the maximum back-
off control powers for a given interference probability.

3) We show that the primary interference probability
achieves its minimum if and only if the back-off control
powers are set the same.

4) We develop closed-form expressions for secondary OP,
bit error rate (BER), and ergodic capacity and their
asymptotic bounds at high and low signal-to-noise ratios
(SNRs). Moreover, we also compute the secondary
performance loss as compared to that of the perfect CSI.

The remainder of this paper is organized as follows. In
Section II, the system and channel model are introduced. In
Section III, the unified framework to derive the performance
measures of the primary and secondary network including
interference probability, OP, BER and ergodic capacity is de-
veloped in detail. In Section IV, numerical results are provided
to illustrate the characteristics of the primary and secondary
network. Finally, the paper is concluded in Section V.

II. SYSTEM MODEL

We consider a cognitive multihop network over the same
spectrum of a primary network with an underlay peak interfer-
ence power constraint. As illustrated in Fig. 1, the communica-
tion between the source (T0) and the destination (TK+1) takes
place in K orthogonal timeslots via serial immediate relays
T1, . . . , TK . In the k-th timeslot, the received signal at relay k
is fully decoded and then re-encoded before being forwarded
to the next node (or the destination) in the subsequent timeslot.
All secondary and primary nodes are equipped with a single-
antenna.

We denote hk and fk, respectively, as the channel co-
efficients of the data link and interference link of hop k.
Throughout this paper, independent Rayleigh frequency-flat
fading links are assumed. As a result, the channel gains,
i.e., |hk|2 and |fk|2, follow the exponential distribution with
parameters λD,k and λI,k, respectively.

To protect the PU network communication as well as to
enhance the secondary network performance, all SUs should
transmit with maximal allowable power Pk as long as the PU
received interference power is below the maximum tolerable
interference level, Ip. Therefore, the transmit power of node
k is considered as

Pk =
Ip

|fk|2
, k = 0, 1, . . . ,K (1)

if the channel fk is perfectly known at the transmitter of
hop k. In practice, perfect knowledge of fk is not available
because of various uncertainties such as errors in the feedback
transmission and/or the outdated feedback due to the time-
varying wireless channels. This uncertain relation between fk
and its estimate f̃k can be modeled as [13]

f̃k = ρfk +
√
1− ρ2μk, (2)

where μk is a circular symmetric complex Gaussian random
variable with mean zero and variance λI,k. Here, the terms
μk with k = 1, . . . ,K are mutually independent. In addition,
ρ denotes the channel correlation factor modeling the channel
estimation quality, which is expressed by the pilot symbol
assisted modulation (PSAM) parameters such as the rate of
pilot symbol insertion and average SNR [14]. The correlation
coefficient ρ is assumed to be the same between all the
interference channel pairs. Under Rayleigh fading, the joint
probability density function (PDF) of |fk|2 and |f̃k|2 are given
by [13]

f|fk|2,|f̃k|2(x, y) =
e
− x+y

(1−ρ2)λI,k

(1− ρ2)λI,k
2 I0

(
2ρ

√
xy

(1 − ρ2)λI,k

)
, (3)

where I0(x) = 1
π

∫ π
0
ex cos θdθ denotes the zeroth-order

modified Bessel function of the first kind [15]. As a result,
the transmit power at hop k, Pk, is now

Pk =
Ip∣∣∣f̃k∣∣∣2 (4)

resulting in the instantaneous SNR at hop k as

γk =
Ip
N0

|hk|2∣∣∣f̃k∣∣∣2 . (5)

Eq. (4) shows that improper regulation of the transmit powers
due to imperfect channel estimation can cause an interference
that is higher than the maximum tolerable interference level.
In Fig. 1, primary communication is protected if all PU
received interference powers in the K hops are lower than Ip.
Otherwise, the primary communication fails. To analyze this
phenomenon, we use primary interference probability concept,
which is defined as the probability that the interference power
received at the PU-Rx is higher than Ip. Note that since the
interference probability is computed after the arrival of the
source data at the destination, its evaluation reflects the effect
of the entire secondary system on the primary system. In the
next section, we will derive the interference probability due to
an arbitrary number of secondary hops over Rayleigh fading
channels.

