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Abstract—Two transmission strategies, namely (i) pair-
wise zero-forcing transmission and (ii) non-pairwise zero-
forcing transmission, for multiple-input multiple-output (MIMO)
amplify-and-forward (AF) multi-way relay networks (MWRNs)
are analytically studied. To this end, lower and upper bounds
of the outage probability, the corresponding high signal-to-
noise ratio outage probability approximations, the achievable
sum rate, and the fundamental diversity-multiplexing trade-off
are derived in closed-form. The proposed pairwise zero-forcing
transmission strategy possesses a lower practical implementation
complexity as each node requires only the instantaneous respec-
tive node-to-relay channel knowledge. Counter intuitively, the
non-pairwise zero-forcing transmission strategy achieves higher
spatial multiplexing gains over the pairwise counterpart at the
expense of higher relay processing complexity and more stringent
channel state information requirements. Moreover, numerical
results are presented to further validate our analysis and thereby
to obtain valuable insights into practical MIMO AF MWRN
implementation.

Index Terms—Multi-way relay networks, amplify-and-
forward, mimo, zero-forcing, transmission designs.

I. INTRODUCTION

IN multi-way relay networks (MWRNs), M ≥ 2 spatially-
distributed nodes mutually exchange their data signals via

an intermediate relay. This communication system configura-
tion may arise in many practical scenarios, for example, in
multimedia teleconferencing applications via a satellite or in
data exchange between sensor nodes and the data fusion center
in wireless sensor networks. In particular, MWRNs are the
natural generalization of conventional one-way relay networks
(OWRNs) and two-way relay networks (TWRNs) [1], and
consequently, they allow mutual data exchange among more
than two nodes. Moreover, OWRNs have already been in-
cluded in Long Term Evolution-Advanced (LTE-A) standard,
and TWRNs are being studied for relay-based International
Mobile Telecommunications-Advanced (IMT-A) systems [2].
Thus, MWRNs are also expected to be an integral part of the
next-generation wireless standards. However, a comprehensive
performance analysis of multiple-antenna MWRNs has been
lacking. To this end, in this paper, two multiple-input multiple-
output (MIMO) transmission strategies are developed and
analyzed for amplify-and-forward (AF) MWRNs.
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Prior related research on single-antenna MWRNs: Al-
though, multi-way communication channels were first studied
more than three decades ago [3], their practical significance
has not been fully exploited until the emergence of modern
cooperative relay communication research. To this end, in
[4]–[12], the multi-way channel has been exploited with the
aid of relays leading to MWRNs. To be more specific, in
[4], the achievable symmetric rate of full-duplex MWRNs,
where all nodes and the relay operate in full-duplex mode,
are studied for several relay processing strategies. However,
half-duplex MWRNs may be preferred in practice over full-
duplex MWRNs as the practical implementation of the latter is
significantly complicated. Thus, in [5], a pairwise half-duplex
transmission strategy is studied for MWRNs by employing so-
called functional decode-and-forward (FDF) relay processing.
Furthermore, the FDF strategy of [5] has been shown to
achieve the common-rate capacity of the binary MWRNs
whenever the multiple nodes exchange signals via a relay
at a common-rate. Reference [6] extends the FDF transmis-
sion strategy for common-rate binary MWRNs of [5] to the
general-rate MWRNs over a finite field by deriving capacity
regions. Besides, [7] derives the common-rate capacity of
Gaussian MWRNs, where all nodes transmit at the same
power. In [8], pairwise decode-and-forward (DF) MWRNs
based on deterministic broadcasting with side information
have been shown to be optimal in the sense of sum-capacity.
Recently, in [9], we derived the conditional outage probability
and average bit error rate of pairwise AF MWRNs in closed-
form. All the aforementioned studies except [9] consider
single-antenna MWRNs, where all nodes and the relay are
equipped with a single-antenna, and employ the DF protocol
exploiting inherent benefits of physical layer network coding.

Prior related research on multiple-antenna MWRNs: In
[10], a new transceiver strategy is proposed for half-duplex
DF MWRNs, where multiple single-antenna nodes exchange
their signals through a multiple-antenna relay by employing
beamforming techniques. Moreover, [10] derives the transmit
beamformer at the relay by employing semidefinite optimiza-
tion techniques based on relay power minimization criterion.
Reference [11] extends [10] to cater AF TWRNs and thereby
studying the achievable sum rate for both symmetric and
asymmetric traffic scenarios by using simulations. In addi-
tion, [13] studies the multi-group AF MWRNs by employing
unicast, multicast, and hybrid unicast/multicast transmission
strategies. Besides, [12] studies a special case of MWRNs1

1Specifically, the transmission strategy of [12] is only applicable whenever
the transmit beamforming at the relay cannot be employed due to the relay
antenna array constraints, where there are not enough degrees of freedom to
eliminate inter-pair interference.
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in which signals are exchanged only between predefined pairs
of nodes. To be more specific, [12] employs a proactive relay
precoder design to align messages from the same pair of nodes
by first eliminating inter-pair interference and then utilizing
intra-pair interference for symbol decoding via network cod-
ing. All the aforementioned references treat MWRNs with
multiple-antenna relays; however, all nodes are single-antenna
terminals.

Motivation: Although single-antenna MWRNs have been
heavily investigated, their achievable spectral efficiency im-
provement is limited [9]. Thus, more spectrally-efficient
MWRNs can be designed by exploiting the additional degrees
of freedom provided by multiple-antennas at the nodes as well
as at the relay. For example, these degrees of freedom can
be used for spatial beamforming to eliminate inter-pair/intra-
pair interferences and thereby improving the achievable spatial
multiplexing gains. To the best of our knowledge, multiple-
antenna AF MWRNs, where all nodes and relays are equipped
with multiple-antennas, have not yet been studied. For in-
stance, the MWRNs considered in [4]–[9] consist of all single-
antenna terminals, while those in [10]–[12] allow multiple-
antenna relays, however, all nodes are restricted to single-
antenna terminals. Moreover, important system performance
metrics of MIMO MWRNs such as the outage probability,
the fundamental diversity-multiplexing trade-off (DMT), and
the achievable sum rate have not been derived in closed-form.

Our contribution: This paper thus fills the aforementioned
gaps in transmission designing and performance analysis of
MIMO MWRNs by developing and analyzing two transmis-
sion strategies, which are primarily based on transmit/receive
(Tx/Rx) ZF, for MIMO AF MWRNs consisting of M ≥ 2
MIMO-enabled nodes and a single MIMO-enabled relay. We
term the MWRNs transmission schemes treated in this paper
as (i) Pairwise ZF transmissions and (ii) Non-pairwise ZF
transmissions.

To be more specific, in the pairwise ZF transmission strat-
egy, M nodes exchange M independent symbol vectors in
two consecutive multiple-access (MAC) and broadcast (BC)
phases each having M−1 time-slots. In the MAC phase, the
ith and the (i+1)th pair of nodes, where i ∈ {1, · · · ,M − 1},
transmit to the relay by employing transmit-ZF precoding,
while the relay receives a superimposed-signal without using
a specific receiver reconstruction filtering. This pairwise MAC
transmission takes place until the completion of the last pair’s
transmission. In the BC phase, relay performs a simple AF
operation for each superimposed-signal received during the
MAC phase by employing a specific gain, which is designed
to constraint the long-term total transmission power at the
relay. The relay then broadcasts these M − 1 signals in
M − 1 consecutive time-slots in the BC phase, where all
the M nodes receive these amplified superimposed-signals
by employing their corresponding receive-ZF reconstruction
filters. Consequently, each node now has M−1 independent
signals from which the data signal vectors belonging to the
remaining M − 1 nodes can readily be decoded by using
self-interference cancellation and back-propagated successive
known interference cancellation.

On the other hand, the non-pairwise ZF transmission strat-
egy is capable of exchanging all M data signals among all the

participating nodes in M time-slots, which contain one MAC
phase transmission and M − 1 BC phase transmissions2. In
the MAC phase, all the MIMO-enabled nodes simultaneously
transmit to the relay, where a concatenated-signal vector is
recovered by employing the receive-ZF reconstruction filter-
ing. In the next subsequent BC phase transmissions, the relay
forwards an amplified-and-permuted3 version of its received
signal back to all nodes by employing a joint transmit-ZF
precoding technique.

In this paper, the basic performance metrics of the two
aforementioned MIMO MWRN transmission strategies are
derived to obtain valuable insights into their practical im-
plementation. To this end, two novel end-to-end signal-to-
noise ratio (e2e SNR) expressions are first developed and
then used to derive closed-form lower and upper bounds of
the overall outage probability. Moreover, the achievable sum
rate is derived in closed-form by employing the statistical
characterization of the e2e SNR. Mathematically tractable
high SNR outage probability approximations are derived,
and thereby, the fundamental DMT and maximum achievable
diversity/multiplexing gains are quantified as well in order to
obtain valuable insights into practical MIMO MWRN system-
design and implementation. Moreover, useful numerical results
are presented to further validate the insights provided by our
analysis.