III. PERFORMANCE ANALYSIS

In this section, we investigate the performance of the
primary and the secondary multihop networks. For the primary
network, the interference probability is derived over Rayleigh
fading channels. For the secondary network, the performance
metrics including OP, BER and ergodic capacity are derived.
The secondary network behaviors at high and low SNRs are
also provided.
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A. Interference Probability of the Primary System

Utilizing the theorem of total probability, the interference
probability of the primary system can be evaluated as

PI =Pr(P1|f1|2 > Ip) + Pr(P2|f2|2 > Ip) Pr(P1|f1|2 ≤ Ip)

+ · · ·+ Pr(PK |fK |2 > Ip) Pr(PK−1|fK−1|2 > Ip) . . .

× Pr(P1|f1|2 ≤ Ip)

=

K∑
k=1

Pr(Pk|fk|2 > Ip)

k−1∏
�=1

Pr(P�|f�|2 ≤ Ip). (6)

To compute (6), we first need to derive Pr(Pk|fk|2 > Ip) and
Pr(Pk|fk|2 ≤ Ip). Before giving continuity to our analysis,
the following lemma is of importance in this regard.

Lemma 1: For two given random variables |fk|2 and
|f̃k|2, which are correlated with correlation coefficient ρ ,

Pr

(
|fk|2

|f̃k|2 > z

)
is given by

Pr

⎛
⎜⎝ |fk|2∣∣∣f̃k∣∣∣2 > z

⎞
⎟⎠ =

1

2

⎡
⎣1 + 1− z√

(1 + z)2 − 4ρ2z

⎤
⎦ . (7)

Proof: The proof can be easily obtained by making use
of the definition of the first order Marcum Q-function [16]
along with the help of [17, Eq. (6-60)] and [18, Eq. (3)].

It is noted from (7) that Pr

(
|fk|2

|f̃k|2 > z

)
depends only on

the correlation coefficient (ρ) and the threshold (z), not the
average channel power of the interference link (λI,k). Such a
phenomenon will significantly affect the system design, which
is presented in the next part.

Lemma 1 allows us to compute the interference probability
of primary systems. In particular, letting z = 1 in (7) and
combining the resultant with (6) gives

PI =

K∑
k=1

Pr

⎛
⎜⎝ |fk|2∣∣∣f̃k∣∣∣2 > 1

⎞
⎟⎠ k−1∏

�=1

Pr

⎛
⎜⎝ |f�|2∣∣∣f̃�∣∣∣2 < 1

⎞
⎟⎠

=

K∑
k=1

1

2k
= 1− 1

2K
. (8)

As a special case, we consider K = 2 in (8) leading to PI =
0.75, which agrees with the result reported in [12, Eq. (7)].

The expression in (8) illustrates the relationship between
the interference outage (PI ) and the number of hops (K)
showing that the minimum of the interference outage is 1/2
and it increases with the number of hops. Furthermore, it
is easy to show that PI → 1 when K approaches infinity.
As such, maintaining acceptable interference for the primary
network under imperfect CSI is one of the critical concerns for
cognitive networks. To guarantee the interference probability
from the secondary network, back-off transmit power control
mechanism is a simple and efficient solution. We denote εk
with 0 < εk ≤ 1 as the back-off power control coefficient of
hop k, then the reduced transmit power at hop k can be given
by

P ′
k = εkPk =

εkIp∣∣∣f̃k

∣∣∣2 . (9)

1) Identical back-off coefficients: In this case, the back-off
coefficient of all links is identical, i.e., ε1 = · · · = εK = ε, and
the interference probability of the primary network is given by

PI =

K∑
k=1

Pr(Pk
′|fk|2 > Ip)

k−1∏
�=1

Pr(P�
′|f�|2 < Ip). (10)

From (7), we can rewrite (10) as follows:

PI =
1− Φ

2

K∑
k=1

(
1 + Φ

2

)k−1

, (11)

where Φ = ε−1√
(ε+1)2−4ρ2ε

. Similarly, it is easy to see that

PI =1−
(
1+Φ

2

)K

=1−

⎛
⎝1

2
+

1− ε

2

√
(1+ε)

2−4ρ2ε

⎞
⎠K

. (12)

It follows from (12) that in the limited cases of ρ, the
interference OP of primary networks becomes

PI =

⎧⎨
⎩ 1−

(
1
2 + 1−ε

2
√

(1+ε)2

)K

, ρ = 0

1− 1
2K , ρ = 1

. (13)

2) Non-identical back-off coefficients: While identical
back-off coefficients simplifies our analysis, in certain envi-
ronments, it may be more appropriate to consider the non-
identical case, i.e., ε1 �= ε2 �= · · · �= εK . In practice, energy
conditions at each secondary node can be different and the
distance between any two nodes is usually not equal, which
can cause different back-off power control coefficients among
the relaying links. Similar to the previous case, we have

PI =

K∑
k=1

Pr(Pk
′|fk|2 > Ip)

k−1∏
�=1

Pr(P�
′|f�|2 < Ip)

=
1− Φ1

2
+

(1 + Φ1)(1 − Φ2)

2
+ · · ·

+
(1 + Φ1) · · · (1 + ΦK−1)(1 − ΦK)

2K

=

K∑
k=1

1− Φk

2

k−1∏
�=1

(
1 + Φ�

2

)
, (14)

where Φk = εk−1√
(εk+1)2−4ρ2εk

. After some manipulations, (14)

can be expressed in a mathematically tractable form as

PI = 1−
K∏

k=1

(
1 + Φk

2

)
. (15)

At this point, a natural question arises for a given ρ is what
kind of back-off coefficients gives less interference on the
primary network. The following theorem will answer such a
question.

Theorem 1: For a given fixed ρ for all interference links,
the interference outage of primary networks, PI , will achieve
its minimum at

PI = 1−

⎛
⎝1

2
+

1− ε

2

√
(1 + ε)

2 − 4ρ2ε

⎞
⎠K

, (16)
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if and only if

ε1 = ε2 = · · · = εK = ε. (17)

Proof: Applying the inequality of arithmetic and geomet-
ric means, we can write

K∏
k=1

(
1 + Φk

2

)
≤
(

1

K

K∑
k=1

1 + Φk

2

)K

. (18)

The equality happens if and only if

1 + Φ1

2
= · · · = 1 + ΦK

2
(19)

leading to

ε1 = · · · = εK = ε. (20)

This completes the proof.
The setting of the back-off coefficients is an additional im-
portant issue not only to the primary network but also the
secondary network. If these coefficients are chosen too high,
the interference probability will increase. On the other hand, if
they are chosen too low, reduced transmit powers result in poor
performance of secondary networks. Hence, it is important to
determine the appropriate value for the back-off coefficient.
In particular, the problem is to find the maximum value of the
back-off coefficient for the given desired interference value.
The corresponding solution is given in the following theorem.

Theorem 2: Given an interference outage (PI ), the interfer-
ence channel coefficient (ρ), and the number of hops (K), the
maximum back-off coefficient which offers the best secondary
network performance is determined as

εmax =
1 + ζ2 − 2ζ2ρ2 − 2

√
ζ2 − ζ2ρ2 − ζ4ρ2 + ζ4ρ4

1− ζ2
,

(21)

where ζ = 2 K
√
1− PI − 1.

Proof: Letting ζ = 2 K
√
1− PI − 1 and rephrasing (12),

the back-off coefficient is the root of the quadratic equation
as follows:

(1 − ζ2)ε2 − (2 + 2ζ2 − 4ρ2ζ2)ε+ 1− ζ2 = 0. (22)

Let us denote Ψ(ζ) = (1−ζ2)ε2−(2+2ζ2−4ρ2ζ2)ε+1−ζ2.
Note that because 0 < ζ ≤ 1, we have Ψ(0) = 1 − ζ2 ≥ 0
and Ψ(1) = −4ζ2(1 + ρ2) < 0 leading to the fact that this
quadratic equation has at least one admissible positive real
root in the range of [0 1] as presented in (21).
Having determined the maximum back-off coefficient for
interference outage of primary networks, let us now turn to
find the maximum number of secondary multihop networks
meeting the desired interference constraint, which is stated in
the following theorem.

Theorem 3: For given PI , ε, and ρ, the maximum number
of hops for secondary networks Kmax is given by

Kmax =

⎢⎢⎢⎢⎢⎣ log(1 − PI)

log

(
1
2 + 1−ε

2
√

(1+ε)2−4ρ2ε

)
⎥⎥⎥⎥⎥⎦ , (23)

where log(.) and �x� denote the natural logarithm and the
positive integer closest to x, respectively.

Proof: From (12), we have

K∗ =
log(1 − PI)

log

(
1
2 + 1−ε

2
√

(1+ε)2−4ρ2ε

) . (24)

Since Kmax only takes integer values, we choose Kmax as
the largest integer that is not greater than K to satisfy the
interference constraints, which completes the proof.