Impact: It is worth noticing that the two aforementioned
transmission strategies are applicable to two specific antenna
configurations. Specifically, to employ joint Tx/Rx ZF in the
pairwise transmission strategy, the number of antennas at the
relay must not exceed the minimum antenna count at any
of the nodes. On the contrary, the non-pairwise transmission
strategy requires the relay to be equipped with a larger antenna
array than the summation of all node antennas in order to
retain adequate degrees of freedom to eliminate all inter-
pair/intra-pair interferences in the BC phases.

Our pairwise ZF transmission strategy enjoys two-fold
benefits; (i) it allows simple practical implementation as each
node requires only the corresponding node-to-relay channel
knowledge as opposed to the global CSI requirement, and (ii)
it yields lower relay processing complexity as the relay does
not either employ any receive-filtering/precoding or require
instantaneous channel state information (CSI). However, these
benefits come at the expense of lower achievable spatial mul-
tiplexing gains as shown in Section III-D. Counter intuitively,
the non-pairwise ZF transmission strategy enjoys a much
higher spatial multiplexing gain, however, by compromising
most of the benefits inherent to the pairwise counterpart. To
be more specific, non-pairwise strategy requires relay to be
equipped with a much larger antenna array in order to enable
its joint receive/transmit (Rx/Tx) ZF and thereby substantially
increasing the relay processing complexity. Besides, both pair-
wise and non-pairwise transmission strategies reap substantial
diversity and multiplexing gains inherent to MIMO systems,

2This transmission strategy can be considered as an extension of [11] to
enable multiple-antenna nodes in order to reap both diversity and multiplexing
benefits subjected to a fundamental DMT.

3To be more specific, this permutation is performed such that the signals
belonging to all nodes are fully exchanged among themselves at the end of
the final BC phase transmission.
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however, subjected to the fundamental DMT. It is worth notic-
ing that our two transmission strategies for MIMO MWRNs
can be employed in various practical implementation scenarios
by carefully analyzing the performance versus complexity
trade-off, which is the most important trade-off in deploying
practical cooperative communication systems.
Notations: ZH , [Z]k,l, and λk(Z) denote the Hermitian-
transpose, the (k, l)th diagonal element and the kth eigenvalue
of the matrix, Z, respectively. EΛ{z} is the expected value of
z over Λ, and the operator ⊗ denotes the Kronecker product.
IM and OM×N are the M ×M Identity matrix and M ×N
matrix of all zeros, respectively. f(x) = o (g(x)), g(x) > 0
states that f(x)/g(x) → 0 as x → 0.

II. SYSTEM, CHANNEL AND SIGNAL MODELS

In this section, the system, channel, and signal mod-
els pertaining to the two transmission strategies of MIMO
AF MWRNs are presented. In this context, we consider a
MIMO AF MWRN consisting of M nodes (Sm) for m ∈
{1, · · · ,M}, and one relay node (R), where each of them
operates in half-duplex mode. The mth node and the relay
are equipped with Nm and NR antennas respectively. All
the channels are assumed to be independently distributed
frequency-flat Rayleigh fading. Moreover, the noise at all
the receivers is modeled as complex zero mean additive
white Gaussian noise (AWGN). The direct channel between
Sm and Sm′ for m �= m′ is assumed to be unavailable
due to impairments such as heavy path-loss and shadowing
[1], [14], [15]. The channel matrix from Sm to R in the
ith time-slot of the MAC phase is denoted as H

(i)
m,R ∼

CNNR×Nm (0NR×Nm , INR ⊗ INm). The channel matrix from
R to Sm in the jth time-slot of the BC phase is denoted as
H

(j)
R,m ∼ CNNm×NR (0Nm×NR , INm ⊗ INR). Moreover, all

the channel matrices are assumed to be remain fixed over
one time-slot. Besides, H

(i)
m,R and H

(i′)
m′,R are independent

for (m,m′) ∈ {1, · · · ,M}, (i, i′) ∈ {1, · · · ,M − 1} and
m �= m′. Similarly, H

(j)
R,m and H

(j′)
R,m′ are independent for

(j, j′) ∈ {1, · · · ,M − 1}, (m,m′) ∈ {1, · · · ,M}, j �= j′ and
m �= m′.

In the next two subsections, signal models of MIMO AF
MWRNs with (i) pairwise ZF transmissions and (ii) non-
pairwise ZF transmissions are presented in detail.

A. Signal model of MIMO AF MWRNs with pairwise trans-
missions

In the MIMO AF MWRNs with pairwise ZF transmissions4,
all M nodes exchange their information-bearing signal vec-
tors5, xm, satisfying E

[
xmxH

m

]
= INR , one another in two

consecutive MAC and BC transmission phases each of them
having M − 1 time-slots.

4In MIMO AF MWRNs with pairwise transmissions, the constraint NR <
min (N1, · · · , NM ) is imposed to employ joint transmit and receiver ZF for
the same antenna configuration [16]. Consequently, the maximum number of
end-to-end data subchannels from Si to R is constrained to NR .

5The symbol vector of Sm for m ∈ {1, · · · ,M} is denoted by xm with
dimension NR × 1 and has NR independent data symbols.
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Fig. 1. The schematic system diagram of the MIMO AF MWRN with
pairwise ZF transmissions depicting the ith time of the MAC phase and the jth
time-slot of the BC phase, where i ∈ {1, · · · ,M−1} and j ∈ {1, · · · ,M−
1}. The terms TZF and RZF are referred to the transmit zero-forcing and
receive zero-forcing, respectively.

B
C
ph
as
e
Ti
m
e-
sl
ot
s

1

S1 S2 S3

2

Sm Sm+1 SM-2 SM-1 SM

j

M-2

M-1

Receiving sequence of sources

S1 and S2

M
A
C
ph
as
e
Ti
m
e-
sl
ot
s

1

S1 S2 S3

S2 and S3
2

Sm Sm+1

Sm and Sm+1

SM-2 SM-1 SM

SM-2 and SM-1

i

M-2
SM-1 and SM

M-1

Transmitting sequence of sources

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

Fig. 2. The schematic timing diagram of the MIMO AF MWRN with
pairwise ZF transmissions depicting the MAC phase and BC phase time-slots
and transmission/reception sequence.

1) MAC phase of pairwise transmission strategy: Let us
consider an intermediate stage of the MAC phase, i.e., its
ith time-slot (see Fig. 1 and Fig. 2). In the ith time-slot of
the MAC phase, the pair of nodes, Sm and Sm+1 transmit
xm and xm+1 simultaneously to R by employing transmit-
ZF precoding. The received superimposed-signal vector at R
in the ith time-slot of MAC phase is given by

y
(i)
R =H

(i)
m,R

(
gmU(i)

m xm

)
+H

(i)
m+1,R

(
gm+1U

(i)
m+1xm+1

)
+ n

(i)
R , (1)

where i ∈ {1, · · · ,M − 1}, H
(i)
m,R is the channel matrix

from Sm to R, and n
(i)
R is the NR × 1 zero mean AWGN

vector at R in the ith time-slot of the MAC phase satisfying

E
[
n
(i)
R

(
n
(i)
R

)H]
= INRσ

2
R. In (1), gmU

(i)
m xm is the precoded

transmit signal at Sm with the dimension6 Nm×1. Moreover,
U

(i)
m is the transmit-ZF precoding matrix at Sm in the ith

time-slot of the MAC phase, and is given by [16]

U(i)
m =

(
H

(i)
m,R

)H (
H

(i)
m,R

(
H

(i)
m,R

)H)−1

, (2)

Besides, in (1), gm is the power normalizing factor, which
constraints the long-term total power at Sm, and is given by

gm =

√
Pm/Tr

(
E
[
U

(i)
m

(
U

(i)
m

)H])
=
√
Pm/Tm, (3)

where Tm � Tr
(
E
[
U

(i)
m (U

(i)
m )H

])
= NR

Nm−NR
[17] and Pm

is the transmit power at Sm.

6Note that the precoded transmit signal at Sm is of dimension Nm × 1,
and hence, no transmit antenna is discarded arbitrarily.
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Remark II.1: Symbol vectors at each node can be of
arbitrary length. However, only NR independent data symbols
can be sent from each node to the relay as it has only
NR receive antennas. To ensure this constraint at each node,
the symbol vectors of arbitrary lengths are multiplied by a
permutation matrix as follows:

xm = Πmdm, (4)

where dm is a symbol vector at Sm with dimension lm × 1.
Further in (4), Πm is the NR× lm permutation matrix7, which
ensures only NR independent data streams are transmitted to
the relay by each node to avoid any data symbol loss.

The aforementioned MAC phase continues until the last pair
of nodes, SM−1 and SM , complete their transmission (see Fig.
2), and consequently, R has now received M − 1 pairwise
transmissions containing M − 1 superimposed-signals in the
form of (1).