B. Outage probability of secondary networks

The OP is defined as the probability that the end-to-end
SNR of the cognitive secondary multihop networks (γΣ) is
less than a predetermined threshold γth. Thus, the OP is given
by

OP = Pr (γΣ < γth)
(a)
= 1−

K∏
k=1

[
1− Fγ′

k
(γth)

]
, (25)

where γΣ = mink=1,...,K γ′
k with γ′

k = εkγk and step (a)
follows with the assumption that all γ′

k are independent of
each other.

In (25), Fγ′
k
(γ) is computed as follows:

Fγ′
k
(γ) =

∞∫
0

∞∫
0

F εkIp
N0

|hk|2
(γx)f|fk|2,|f̃k|2(x, y)dxdy

=
γ

γ + αk
, (26)

where αk =
εkIpλD,k

N0λI,k
. From (26), the end-to-end closed-form

expression for the OP is written as

OP = 1−
K∏

k=1

αk

γth + αk
. (27)

It is worth noting that the OP of secondary networks involves
only finite multiplication of αk

γth+αk
, thus can be calculated in

closed-form. Next, we will study the asymptotic form of the
OP, which is useful for evaluating the system performance at
high SNRs in a more intuitive and concise way. The following
theorem is to be utilized.

Theorem 4: At a high SNR regime, the OP can be readily
and accurately lower-bounded by

OP →
K∑

k=1

γth
εkαk

. (28)

Proof: We start the proof by rewriting (25) as

OP = 1−
K∏

k=1

(
1 +

γth
αk

)−1

. (29)

By making use of the fact that
(
1 + γth

αk

)−1

≈ 1 − γth

αk
at

high SNR regime and then neglecting the high order terms,

i.e.,
K∏

k=1

(
1− γth

αk

)
≈ 1−

K∑
k=1

γth

αk
, we have (28).

Lemma 2: For predetermined PI , ρ and ε, the minimum
of outage performance loss of the secondary system in dB as
compared to the non back-off system is

−10log10
1 + ζ2 − 2ζ2ρ2 − 2

√
ζ2 − ζ2ρ2 − ζ4ρ2 + ζ4ρ4

1− ζ2
.

(30)
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Proof: From (28), it is straightforward to conclude that
the performance loss of secondary systems at high SNRs is
−10log10ε dB.

C. Bit error rate of secondary networks

In order to derive the end-to-end BER, we first derive the
single-hop average BER, BERk with k = 1, . . . ,K . For
square M -QAM, the average BER over Rayleigh fading is
given as [19]1

BERk=
1√

M log2
√
M

∞∫
0

log2

√
M∑

j=1

υj∑
n=0

φj
nerfc (

√
ωkγ) fγ′

k
(γ)dγ,

(31)

where erfc(.) is the complementary error function [20, Eq.
(4A.6)]. Here, υj , φj

n, and ωn are defined respectively as

υj = (1 − 2−j)
√
M − 1, ωn = (2n+1)23log2M

2M−2 , and φj
n =

(−1)

⌊
n2j−1√

M

⌋ (
2j−1 −

⌊
n2j−1
√
M

+ 1
2

⌋)
. Using the result in Ap-

pendix A, we have the closed-form expression of BERk as

BER=

K∑
k=1

log2

√
M∑

j=1

υj∑
n=0

φj
n

(
1−√

ωnαke
ωnαk

√
πerfc

(√
ωnαk

))
√
M log2

√
M

.

(32)

For a given set of average BER of K hops, BER1, . . . ,BERK ,
we are now in a position to derive the end-to-end BER.
By taking into account the fact that an even number of
wrong single-hop bit transmissions between the source and
the destination will make a right bit transmission, we have
[21]

BER =

K∑
u=1

BERu

K∏
v=u+1

(1− 2BERv) (33)

After several manipulations, a simplified expression for the
end-to-end BER can be written as

BER =
1

2

[
1−

K∏
k=1

(1− 2BERk)

]
. (34)

It is worth noting that the form of (34) is new and has not
been reported in the literature. Compared to (33), (34) is more
mathematically tractable. Besides, (34) reveals that the BER
will achieve its minimum if and only if BER1 = BER2 =
· · · = BERK

2.
Theorem 5: At high SNRs, the system BER is approxi-

mated as follows:

BER =

√
M − 1√

M log2
√
M

K∑
k=1

N0λI,k

εkIpλD,k
. (35)

Proof: By utilizing the fact that
K∏

k=1

(1− xk) ≈ 1−
K∑

k=1

xk

for small xk, from (34), we have

BER ≈
K∑

k=1

BERk (36)

1Although we only consider the BER performance for square M -QAM
modulation, the BER derivation can be applied to any general constellation
by using the same approach.