2) BC phase of pairwise transmission strategy: During the
BC phase, R broadcasts the amplified versions of the M−1
received signals back to all M nodes in M−1 consecutive
time-slots (see Fig. 1 and Fig. 2). Again, we consider the jth
time-slot, an intermediate stage of the BC phase for the sake
of the brevity of the exposition. Furthermore, let us assume
that y(i)

R in (1), which is the signal received by R in the ith
time-slot of the MAC phase, is scheduled to be transmitted in
the jth time-slot of the BC phase. In the jth time-slot of the
BC phase, the transmitted signal by R is therefore given by

x
(j)
R = Gjy

(i)
R for j ∈ {1, · · · ,M − 1}, (5)

where Gj =
√
PR/(g2m + g2m+1 + σ2

R) is the power normal-

izing constant corrresponding to y
(i)
R in (1) at R designed to

constraint the long-term total relay power and PR is the relay
transmit power. It is worthy noting that, in (5), y (i)

R can be
either of M − 1 superimposed-signals received by R during
the MAC phase. The broadcast signal in (5) is then received
by all the M nodes. During the jth time-slot of the BC phase,
the received signal at the mth node is therefore given by

y
(j)
Sm

=V(j)
m

(
GjH

(j)
R,my

(i)
R +n(j)

m

)
, (6)

where j ∈ {1, · · · ,M − 1} and m ∈ {1, · · · ,M}. Besides,
in (6), H

(j)
R,m is the channel matrix from R to Sm in the

jth time-slot of the BC phase, and is assumed to be statis-
tically independent for different m ∈ {1, · · · ,M} and j ∈
{1, · · · ,M−1}. Moreover, in (6), n(j)

m is the Nm×1 zero mean

AWGN vector at Sm satisfying E
[
n
(j)
m

(
n
(j)
m

)H]
= INmσ2

m

for m ∈ {1, · · · ,M} and V
(j)
m is the receive-ZF matrix at Sm

employed in the jth time-slot, and is given by [16]

V(j)
m =

((
H

(j)
R,m

)H
H

(j)
R,m

)−1(
H

(j)
R,m

)H
, (7)

where j ∈ {1, · · · ,M − 1} and m ∈ {1, · · · ,M}. The
aforementioned BC phase transmissions continue until all
M−1 superimposed-signals are broadcast by R during M−1

7The permutation matrix, Πm, is constructed by horizontally concatenating
a NR×NR permutation matrix and a NR×(lm−NR) zero matrix, where
m ∈ {1, · · · ,M}.

successive BC phase time-slots in order to ensure that each
node receives adequate number of independent signals from
which the signals belonging to other M −1 nodes can readily
be decoded.

3) Signal decoding process of pairwise transmission strat-
egy: Upon the completion of the MAC phase and the BC
phase, mutual exchange of all M node signal vectors via
the relay is accomplished. Each node therefore has received
M−1 independent signals, which indeed carry the data of the
remaining M − 1 nodes. Now by employing self-interference
cancellation and back-propagated known-interference cancel-
lation successively [5], [11], [18], each node can readily
decode the data of the other M − 1 nodes.

For the sake of the exposition of signal decoding, let us
consider a three-way relay network consisting of three nodes
and a single relay. By first substituting (1) and (7) into (6), and
then letting M = 3, i ∈ {1, 2}, j ∈ {1, 2} and m ∈ {1, 2, 3},
the signals received at Sm for m ∈ {1, 2, 3} during the first
time-slot of BC phase are given by

y
(1)
S1

= G1

(
g1x1 + g2x2 + n

(1)
R

)
+V

(1)
1 n

(1)
1 (8a)

y
(1)
S2

= G1

(
g1x1 + g2x2 + n

(1)
R

)
+V

(1)
2 n

(1)
2 (8b)

y
(1)
S3

= G1

(
g1x1 + g2x2 + n

(1)
R

)
+V

(1)
3 n

(1)
3 , (8c)

where G1 =
√
PR/(g21 + g22 + σ2

R). Similarly, the signals
received at the three nodes in the second time-slot of the BC
phase are next given by

y
(2)
S1

= G2

(
g2x2 + g3x3 + n

(2)
R

)
+V

(2)
1 n

(2)
1 (9a)

y
(2)
S2

= G2

(
g2x2 + g3x3 + n

(2)
R

)
+V

(2)
2 n

(2)
2 (9b)

y
(2)
S3

= G2

(
g2x2 + g3x3 + n

(2)
R

)
+V

(2)
3 n

(2)
3 , (9c)

where G2 =
√
PR/(g22 + g23 + σ2

R).
The signals received by S1 are given by (8a) and (9a). From

(8a), the self-interference, i.e., the term involving x 1, can be
readily canceled, and consequently, the signal vector belonging
to S2, i.e., x2, can now be decoded at S1 by employing
standard ZF MIMO decoding [18]. Next, by knowing x 2 from
the previous decoding step, the interference owing x 2 in (9a)
can be eliminated and thus paving the way to decoding of
x3 at S1. This step of interference cancellation is referred to
as back-propagated known-interference cancellation [5], [11].
Similarly, by employing self-interference and back-propagated
known-interference cancellations successively, the the signals
received at S2 and S3 can be decoded as well.

4) End-to-end SNR: In this subsection, we develop a gen-
eral e2e SNR expression for an arbitrary data subchannel. To
this end, by again substituting (1) and (7) into (6), and then by
employing back-propagated successive self-interference and
known-interference cancellation8, the signal vector pertinent
to the nth node, received at the mth node in the jth time-slot
of the BC phase is derived as

y
(j)
Sm,n

= Gj

(
gnxn + n

(j)
R

)
+V(j)

m n(j)
m , (10)

8It is assumed that Sm knows its own information-bearing symbol vector,
xm, CSI of H(i)

m,R , and Gj , which requires gm.
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[
γ
S

(j)
m,n

]
k
=

γ̄R,mγ̄n,RTjTj+1T −1
n

γ̄R,mTjTj+1 + (γ̄j,RTj+1 + γ̄j+1,RTj + TjTj+1)

[((
H

(j)
R,m

)H
H

(j)
R,m

)−1
]
k,k

, (11)
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Fig. 3. The schematic system diagram of the MIMO AF MWRN with non-
pairwise ZF transmissions depicting the only time of the MAC phase and the
jth time-slot of the BC phase, where j ∈ {1, · · · ,M − 1}. The terms TZF
and RZF are referred to the transmit zero-forcing and receive zero-forcing,
respectively.

where j ∈ {1, · · · ,M − 1}, m ∈ {1, · · · ,M}, n ∈
{1, · · · ,M}, and m �= n. Then the post-processing e2e SNR
of the kth data subchannel of y

(j)
Sm,n

in (10) can be derived
as given in (11) (see Appendix A for the proof). In (11),
k ∈ {1, · · · , NR}, γ̄R,m = PR/σ

2
m, γ̄j,R = Pj/σ

2
R, and

γ̄n,R = Pn/σ
2
R. Furthermore, Tjs are defined in (3) and given

by Tj = NR/(Nj − NR), Tj+1 = NR/(Nj+1 − NR), and
Tn = NR/(Nn −NR).
Remark II.2: The e2e SNR of the kth symbol of the
signal vector pertinent to the nth node, received at the mth
node in the jth time-slot of the BC phase9,

[
γ
S

(j)
m,n

]
k
, for

k∈{1, · · · , NR} in (11) are statistically correlated for a given
set of j, m, and n values as noise term in (10) is colored due
to V

(j)
m . However, the set of

[
γ
S

(j)
m,n

]
k

belonging to different
j, m and n values are statistically independent.

B. Signal model of MIMO AF MWRNs with non-pairwise
transmissions

In the MIMO AF MWRNs with non-pairwise ZF transmis-
sions10, all M nodes exchange their information-bearing signal
vectors in M time-slots among one another. The MAC phase
consists of only one time-slot, whereas the BC phase contains
M−1 time-slots. Note that M−1 time-lots are required in the
BC phase to achieve full mutual data exchange, i.e., Sm should
receive all symbols belonging to Sn for m ∈ {1, · · · ,M},
n ∈ {1, · · · ,M}, and m �= n. Specifically, M(M−1) symbol
vectors are transmitted to M nodes by the relay in M − 1
time-slots of the BC phase.

9It is worth noticing that the index pair (j, n) in (10) and (11) is used only
to differentiate the sequence of symbol vectors received by a particular node
in each time-slot of the BC phase from the remaining set of nodes. Thus, each
pair of (j, n) has a one-to-one correspondence, and hence, without loss of
generality, the index n is removed herein for the sake of notational simplicity.

10In the MIMO AF MWRNs with non-pairwise transmissions, the con-
straint NR > M

[
minm∈{1,··· ,M}(Nm)

]
is imposed to employ joint

receiver and transmit ZF at the relay. Consequently, the maximum number
of end-to-end data subchannels from all nodes to the relay is constrained to
MNmin, where Nmin = minm∈{1,··· ,M}(Nm).

B
C
ph
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e
Ti
m
e-
sl
ot
s

1

S1 S2 S3

2

Sm Sm+1 SM-2 SM-1 SM

j

M-2

M-1

Receiving sequence of sources

M
A
C
ph
as
e
Ti
m
e-
sl
ot
s

1

S1 S2 S3 Sm Sm+1 SM-2 SM-1 SM

Transmitting sequence of sources

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

S1, S2, S3 Sm, Sm+1 SM-2, SM-1, SM

Fig. 4. The schematic timing diagram of the MIMO AF MWRN with non-
pairwise ZF transmissions depicting the MAC phase and BC phase time-slots
and transmission/reception sequence.

1) MAC phase of non-pairwise transmission strategy: Dur-
ing the MAC phase, all nodes transmit simultaneously their
signals to R without employing any transmit precoding strat-
egy (see Fig. 3 and Fig. 4). The pre-processed superimposed-
signal vector received at R is given by

yR =

M∑
m=1

√
Pm

Nm
Hm,RΠmxm + nR, (12)

where nR is a noise vector at R satisfying E
[
nRn

H
R

]
=

INRσ
2
R. Moreover, Πm for m ∈ {1, · · · ,M} is the permu-

tation matrix11 at Sm and used to ensure that only Nmin =
minm∈{1,··· ,M} Nm data subchannels are transmitted by any
Sm in order to eliminate any lost of data subchannels in the
BC phase at the nodes12. Next, the pre-processed signal at R
given in (12) can alternatively be rewritten as

yR = HS,RxS + nR, (13)

where HS,R ∈ C NR×
∑M

m=1 Nm is the effective channel
matrix formed by horizontally concatenating individual
channel matrices as HS,R = [H1,R,H2,R, · · · ,HM,R].
Furthermore, xS is the effective transmit signal
vector obtained by vertically concatenating the
weighted individual node transmit vectors x i as xS =[√

P1/N1Π1x1;
√
P2/N2Π2x2; · · · ;

√
PM/NMΠMxM

]
.

The relay then employs the receive-ZF reconstruction matrix,
Wr, to receive this superimposed-signal vector as follows:

ỹR = WryR = xS +WrnR. (14)

where Wr =
(
HH

S,RHS,R

)−1
HH

S,R.
2) BC phase of non-pairwise transmission strategy: Dur-

ing the BC phase, R employs the transmit-ZF precoding to
broadcast an amplified-and-permuted version of ỹR back to
all nodes in M − 1 subsequent time-slots (see Fig. 3 and Fig.
4). For the sake of exposition of the BC phase transmissions,
an intermediate jth time-slot of the BC phase is considered.

11Moreover, the permutation matrix, Πm, for m ∈ {1, · · · ,M}
is constructed by first horizontally concatenating an INmin

and
ONmin×(Nm−Nmin)

matrices, and then vertically concatenating this
resulting matrix with another O(Nm−Nmin)×Nm

matrix.
12See Section V-B for the optimal antenna subset selection strategy.
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To this end, the transmitted signal by R in the jth time-slot
of the BC phase can be written as

ỹ
(j)
R = W

(j)
t G(j)Π(j)WryR, (15)

where W
(j)
t =

(
H

(j)
R,S

)H (
H

(j)
R,S

(
H

(j)
R,S

)H)−1

is the trans-

mit precoding matrix at R. Here, H
(j)
R,S ∈ C

∑M
i=1 Ni×NR

is the effective channel matrix from R to all nodes and
constructed by vertically concatenating individual channel
matrices as HR,S = [HR,1;HR,1; · · · ;HR,M ]. In (15), the
amplification gain, G(j), is designed to constraint long-term
relay transmit power as given in (16). Moreover, in (15), Π (j)

is the permutation matrix at the jth time-slot of the BC phase,
and designed to ensure that the signal belonging to Sm+1 is
transmitted to Sm for all m ∈ {1, · · · ,M} with SM+1 � S1.
To this end, Π(j) for j ∈ {1, · · ·M − 1} is constructed as
Π(j) = (ΠP )

j , where ΠP is the primary permutation matrix
with

∑M
m=1Nm×

∑M
m=1Nm dimension and given by (17).

The concatenated received signal vector at nodes in the jth
time-slot of the BC phase can then be written as

y
(j)
S = H

(j)
R,SW

(j)
t G(j)Π(j)WryR + nS , (18)

where j ∈ {1, · · · ,M−1} and nS is the concatenated-AWGN
vector at all nodes satisfying E

[
nSn

H
S

]
= σ2

RI
∑

M
i=1 Ni

. The
BC phase continues until the completion of all M − 1 relay
transmissions in M − 1 consecutive time-slots.

3) Signal decoding process of non-pairwise transmission
strategy: Upon the completion of the MAC and BC phases,
each node has now received the M − 1 noise perturbed
signal vectors belonging to other M − 1 nodes. This full data
signal exchange is achieved due to the fact that the relay has
enough degrees of freedom which can readily be exploited
for spatial beamforming to eliminate inter-node/intra-stream
interferences by virtue of successive M − 1 transmit ZF
transmissions of the carefully permuted signal vector in the
BC phase. This permutation ensures every node receives M−1
signal vectors corresponding to the remaining M − 1 nodes
within the M − 1 BC phase transmit ZF transmissions. The
each of M − 1 signals received by any particular node can
readily be decoded by employing standard MIMO signal
detection techniques developed for MIMO ZF systems [18].

4) End-to-end SNR: By employing similar techniques to
those in Appendix A, the e2e SNR of the kth subchannel
of y

(j)
S in (18) is derived as given in (19). In (19),

γ̄k′,R � Pk′
σ2
R

, γ̄R,k′ � PR

σ2
k′

, Nmin = minm∈{1,··· ,M}(Nm),

and k′ = π(j, k), which is determined by the permutation
matrix Π(j). Moreover, in (19), γ̄i,R � Pi

σ2
R

, γ̄R,i � PR

σ2
i

,

Q = Tr
(
E [WtW

H
t ]
)

= Tr
(
E [(HR,SH

H
R,S)

−1]
)
)

and Q′ = Tr
(
E [(WtWr)(WtWr)

H ]
)

=

Tr
(
E
[(
HH

R,SH
H
S,RHS,RHR,S

)−1
])

.

The e2e SNR of the kth data subchannel of Sm belonging to
Sj for (m, j) ∈ {1, · · · ,M} and m �= j can then be written
by using (19) as given in (20). Moreover, in (20), km,j ∈
{1, · · · ,MNmin} and the relationship between k and km,j

strictly depends13 on the permutation matrix, Π(j).
Remark II.2: It is worth noting that the e2e SNR random
variables of data subchannels of Sm,

[
γ
S

(j)
m

]
k
, for j ∈

{1, · · · ,M}, m �= j and k ∈ {1, · · · , Nmin} in (20) are
statistically correlated due to the colored noise at R resulted
from Wr. Moreover,

[
γ
S

(j)
m

]
k

for m ∈ {1, · · · ,M} and[
γ
S

(j)

m′

]
k

for m′ ∈ {1, · · · ,M} can share the same random

variable,

[(
(HS,R)

H
HS,R

)−1
]
k′,k′

, for k′ ∈ {1, · · · ,MNmin}

as the relay broadcasts a permuted version of the same noise
perturbed signal, which is received in the MAC phase, M − 1
times in the BC phase.
Remark II.3: The e2e SNR expressions corresponding to
MIMO AF MWRNs with both pairwise and non-pairwise
transmissions in (11) and (20), respectively, possess the same
form of γ = η/(ζ + μX), where η, ζ and μ are system
dependent parameters and X is the random variable. Thus,
the statistical characterization of both (11) and (20) follow
the same techniques.

C. Alternative node-grouping strategies

The pairwise and non-pairwise transmission strategies
discussed in Subsections II-A and II-B, respectively, fol-
low pairwise node-grouping and all-simultaneous node-
grouping, which are indeed the two extreme cases of node-
grouping schemes. Besides, there exists arbitrary node-
grouping schemes in which each group may consist of an arbi-
trary number of nodes, and hence, they lie in between the two
extreme node-grouping schemes. To be more specific, L node
groups can be first formed from the available M nodes. The
lth group consists of Ml nodes and the mth node belonging
to the lth group, Sl,m, is equipped with Nl,m antennas, where
l ∈ {1, · · · , L} and m ∈ {1, · · · ,Ml}. The total number of
antennas of the lth group’s nodes can be therefore quantified
as Nl =

∑Ml

i=1 Nl,i. Further, the total number of all node
antennas is NS =

∑L
l=1 Nl =

∑L
l=1

∑Ml

i=1 Nl,i. In particular,
these groups are formed to satisfy specific antenna constraints
to ensure that each group possesses adequate amount of
degrees of freedom to eliminate inter-group, inter-user, and
inter-stream interferences.

The performance of these alternative node-grouping
schemes would indeed lie in between those of the two ex-
treme cases treated in this paper. For example, as shown
in Sections III and IV, the all-simultaneous node-grouping
scheme achieves the maximum spatial multiplexing gain of
rmax = minm∈{1,··· ,M}{Nm} whereas the pairwise node-
grouping scheme achieves the minimum multiplexing gain of
rmin = MNR/(2(M − 1)). The spatial multiplexing gain of
any alternative grouping strategy will therefore lies in between
these two extremes values, rmax and rmin. Providing a com-
prehensive performance analysis of other grouping strategies is
out of the scope of this paper, and hence, will be considered in

13Random variable

[((
HS,R

)H
HS,R

)−1
]
km,j ,km,j

for km,j ∈
{1, · · · ,MNmin} are in fact identically distributed, and hence, the exact
relationship between k and km,j does not affect the performance analysis.
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G(j)=

√√√√PR

[(
M∑
i=1

Pi

Ni

)
Tr

(
E
[
W

(j)
t

(
W

(j)
t

)H])
+Tr

(
E
[
(W

(j)
t WrnR)(W

(j)
t WrnR)H

])]−1

. (16)

ΠP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ON2×N1 IN2 ON2×N3 . . . ON2×NM−1 ON2×NM

ON3×N1 ON3×N2 IN3 . . . ON2×NM−1 ON3×NM

...
...