2The proof follows from the inequality of arithmetic and geometric means.

In (32), we approximate erfc(
√
x) by e−x

√
πx

(
1− 1

2x

)
for large

x [22], the system BER is further approximated as

BER ≈
K∑

k=1

log2

√
M∑

j=1

υj∑
n=0

φj
n√

M log2
√
M

1

2ωnαk

(b)
≈

√
M − 1√

M log2
√
M

K∑
k=1

N0λI,k

εkIpλD,k
. (37)

where (b) is based on the fact that the first term, i.e., j = 1,
is dominant in the inner summation of (37).
Moreover, assuming independent and identically distributed
(i.i.d.) fading for all links, i.e., α1 = α2 = · · · = αK = α,
the end-to-end BER can be simplified to

BER ≈ (
√
M − 1)KN0λI√

M log2
√
MεIpλD

. (38)

Lemma 3: Under the constraint of interference outage PI ,
−10log10ε dB is the performance loss in terms of BER since
back-off technique is applied.

Proof: The proof is omitted since it can be done in the
same way as for OP.

D. Ergodic capacity of secondary networks

In this section, we will derive the ergodic capacity of
secondary networks under the interference outage constraint
of the primary network. Denoting C as the ergodic capacity
of the secondary network, we have

C =
1

K

∞∫
0

log2(1 + γ)fγΣ(γ)dγ

(c)
=

1

K log 2

∞∫
0

1

γ + 1

K∏
k=1

αk

γ + αk︸ ︷︷ ︸
C1

dγ, (39)

where step (c) follows after the use of integration by parts.
Theorem 6: The ergodic capacities of secondary multihop

networks for an arbitrary number of hops are given as

C =
1

K log 2

[(
α

α− 1

)K

logα−
K∑

k=2

(
α

α− 1

)K+1−k
1

k − 1

]
(40)

for i.i.d. channels, or

C =
1

K log 2

K∑
k=1

αk

αk − 1

⎛
⎝ K∏

�=1,� �=k

α�

αk − α�

⎞
⎠ logαk (41)

for independent and non-identically distributed (i.n.d.) chan-
nels, or

C =
1

K log 2

⎡
⎣ N∑

i=1

Ai,1 logΘi +
N∑
i=1

ri∑
j=2

Aij

(j − 1)Θi
j−1

⎤
⎦
(42)

for generalized channels.
Proof: The proof can be found in Appendix B.

The exact capacity expression in (40), (41), and (42) involve
only elementary mathematical functions and therefore avoids
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the need of numerical integration. As a result, it can be applied
to many network and channel settings. More importantly, the
result can be applied to the case of generalized channels
covering the i.i.d. and i.n.d. as special cases. To provide
more insights on the network behaviours, theorem 6 can be
specialized to two SNR regimes of interest, i.e., low and high
SNRs, as follows.

Theorem 7: At high SNRs, the ergodic capacities over i.i.d.
and i.n.d. channels are tightly approximated as (43).

Proof: By neglecting small terms in (40) and (41), we
obtain (43), which concludes the proof.
From Theorem 7, we have two important remarks: i) The
secondary network suffers a minimum Shannon capacity loss
of −log2 εmax/K to protect the primary networks due to
the imperfect CSI of interference links and ii) the Shannon
capacity loss at high SNRs, given by

ΔC
Δ
= C(K)− C(K + 1) =

logα−
∑K

k=3
1

k−1

K(K + 1) log 2
, (44)

diminishes as the number of hops increases. We end this
section by presenting the following theorem, which describes
the approximation form of the ergodic capacity of secondary
multihop networks at low regime of SNR.

Theorem 8: At low SNRs, the system capacity is well-
approximated as (45), where {β1, . . . , βM} is a set of distinct

elements of {α1, . . . , αK},
M∑
i=1

ui = K and

Bi,n =
1

(ui − n)!

{
∂(ui−n)

∂γ(ui−n)
[(γ + βi)

uifγΣ(γ)]

}∣∣∣∣
γ=−βi

.