. . .
...

...
ONM−1×N1 ONM−1×N2 . . . . . . INM−1 ONM−1×NM

ONM×N1 ONM×N2 . . . . . . ONM×NM−1 INM

IN1 ON1×N2 . . . . . . ON1×NM−1 ON1×NM

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

[
γ
y
(j)
S

]
k
=

γ̄R,k′ γ̄k′,R

Nk′Q′
j+Nk′Qj

M∑
i=1

γ̄i,R
Ni

+Nk′ γ̄R,k′

[(
(HS,R)

HHS,R

)−1
]
k′,k′

, for k∈{1, · · · ,MNmin}, (19)

[
γ
S

(j)
m

]
k
=

γ̄R,mγ̄j,R

NjQ′
j+NjQj

M∑
m=1

γ̄i,R
Nm

+Nj γ̄R,m

[(
(HS,R)

H
HS,R

)−1
]
km,j ,km,j

, for k∈{1, · · · , Nmin}, (20)

future research. Moreover, alternative node-grouping schemes
are an important open research problem.

III. PERFORMANCE ANALYSIS OF MWRNS WITH

PAIRWISE TX/RX ZF TRANSMISSIONS

In this section, the basic performance metrics of the MIMO
AF MWRN with pairwise Tx/Rx ZF transmissions are derived.
In this context, the lower and upper bounds of the outage
probability of an arbitrary node are first derived in closed-
form, and then, used to derive the corresponding bounds of
the overall outage probability. Moreover, the high SNR outage
probability approximations and the DMT are derived to obtain
valuable insights into practical MIMO MWRN designs.

A. The outage probability of an arbitrary node of MWRNs
with pairwise ZF transmissions

In this subsection, the outage probability of the mth node
for m ∈ {1, · · · ,M} is derived. In the MWRN with pairwise
Tx/Rx ZF transmissions, the mth node receives M−1 symbol
vectors pertaining to the remaining M − 1 nodes in the BC
phase. In this context, the outage probability of a multi-
subchannel system is governed by the performance of the
weakest subchannel [19]. Thus, the outage probability of the
mth node is defined as

Pout,m=Pr

⎛
⎝ min

k∈{1,··· ,NR}
j∈{1,··· ,M−1}

[
γ
S

(j)
m

]
k
≤ γth

⎞
⎠ , (21)

where γth is the threshold SNR14. The direct computation of
(21) is mathematically intractable due to the correlation of
[γ

S
(j)
m
]k for k ∈ {1 · · ·NR} for a given j. Thus, simple lower

and upper bounds of the outage probability are derived in
closed-form.

14This threshold SNR, γth, is set to satisfy the minimum service-rate
constraint; γth = 2Rth − 1, where Rth is the target rate [19].

1) Lower bound of Pout,m: The lower bound of the outage
probability of the mth node can be derived as (see Appendix
B for the proof)

P lb
out,m = 1−

M−1∏
j=1

(
1− F

γ
(j),ub
Sm,min

(γth)

)
, (22)

where F
γ
(j),ub
Sm,min

(x) is the CDF of γ(j),ub
Sm,min

, and is given by

F
γ
(j),ub
Sm,min

(x)=

⎧⎪⎨
⎪⎩

γ

(
Nm−NR+1,

μ
(j)
m x

η
(j)
m −ζ

(j)
m x

)
Γ(Nm−NR+1) , 0 < x <

η(j)
m

ζ
(j)
m

1, x ≥ η(j)
m

ζ
(j)
m

,

(23)

where μ
(j)
m = γ̄j,RTj+1 + γ̄j+1,RTj + TjTj+1, η

(j)
m =

γ̄R,mγ̄n,RTjTj+1T −1
n , and ζ

(j)
m = γ̄R,mTjTj+1, where m ∈

{1, · · · ,M}, and j ∈ {1, · · · ,M − 1}.
2) Upper bound of Pout,m: The upper bound of the outage

probability of the mth node can be derived as (see Appendix
C for the proof)

P ub
out,m = 1−

M−1∏
j=1

(
1− F

γ
(j),lb
Sm,min

(γth)

)
, (24)

where F
γ
(j),lb
Sm,min

(x) is the cumulative distribution function

(CDF) of γ(j),lb
Sm,min

and is given by

F
γ
(j),lb
Si,min

(x)=

⎧⎪⎪⎨
⎪⎪⎩
1−

det

[
Qm

(
μ
(j)
m x

η
(j)
m −ζ

(j)
m x

)]
∏NR

l=1[Γ(Ni−l+1)Γ(NR−l+1)]
, 0<x<

η(j)
m

ζ
(j)
m

1, x≥ η(j)
m

ζ
(j)
m

.

(25)

The (u, v)th element of NR ×NR matrix, Qm(x) in (25) is
given by [20, Eq. (2.73)]

[Qm(x)]u,v = Γ(Nm −NR + u+ v − 1, x) . (26)
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B. Overall outage probability of MWRNs with pairwise ZF
transmissions

The outage probability of a multi-node/multi-subchannel
system is governed by the performance of the smallest
subchannel of the weakest node. Thus, the overall outage
probability of the MIMO AF MWRN with pairwise ZF
transmissions is defined as the probability that the smallest
subchannel of the weakest node falls bellow a preset threshold
as follows:

Pout=Pr

⎛
⎝ min

k∈{1,··· ,NR},j∈{1,··· ,M−1}
m∈{1,··· ,M}

[
γ
S

(j)
m

]
k
≤ γth

⎞
⎠ . (27)

Again, the closed-form evaluation of (27) appears mathemat-
ically intractable, and hence, tight lower and upper bounds of
the overall outage probability are derived.

1) Lower bound of the overall outage probability: The
lower bound of the overall outage probability can be defined
by using (81) as follows:

Pout ≥ P lb
out = Pr

(
min

m∈{1,··· ,M}
γub
Sm,min

≤ γth

)
, (28)

where γ lb
Sm,min

= min j∈{1,··· ,M−1}

(
γ
(j),ub
Sm,min

)
is defined in

(81). Next, P lb
out can be derived in closed-form by using (22)

as

P lb
out = 1−

M∏
m=1

M−1∏
j=1

(
1− F

γ
(j),ub
Sm,min

(γth)

)
, (29)

where F
γ
(j),ub
Sm,min

(x) is defined in (23).

2) Upper bound of the overall outage probability: The
upper bound of the overall outage probability is defined by
using (88) as follows:

Pout ≤ P ub
out = Pr

(
min

m∈{1,··· ,M}
γlb
Sm,min

≤ γth

)
, (30)

where γub
Sm,min

= min j∈{1,··· ,M−1}

(
γ
(j),lb
Sm,min

)
is defined in

(88). Then, P ub
out is derived in closed-form by using (24) as

P ub
out = 1−

M∏
m=1

M−1∏
j=1

(
1− F

γ
(j),lb
Sm,min

(γth)

)
, (31)

where F
γ
(j),lb
Sm,min

(x) is defined in (25).

C. High SNR asymptotic outage probability of MWRNs with
pairwise ZF transmissions

In this subsection, the asymptotically exact high SNR
approximations for the lower and upper bound of the overall
outage probability are derived.

1) High SNR approximation of the lower bound of Pout:
The high SNR approximation for the lower bound of the out-
age probability of mth node can be derived as (see Appendix
D for the proof)

P lb,∞
out,m =

⎡
⎣M−1∑

j=1

Ω
(j)
lb,m

⎤
⎦( γth

γ̄S,R

)Glb
d,m

+ o

(
γ̄
−(Glb

d,m+1)

S,R

)
, (32)

where the lower bound of the diversity order is given by

Glb
d,m = Nm −NR + 1. (33)

In (32), the system dependent constant, Ω (j)
lb,m, is given by

Ω
(j)
lb,m =

(
φ
(j)
m

)Nm−NR+1

Γ(Nm−NR+2)βNm−NR+1
, (34)

where γ̄m,R = γ̄S,R, γ̄R,m = γ̄R,S , γ̄R,S = βγ̄S,R, φ(j)
m =

Tn(Tj+Tj+1)
Tj

, and φ
(j)
m =

Tn(Tj+Tj+1)
Tj+1

for m ∈ {1, · · · ,M},
j ∈ {1, · · · ,M − 1} and n ∈ {1, · · · ,M − 1}.

Now, the high SNR approximation for the lower bound of
the overall outage probability is derived as

P lb,∞
out =

⎡
⎣∑

m′

M−1∑
j=1

Ω
(j)
lb,m′

⎤
⎦( γth

γ̄S,R

)Glb
d

+ o
(
γ̄
−(Glb

d +1)
S,R

)
, (35)

where m′∈{m′|Glb
d,m′ =min(N1, · · ·,Nm′ , · · ·,NM )−NR+1}.

Moreover, the lower bound of the overall diversity order is
given by

Glb
d = min

m∈{1,··· ,M}
(Nm)−NR + 1. (36)

2) High SNR approximation of the upper bound of P out:
First, the high SNR approximation for the upper bound of
the outage probability of mth node is derived by employing
similar techniques to those in Appendix D and by using
the high SNR approximation of the CDF of the minimum
eigenvalue of the Wishart matrix in [20] as follows:

P ub,∞
out,m =

⎡
⎣M−1∑

j=1

Ω
(j)
ub,m

⎤
⎦( γth

γ̄S,R

)Gub
d,m

+ o

(
γ̄
−(Gub

d,m+1)

S,R

)
,(37)

where the upper bound of the diversity order is given by

Gub
d,m = Nm −NR + 1. (38)

In (37), the system dependent constant, Ω (j)
ub,m, is given by

Ω
(j)
ub,m =

νm

(
φ
(j)
m

)Nm−NR+1

(Nm −NR + 1)βNm−NR+1
, (39)

where φ
(j)
m and β are defined in (34). Moreover, in (39), νm

is given by

νm=

⎧⎨
⎩

det(Ψm)∏NR
l=1[Γ(NR−l+1)Γ(Nm−l+1)]

, NR �= 1

1
Γ(Nm) , NR = 1,

(40)

where Ψm for m ∈ {1, · · · ,M} is an (NR − 1)× (NR − 1)
matrix, where the (u, v)th element is given by [Ψm]u,v =
Γ(Nm −NR + u+ v + 1).

Next, the high SNR approximation for the upper bound of
the overall outage probability can be derived as

P ub,∞
out =

⎡
⎣∑

m′

M−1∑
j=1

Ω
(j)
ub,m′

⎤
⎦( γth

γ̄S,R

)Gub
d

+ o
(
γ̄
−(Gub

d +1)
S,R

)
, (41)

Again, the index m′ is given by m′ ∈ {m′|Glb
d,m′ =

min(N1, · · ·,Nm′ , · · ·,NM ) − NR+1}. Furthermore, in (41),
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Gub
d is the upper bound of the overall diversity order, and is

given by

Gub
d = min

m∈{1,··· ,M}
(Nm)−NR + 1. (42)

Remark III.1: The lower and upper bounds of the diversity
orders in (42) and (36), respectively, are the same, and
consequently, the overall diversity order of the MIMO AF
MWRN is given by Gd = minm∈{1,··· ,M} (Nm)−NR + 1.

D. Diversity-multiplexing trade-off of MWRNs with pairwise
ZF transmissions

In this subsection, the fundamental DMT [19] of MIMO
AF MWRNs with pairwise transmit/receive ZF is derived to
obtain valuable insights into practical system designing. In this
system set-up, M independent symbol vectors each having NR

independent symbols are exchanged among M users in 2(M−
1) time-slots. In this context, the effective mutual information
can be upper bounded as

Ieff � MNR

2(M − 1)
log

(
1 + min

m∈{1,··· ,M}
γub
Sm,min

)
. (43)

Consequently, the information rate outage probability can be
lower bounded as

Pout �Pr (Ieff ≤ Rth)

= Pr

(
min

m∈{1,··· ,M}
γub
Sm,min ≤ 2

2(M−1)Rth
MNR − 1

)
, (44)

where Rth is the overall target information rate, and is defined
a Rth = rlog (1 + γ̄S,R) [19]. By employing (35), Pout can
be lower bounded when γ̄S,R → ∞ as

P
γ̄S,R→∞
out � γ̄

−
(

min
m∈{1,··· ,M}

(Nm)−NR+1
)(

1− 2r(M−1)
MNR

)
S,R . (45)

Next, the effective mutual information can be lower bounded
as

Ieff � MNR

2(M − 1)
log

(
1 + min

m∈{1,··· ,M}
γlb
Sm,min

)
. (46)

Now, by using similar steps to those in (44), (45), and then
employing (41), Pout can be upper bounded γ̄S,R → ∞ as

P
γ̄S,R→∞
out � γ̄

−
(

min
m∈{1,··· ,M}

(Nm)−NR+1
)(

1− 2r(M−1)
MNR

)
S,R . (47)

In particular, the lower and upper bounds of P out in (45)
and (47), respectively, coincide each other and hence the
achievable DMT can be derived as [19]

Gd(r)=

(
min

m∈{1,··· ,M}
(Nm)−NR+1

)(
1− 2r(M − 1)

MNR

)
.(48)

It is worth noticing that the achievable diversity order reduces
as the number of antennas at the relay (NR) increase; however,
the achievable multiplexing gain increases. The maximum
achievable diversity order and multiplexing gain are given
by Gd = minm∈{1,··· ,M}(Nm)−NR+1, and r = MNR

2(M−1) ,
respectively. Interestingly, r is maximized when M = 2, i.e.,
rmax = limM→2

MNR

2(M−1) = NR. However, for large M , r

approaches NR/2, i.e., rmin = limM→∞
MNR

2(M−1) =
NR

2 . This

result leads us to an important insight into practical system-
design and implementation of MWRNs with pairwise trans-
missions; i.e., the multiplexing gain of MIMO AF MWRNs
gradually reduces to 1/2 as the number of nodes increases, and
consequently, the multiplexing gain asymptotically approaches
that of AF OWRNs.

E. Average sum rate of MIMO AF MWRNs with pairwise ZF
transmissions

In this subsection, the achievable average sum rate of the
pairwise ZF transmission strategy with symmetric traffic is de-
rived. In multi-node and multi-stream wireless transmissions,
each node needs to ensure that its data subchannels can be
decoded correctly by the remaining terminals. In this context,
the information rate of the kth data subchannel of the mth
node in the jth time-slot of the BC phase is governed by the
weakest subchannel strength from the mth node to all other
M−1 nodes in the network set-up, and can be therefore given
by

Rmin = min
m∈{1,··· ,M},k∈{1,··· ,NR}

j∈{1,··· ,M−1}

(
R(j)

m,k

)
, (49)

where R(j)
m,k is the information rate pertinent to the kth data

subchannel of the mth node received in the jth time-slot of
the BC phase, and is defined as R(j)

m,k = log2
(
1 +

[
γ
S

(j)
m

]
k

)
.

Thus, all the data subchannels pertinent to all the terminals in
the network is assumed to communicate with the same data
rate defined by (49). The achievable sum rate of MIMO AF
MWRNs with pairwise transmissions and symmetric traffic is
then given by

Rsum =
NR(M − 1)M

2(M − 1)
Rmin =

NRM

2
Rmin. (50)

The scaling factors in the numerator of (50), i.e., NR, M − 1
and M are due to the availability of NR data subchannels per
node, each node receives data signals from the other M − 1
nodes, and all together M nodes engage in full data exchange,
respectively. Furthermore, the scaling factor, 2(M − 1), in the
denominator of (50) is due to the M − 1 MAC phase and
M −1 BC phase transmissions. Next, the average information
rate of the kth data subchannel of the mth node received in
the jth time-slot of the BC phase is defined as

E
{
R(j)

m,k

}
= E

{
log2

(
1 +

[
γ
S

(j)
m

]
k

)}
, (51)

where m ∈ {1, · · · ,M}, j ∈ {1, · · ·M−1}, k ∈ {1, · · ·NR},

and the e2e SNR
[
γ
S

(j)
m

]
k

is defined in (11). By averaging

over the PDF of
[
γ
S

(j)
m

]
k

given in (89), Rm can be derived

in closed-form as follows15:

E
{
R(j)

m,k

}
=

1

ln (2)

[
J

(
Nm −NR, μ

(j)
m , η(j)m + ζ(j)m

)
− J

(
Nm −NR, μ

(j)
m , ζ(j)m

)]
, (52)

15It is worth noticing that (52) is indeed independent of the subchannel
index k. This is resulted due to fact that the e2e SNRs of subchannels pertinent
to a particular node are identically distributed.
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where the function J(·, ·, ·) in (52) is defined as

J(a, b, c)=ln(b)+exp

(
b

c

) a∑
m=0

m∑
n=0

(
m
n

)
(−b)m−nΓ

(
n, b

c

)
(m)!cm−n

. (53)

Moreover, μ(j)
m , η(j)m and ζ

(j)
m are defined in (23). The achiev-

able average sum rate of the overall system can then be written
as

E{Rsum}=
NRM

2
Rmin

≤ NRM

2

⎛
⎝ min

m∈{1,··· ,M},k∈{1,··· ,NR}
j∈{1,··· ,M−1}

E
{
R(j)

m,k

}⎞⎠ .(54)

IV. PERFORMANCE ANALYSIS OF MWRNS WITH

NON-PAIRWISE TX/RX ZF TRANSMISSIONS

In this section, the performance metrics of MIMO AF
MWRNs with non-pairwise Tx/Rx ZF transmissions are de-
rived. To this end, the outage probability lower and upper
bounds pertaining to an arbitrary node is derived and thereby
the overall outage probability is deduced.