(46)

Furthermore, In is the auxiliary function, which is of the form

In(βi) =

⎧⎨
⎩

π
2
√
βi
, n = 2

π

(n−1)!βk
n−3

2 2n−1

n∏
�=3

(2�− 5), n > 2 . (47)

Proof: Please refer to Appendix C.
Theorem 8 indicates that the system Shannon capacity at
low SNRs increases according to the number of hops with
respective gain C(K+1)

C(K) = 2K−1
2(K+1) . It is straightforward to

show that the gain becomes one since the number of hops
approaches infinity.

Finally, note that our derived approach for the system per-
formance metrics (including OP, BER, and ergodic capacity)
is highly precise at high and low SNRs. Additionally, the
closed-form expressions contain only elementary functions,
and thus its evaluation is instantaneous regardless of network
and channel settings.

IV. NUMERICAL RESULTS

In this section, representative numerical examples are pro-
vided to highlight the effect of imperfect CSI of interference
links on the performance of the primary network and the
secondary cognitive multihop network. The network topology
is based on the assumption that the secondary network is
placed on a straight line connecting the secondary source
and the secondary destination. Each cognitive relay node is
equidistant from each other, i.e., dTk,Tk+1

= 1/K for all k. We
further assume that the PU-Rx, the cognitive source and the
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Fig. 2. Interference Probability versus channel coefficient.
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Fig. 3. The maximum back-off coefficient versus number of hops.

cognitive destination are placed at coordinates (xp, xp), (0, 0)
and (1, 0), respectively. To take into account the effect of
pathloss, we set λA,B = d−η

A,B, where η is the path loss exponent
with A ∈ {T0, . . . , TK} and B ∈ {PU, T1, . . . , TK−1}.

Fig. 2 illustrates the effect of the number of hops on the
interference probability. As can be clearly seen, the increase
of K will increase the interference probability of the primary
networks but with diminishing returns. Fig. 2 also shows that
the interference probability is a decreasing function of the
correlation ratio, which means that the interference probability
should decrease as the channel estimation quality increases.
Note that PI is more sensitive to the value of ρ that is close to
1 since we observe a higher dynamic range in the interference
probability performance for such values.

In Fig. 3, the maximum back-off power control coefficient
is plotted as a function of the number of hops. Clearly, lower
target PI results in smaller εmax and this ratio seems to slowly
diminish as K increases. The interesting conclusion that one
can draw from this figure is that while back-off technique
guarantees the minimum interference on primary network
in terms of PI , this gain comes at the expense of certain
secondary performance loss on secondary network since the
transmit power is reduced by εmax.

Fig. 4 is a plot of the maximum number of hops, namely
Kmax, as computed from (23), versus the back-off power
control coefficient in the constraint of different levels of inter-
ference probability. As expected, higher primary interference
probability allows a higher number of hops for secondary
networks. In addition, since Kmax is established for a given
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C →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
K log 2

[
logα−

K∑
k=2

1
k−1

]
, i.i.d. channels

1
K

K∑
k=1

(−1)K−1

(
K∏

�=1,� �=k

α�

αk−α�

)
log2αk, i.n.d. channels

. (43)

C ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
K

K∑
k=1

(−1)K−1

(
K∏

�=1,� �=k

α�

αk−α�

)
π
√
αk

2 , i.n.d. channels

π
√
α

K!

K+1∏
�=3

(2�−5)

2K , i.i.d. channels

1
K

M∑
i=1

ui∑
n=2

Bi,nIn(βi), generalized channels

, (45)
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PI , only secondary networks with the number of hops equal
to or smaller than Kmax is valid. For example, only direct
transmission is acceptable for secondary networks regardless
of secondary channel settings if PI and ε are chosen at 0.1
and 0.35, respectively.

In Figs. 5 and 6, we plot the OP and BER of secondary
networks versus average SNRs. Here we also plot the cor-
responding no back-off case as a benchmark to evaluate the
performance loss. Both figures confirm that a lower OP is
achieved by increasing the number of hops in secondary
networks. For high average SNRs, the approximations (28) and
(35) match the simulation results, confirming the correctness
of the analysis approach. Another interesting observation is
that a log εmax performance loss between the two systems is
found; however, the slope of all curves are the same, that is,
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Fig. 6. BER of secondary network for 4-QAM modulation versus average
SNR.
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the back-off technique has no effect on the system diversity
except for the system coding gain.

Figure 7 shows the ergodic capacity and its approximation
at high SNRs, as given in (43), as a function of average SNRs.
Two cases of network topologies, i.e., K = 1 and K = 3, are
considered. It can be observed that for average SNRs higher
than 20 dB, the performance loss gap becomes almost steady.
We further observe that the secondary network with K = 3
has worse capacity than with K = 1. This is expected due to
the orthogonal channels used in secondary networks.

Figure 8 shows the tightness of proposed approximation for
the system ergodic capacity at low SNRs, e.g., ranging from
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-20 dB to 15 dB. The asymptotic bounds are quite tight in this
case. An important result here is that the capacity at low SNRs
increases linearly with K , unlike the high SNR behavior. This
effect has also been reported in [23] and it can be explained
by using the fact that increasing number of hops in linear
networks at low SNRs corresponds to increasing effective
SNRs. Finally, along with its simplicity, i.e., requiring only
elementary functions, the approximation is found to provide a
tight fit for most values of K .

V. CONCLUSIONS

This paper has studied the performance of the primary
and secondary multihop networks in the presence of imper-
fect channel knowledge of the primary-secondary links. To
protect the primary communication, we proposed to apply
the back-off technique so that the interference probability
at the primary network is guaranteed. To quantify the loss
due to imperfect CSI, three performance metrics of secondary
multihop networks including OP, BER and ergodic capacity
are derived over Rayleigh fading channels. High-and-low SNR
analysis has also been derived to give insights into the system
behaviors. The derived closed-form analytical expression is
validated by simulations showing an excellent match between
the numerical and simulation results.
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APPENDIX A
PROOF OF EQ. (32)

This appendix is to solve the following integral, i.e.,

Θ =

∞∫
0

erfc (
√
ωkγ) fγ′

k
(γ)dγ, (A.1)

where fγ′
k
(γ) is obtained from (26) as

fγ′
k
(γ) =

d

dγ

[
γ

γ + αk

]
=

αk

(γ + αk)
2 . (A.2)

Using integration by parts, we have

Θ =
γerfc

(√
ωkγ
)

γ + αp

∣∣∣∣∣
∞

γ=0︸ ︷︷ ︸
Θ1

+
ωk

π

∞∫
0

√
γe−ωkγ

γ + αk
dγ

︸ ︷︷ ︸
Θ2

. (A.3)

It is straightforward to show after using the l’Hospital rule
that Θ1 = 0 resulting in

Θ =
ωk

π

∞∫
0

√
γe−ωkγ

γ + αk
dγ. (A.4)

Making a change of integration variables in (A.4), i.e., u =
√
γ

and with the help of [24, Eq. (3.32.3) and Eq. (7.1.11)], we
have

Θ = 2

∞∫
0

u2

u2 + b
e−ωpu

2

du

= 2

⎡
⎣ ∞∫

0

e−ωpu
2

du−
∞∫
0

b

u2 + b
e−ωpu

2

du

⎤
⎦

= 1−√
ωnαke

ωnαk
√
πerfc (

√
ωnαk) . (A.5)

APPENDIX B
PROOF OF THEOREM 6

To obtain C, we first need to derive C1 in (39). De-
noting {Θ1, . . . ,ΘN} as the distinct elements of the set
{1, α1, . . . , αK}, after performing partial fraction expansions,
we rewrite C1 as

C1 =

N∑
i=1

ri∑
j=1

∞∫
0

Aij

(γ +Θi)
j+1 dγ, (B.1)

where the partial-fraction coefficient, Aij , is computed as

Aij =
1

(ri − j)!

{
∂(ri−j)

∂γ(ri−j)
[(γ +Θi)

riCi]

}∣∣∣∣
γ=−Θi

. (B.2)

Note that the closed-form expression for the inner integral
does not exist when j = 1. By separating the summation in
(B.1) into two summations and making use of the fact that
N∑
j=1

Ai1 = 0, the closed-form expression of C1 is given as

follows:

C1 =

N∑
i=1

Ai,1 logΘi +

N∑
i=1

ri∑
j=2

Aij

(j − 1)Θi
j−1 . (B.3)

Finally, substituting (B.3) into (39), we obtain the closed-form
expression of the ergodic capacity of secondary networks.