A. The outage probability of the jth BC phase of MWRNs
with non-pairwise ZF transmissions

By following a similar argument to that of (21), the outage
probability of the ith node for MWRNs with non-pairwise ZF
transmissions is defined as

Pout,i=Pr

⎛
⎝ min

k∈{1,··· ,Nmin}
j∈{1,··· ,M−1}

[
γ
S

(j)
i

]
k
≤ γth

⎞
⎠ , (55)

where i ∈ {1, · · · ,M} and
[
γ
S

(j)
i

]
k

is defined in (20). Again,
the exact derivation of (55) is mathematically intractable due
to the statistical correlation of [γ

S
(j)
i

]k for k ∈ {1 · · ·Nmin}
for a given j. Thus, similar to case in Section III-A simple
lower and upper bounds of the outage probability are derived
in closed-form.

1) Lower bound of Pout,i: The lower bound of the outage
probability of the ith node can be derived as16

P lb
out,i =

⎧⎨
⎩

γ
(
NR−MNmin+1,

μix

ηi−ζix

)
Γ(NR−MNmin+1) , 0 < x < ηi

ζi

1, x ≥ ηi

ζi
,

(56)

where Nmin � minm∈{1,··· ,M}(Nm), μi = Niγ̄R,i, ηi =

γ̄R,iγ̄i,R, and ζi = NiQ′+NiQ
M∑
i=1

γ̄i,R
Ni

, for i ∈ {1, · · · ,M}.

Moreover, Q = (MNmin)/(NR − MNmin) and Q′ is given
by [21]

Q′=

∑MNmin

m=1 det(Mm)∏MNmin

l=1 [Γ(NR−l+1)Γ(MNmin−l+1)Γ(NR− l+1)]
,

(57)

where M
(i,j)
m =Γ(NR−MNmin+i−1)Γ(NR−MNmin+i+j−2)

for j = m and M
(i,j)
m = Γ(NR−MNmin+i)Γ(NR−MNmin+

i+j−1) for j �= m.

16As per Remark II.3, the proof of (56) and (58) follows the similar
techniques to those in Appendix B, and hence, is omitted for the sake of
brevity.

2) Upper bound of Pout,i: Similarly, the upper bound of
the outage probability of the ith node can be derived as

P ub
out,i=

⎧⎨
⎩1−

det
[
Q
(

μix

ηi−ζix

)]
∏MNmin

l=1 [Γ(MNmin−l+1)Γ(NR−l+1)]
, 0<x< ηi

ζi

1, x ≥ ηi

ζi
.

(58)

where the (u, v)th element of MNmin × MNmin matrix,
Qi(x), in (25) is given by [20, Eq. (2.73)]

[Q(x)]u,v = Γ(MNmin −NR + u+ v − 1, x) . (59)

In (58), μi, ηi, ζi and Nmin are defined under (56).

B. Overall outage probability of MWRNs with non-pairwise
ZF transmissions

By employing a similar argument to that of Section III-B,
the overall outage probability of the non-pairwise ZF transmis-
sion strategy can be defined as the probability that the smallest
subchannel of the weakest node falls bellow a preset threshold
as follows:

Pout=Pr

⎛
⎝ min

k∈{1,··· ,Nmin},j∈{1,··· ,M−1}
i∈{1,··· ,M}

[
γ
S

(j)
i

]
k
≤ γth

⎞
⎠ . (60)

As per Remark II.2, the derivation of (60) appears mathemat-
ically intractable as

[
γ
S

(j)
i

]
k

and
[
γ
S

(l)
m

]
k

are functions of the

same random variables for (i,m) ∈ {1, · · · ,M} and i �= m.

C. High SNR asymptotic outage probability of MWRNs with
non-pairwise ZF transmissions

In this subsection, the asymptotically exact high SNR
approximations for the lower and upper bound of the outage
probability at an arbitrary node are derived17.

1) High SNR approximation of the lower bound of Pout,i:
The high SNR approximation for the lower bound of the
outage probability of mth node can be derived by employing
similar techniques to those in Appendix D as

P lb,∞
out,i =

NNR−MNmin+1
i

Γ(NR−MNmin+2)

(
γth
γ̄S,R

)Glb
d,i

+o

(̄
γ
−(Glb

d,i+1)

S,R

)
,(61)

where the lower bound of the diversity order is given by

Glb
d,i = NR −M

[
min

m∈{1,··· ,M}
(Nm)

]
+ 1. (62)

where γ̄i,R = γ̄S,R, γ̄R,i = γ̄R,S , and γ̄R,S = βγ̄S,R for
i ∈ {1, · · · ,M} and j ∈ {1, · · · ,M − 1}.

2) High SNR approximation of the upper bound of P out,i:
First, the high SNR approximation for the upper bound of the
outage probability of ith node is derived as follows:

P ub,∞
out,i = Ωub,i

(
γth
γ̄S,R

)Gub
d,i

+ o

(
γ̄
−(Gub

d,i+1)

S,R

)
, (63)

where the upper bound of the diversity order is given by

Gub
d,i = NR −M

[
min

m∈{1,··· ,M}
(Nm)

]
+ 1. (64)

17The proofs of high SNR approximations of both lower and upper outage
probability bounds follow similar techniques to those in Appendix D, and
hence are omitted.
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In (63), the system dependent constant, Ωub,i, is given by

Ωub,i=
det (Ψi)N

NR−MNmin+1
i (NR−MNmin+1)−1

MNmin∏
l=1

[Γ(MNmin−l+1)Γ(NR−l+1)]

, (65)

where Ψi for i ∈ {1, · · · ,M} is an (MNmin − 1) ×
(MNmin − 1) matrix with the (u, v)th element given by
[Ψi]u,v = Γ(NR −MNmin + u+ v + 1).
Remark IV.1: An explicit high SNR approximation for lower
and upper bounds of the overall outage probability appears
mathematically intractable as the exact evaluation of (60) is
not plausible. However, the overall diversity order of MIMO
AF MWRNs with non-pairwise transmissions can readily be
deduced by employing similar arguments to those in Appendix
D as the minimum operation over i ∈ {1, · · · ,M} of (60)
does not alter the achievable diversity order. Thus, the high
SNR approximation of the overall outage probability of the
MIMO AF MWRNs with non-pairwise transmissions is given

by P∞
out= Ω

(
γth

γ̄S,R

)Gd

+ o
(
γ̄
−(Gd+1)
S,R

)
, where Ω is a system

dependent parameter and the overall diversity order of is given
by Gd = NR −MNmin + 1.

D. Diversity-multiplexing trade-off of MWRNs with non-
pairwise ZF transmissions

In this subsection, the achievable DMT of MIMO AF
MWRNs with non-pairwise ZF transmissions is derived. In
this subclass of MWRNs, M independent symbol vectors each
having Nmin = mini∈{1,··· ,M} Ni independent symbols are
exchanged among M nodes in M time-slots. In this context,
the effective mutual information of the overall system can be
written as

Ieff =Nminlog

⎛
⎝1+ min

k∈{1,··· ,Nmin},j∈{1,··· ,M−1}
i∈{1,··· ,M}

[
γ
S

(j)
i

]
k

⎞
⎠.(66)

The information rate outage probability is then given by

Pout = Pr (Ieff ≤ Rth)

=Pr

⎛
⎝ min

k∈{1,··· ,Nmin},j∈{1,··· ,M−1}
i∈{1,··· ,M}

[
γ
S

(j)
i

]
k
≤2

Rth
Nmin −1

⎞
⎠,(67)

where Rth is the overall target information rate, and is defined
as Rth = rlog (1 + γ̄S,R) [19]. Next, by employing Remark
IV.1, Pout can be approximated when γ̄S,R → ∞ as

P
γ̄S,R→∞
out ≈ γ̄

−(NR−MNmin+1)
(
1− r

Nmin

)
S,R . (68)

From (68), the achievable DMT of MIMO MWRNs with non-
pairwise transmissions can be derived as [19]

Gd(r)=

(
NR −M

[
min

m∈{1,··· ,M}
(Nm)

]
+1

)(
1− r

Nmin

)
.(69)

Interestingly, the achievable spatial multiplexing gain of
MWRNs with non-pairwise ZF transmissions does not depend
on the number of available nodes, M , actively participating
in the network. In fact, the maximum achievable multiplexing
gain can be readily quantified by using (69) to be r = Nmin,

and hence, directly determines by the minimum antenna count
at Si for i ∈ {1, · · · ,M}. Moreover, the achievable diversity
order reduces as the total number of antennas at the nodes
increases for a fixed relay antenna array size.