For the i.i.d. case, i.e., α1 = · · · = αN = α �= 1, C1 is
rewritten as

C1 =

∞∫
0

1

γ + 1

(
α

γ + α

)K

dγ

=

(
α

α− 1

)K
∞∫
0

(
1

γ + 1
− 1

γ + α

)
dγ

−
K∑

k=2

αK

(α− 1)
K+1−k

∞∫
0

1

(γ + α)
k
dγ

=

(
α

α− 1

)K

logα−
K∑

k=2

(
α

α− 1

)K+1−k
1

k − 1
. (B.4)
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Since α1 = · · · = αN = 1, (B.4) is further reduced to as

C1 =
1

K log 2

∞∫
0

1

(γ + 1)
K+1 dγ =

1

K2 log 2
. (B.5)

For the i.n.d. case, i.e., α1 �= · · · �= αN �= 1, we have (B.6).

APPENDIX C
PROOF OF THEOREM 8

At low SNRs, we can approximate log2(1 + γ) ≈ √
γ

resulting in the system capacity being given by

C ≈ 1

K

∞∫
0

√
γfγΣ(γ)dγ, (C.1)

where fγΣ(γ) denotes the PDF of γΣ, which is derived from
(27) as follows:

fγΣ(γ) =
d

dγ

[
1−

K∏
k=1

αk

γ + αk

]
. (C.2)

Applying again partial fraction technique, (C.2) can be rewrit-
ten as follows:

fγΣ(γ) =

K∑
k=1

∏K
m=1 αm

(γ + αk)
∏K

�=1 (γ + α�)
=

M∑
i=1

ui∑
n=2

Bi,n

(γ + βk)
n .

(C.3)

Substituting (C.3) into (C.1) yields

C =
1

K

M∑
i=1

ui∑
n=2

Bi,n

∞∫
0

√
γ

(γ + βi)
n

︸ ︷︷ ︸
In(βi)

dγ. (C.4)

In (C.4), In(βi) is computed as

In(βi) =

∞∫
0

√
γ

(γ + βi)
n dγ, n ≥ 2. (C.5)

When n is an integer, rewriting (C.5) and then using [24, Eq.
(3.194.4)], we immediately get

In(βi) =
1

βi
n

∞∫
0

√
γ

(1 + γ
βi
)
n dγ = βi

3
2−nB

(
3

2
, n− 3

2

)
,

(C.6)

where B(x, y) =
1∫
0

tx−1(1− t)y−1dt is the beta function (or

the Euler integral of the first kind) [24, Eq. (8.380.1)]. With
the help of the identity [24, Eq. (8.384.1)], i.e.,

B

(
3

2
, n− 3

2

)
=

Γ
(
3
2

)
Γ
(
n− 3

2

)
Γ(n)

, (C.7)

(C.6) is re-expressed as

In = βi
3
2−nΓ

(
3
2

)
Γ
(
n− 3

2

)
Γ(n)

, (C.8)

where Γ(x) =
∞∫
0

e−ttz−1dt denotes the Gamma function [24,

Eq. (8.310.1)]. Furthermore, from the facts that Γ
(
3
2

)
=

√
π
2

(see [15, Eq. (6.1.9)]), Γ(n) = (n − 1)! (see [15, Eq.
(6.1.6)]), and Γ

(
1
2

)
=

√
π (see [15, Eq. (6.1.8)]), a more

simplified expression of (C.5) is produced after considerable
manipulations as (47) [15, Eq. (6.1.12)].

For the i.i.d. case, from (C.1) and (C.2), we have

C = αK

∞∫
0

√
γ

(γ + α)
K+1 dγ =

π
√
α

K!

∏K+1
�=3 (2�− 5)

2K
. (C.9)

For i.n.d. case, using the same approach, we have

C=
1

K

∞∫
0

√
γ

K∑
k=1

(−1)
K−1

⎛
⎝ K∏

�=1,� �=k

α�

αk−α�

⎞
⎠ αk

(α+αk)
2︸ ︷︷ ︸

fγΣ (γ)

dγ

=
1

K

K∑
k=1

(−1)K−1

⎛
⎝ K∏

�=1,� �=k

α�

αk − α�

⎞
⎠αk

∞∫
0

√
γ

(α+αk)
2

︸ ︷︷ ︸
I2

dγ

=
1

K

K∑
k=1

(−1)
K−1

⎛
⎝ K∏

�=1,� �=k

α�

αk−α�

⎞
⎠π

√
αk

2
. (C.10)
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