E. Average sum rate of MIMO AF MWRNs with non-pairwise
ZF transmissions

The achievable sum rate of MIMO AF MWRNs with non-
pairwise transmissions and symmetric traffic can be defined by
using similar arguments to those in Section III-E as follows:

Rsum =
Nmin(M − 1)M

M
Rmin = Nmin(M − 1)Rmin, (70)

where Rmin is the minimum information rate corresponding
any data subchannel, which ensures that each data subchannel
is decodable at any node. Moreover, this minimum transmis-
sion rate, Rmin, is utilized by all nodes and is defined by

Rmin = min
i∈{1,···M},k∈{1,···Nmin}

j∈{1,··· ,M−1}

(
R(j)

i,k

)
, (71)

where R
(j)
i,k = log2

(
1 +

[
γ
S

(j)
i

]
k

)
is the information rate

pertinent to the kth subchannel of the ith node in the jth
time-slot of the BC phase and

[
γ
S

(j)
m

]
k

is the corresponding
the e2e SNR defined in (20). Further, the scaling factors in
the numerator of (70), i.e., Nmin, M − 1 and M are due
to the fact that the availability of Nmin data subchannels
per node, each node receives data signals from the other
M − 1 nodes, and all together M nodes engage in full data
exchange, respectively. Besides, the scaling factor, M , in the
denominator of (50) is due to the single MAC phase and M−1
BC phase transmissions.

The average sum rate of MIMO AF MWRNs with non-
pairwise transmissions and symmetric traffic can then be
defined as

E{Rsum}=Nmin(M−1)E{Rmin}

≤Nmin(M−1)

⎛
⎝ min

i∈{1,···M},k∈{1,···Nmin}
j∈{1,··· ,M−1}

E
{
R(j)

i,k

}⎞⎠,(72)

where E
{
R(j)

i,k

}
is the average information rate of the kth data

subchannel pertinent to the ith node in the jth time-slot of
the BC phase. Again, by averaging over the PDF of

[
γ
S

(j)
i

]
k
,

the expected value of R(j)
i,k can be derived in closed-form as

follows:

E
{
R(j)

i,k

}
=

Nmin

M ln (2)

M−1∑
j=1

[
J

(
NR−MNmin, μ

(j)
i , η

(j)
i +ζ

(j)
i

)

− J

(
NR −MNmin, μ

(j)
i , ζ

(j)
i

) ]
, (73)

where Nmin = minm∈{1,··· ,M}(Nm) and the function J(·, ·, ·)
in (73) is defined in (53). Moreover, μ (j)

m , η(j)m and ζ
(j)
m are

defined in (56).
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V. EFFECT OF ANTENNA SUBSET SELECTION

In this section, the effect of the optimal antenna subset
selection on the performance of pairwise and non-pairwise
transmission strategies is investigated. To this end, the optimal
antenna subset selections at the relay and at the user nodes
are developed for the pairwise and non-pairwise transmission
strategies, respectively.

A. Optimal antenna subset selection for pairwise transmission
strategy

In pairwise transmission strategy, the number of active
antennas at the relay, NR, should be less than the minimum
number of antennas at any user nodes, i.e., NR < Nmin,
where Nmin = minm∈{1,··· ,m} (Nm). However, in practice,
the relay can be equipped with any arbitrary number of
antennas (ÑR > NR) and hence, an optimal antenna subset
(TR) with cardinality |TR| = Nmin − 1 can be selected at
the relay to further improve the system performance. Thus,
the optimal relay antenna subset selection strategy can be
formulated to minimize the overall outage probability as given
in (74). In particular, in (74), ASR represents all antenna set
at the relay, and its cardinality is |ASR| = ÑR. Further, TR

is the optimal antenna subset at the relay having cardinality18

|TR| = Nmin − 1, where Nmin = minm∈{1,··· ,M}(Nm). Un-
fortunately, the derivation of P opt

out (74) in closed-form appears
mathematically intractable, and hence, only the Monte-Carlo
simulation results are provided in Section VI.

B. Optimal antenna subset selection for non-pairwise trans-
mission strategy

The key objective of our MIMO MWRN design is to
achieve full mutual data exchange among all nodes via a relay.
To be more specific, Sm should receive all symbols belonging
to Sn for m ∈ {1, · · · ,M}, n ∈ {1, · · · ,M}, and m �= n. In
designing non-pairwise transmission strategy, in order to avoid
any data loss, a permutation matrix has been used to ensure
that only Nmin = minm∈{1,··· ,M}(Nm) data subchannels are
transmitted by each node. Thus, an optimal transmit antenna
subset can be selected at each node based on minimizing the
overall outage probability as given in (75). Again in (75),
ASm represents all antenna set of Sm, and its cardinality is
|ASm| = Nm for m ∈ {1, · · · ,M}. Similarly, Tm is the
optimal antenna subset at Sm for m ∈ {1, · · · ,M} with car-
dinality |Tm| = Nmin, where Nmin = minm∈{1,··· ,M}(Nm).
The derivation of P opt

out (75) in closed-form again appears
mathematically intractable. Thus, the corresponding Monte-
Carlo simulation results are presented in Section VI.

VI. NUMERICAL RESULTS

In this section, numerical results are presented to study the
outage probability, the fundamental DMT and the achievable
sum rate performance of MIMO AF MWRNs with both
pairwise and non-pairwise ZF transmissions. To capture the
effect of the network geometry, the average SNR of S i → R

18The cardinality of the optimal antenna subset is chosen to maximize the
spatial multiplexing gain.
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Fig. 5. The overall outage probability of MIMO four-way AF relay network
with pairwise ZF transmissions for the SNR threshold γth = 5.00 dB. The
hop distances are modeled as d1,R = 0.5d0, d2,R = 1.25d0, d3,R =
0.75d0 and d4,R = d0. Moreover, the path-loss exponent is assumed to be
� = 3.5.

channel is modeled by γ̄i,R = γ̄
(

d0

di,R

)�
for i ∈ {1, · · · ,M},

where γ̄ is the average transmit SNR, d0 is the reference
distance, and � is the path-loss exponent. The hop distance
between Si and R is denoted by di,R for i ∈ {1, · · · ,M}.

In Fig. 5, the overall outage probability of the pairwise ZF
transmission strategy is plotted for several antenna configura-
tions. Specifically, the exact outage probability is plotted by
using Monte-Carlo simulation results, and the lower and upper
bounds are plotted by employing (29), and (31), respectively.
Moreover, asymptotic outage bounds are also plotted by using
(35), and (41) to compare the achievable diversity orders.
Fig. 5 clearly reveals that the outage probability improves
significantly as the number of antennas at the relay decreases.
For instance, at 10−4 outage probability, single-antenna relay
results in a 6 dB SNR gain over the dual-antenna relay. Note
that this conclusion is valid only for the case where all nodes
have the same average transmit SNR. However, the single-
antenna set-up achieves this outage gain over the latter at the
expense of a significant spatial multiplexing loss as quantified
in (48). In particular, for single-antenna relays, our outage
bounds reduce to exact outage as NR = 1 case results in a
unit-rank Wishart matrix, HH

R,iHR,i.
Fig. 6 shows the outage probability bounds pertaining to

the first node of MIMO AF MWRNs with non-pairwise ZF
transmissions. Several antenna configurations are considered
to study the effect of relay and node antenna counts on the
outage probability performance. The outage probability curves
of three-way relay network pertaining to the single-antenna
and dual-antenna nodes clearly reveal that the achievable
diversity gain reduces as the node antenna array size increases.
For example, whenever all the node have the same average
transmit SNR, at an outage probability of 10−4, the three-



AMARASURIYA et al.: MULTI-WAY MIMO AMPLIFY-AND-FORWARD RELAY NETWORKS WITH ZERO-FORCING TRANSMISSION 13

P opt
out =Pr

⎛
⎝ max

TR⊂ASR
|TR|=Nmin−1

⎡
⎣ min

k∈{1,··· ,NR},j∈{1,··· ,M−1}
m∈{1,··· ,M}

[
γ
S

(j)
m

]
k

⎤
⎦ ≤ γth

⎞
⎠ . (74)

P opt
out = Pr

⎛
⎝ max

Tm⊂ASm,m∈{1,··· ,M}
|Tm|=Nmin

⎡
⎣ min

k∈{1,··· ,Nmin},j∈{1,··· ,M−1}
i∈{1,··· ,M}

[
γ
S

(j)
i

]
k

⎤
⎦ ≤ γth

⎞
⎠ . (75)
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Fig. 6. The outage probability of the first node of MIMO
MWRNs with non-pairwise ZF transmissions for the SNR
threshold γth = 6.00 dB. The hop distances are modeled as(
d1,R = 0.75d0, d2,R = d0, d3,R = 1.25d0

)
for the three-way relay net-

work and as
(
d1,R = 0.75d0, d2,R = d0, d3,R = 1.25d0, d4,R = 0.8d0

)
for the four-way relay network. Moreover, the path-loss exponent is assumed
to be � = 3.5.

way relay network with single-antenna nodes achieves a SNR
gain of 3 dB over the dual-antenna counterpart. However, as
per Eq. (69), the single-antenna nodes in fact reduce the
achievable maximum spatial multiplexing gain over the dual-
antenna nodes. This observation is a complete opposite to that
we observed in outage performance study of pairwise MWRNs
in Fig. 6, where the achievable diversity order increases with
the number of antennas equipped at the nodes for a fixed relay
antenna array. Our outage bounds are thus useful to verify the
important system-design parameters such as the diversity order
and array gain.

In Fig. 7, the effect of antenna subset selection is in-
vestigated for both pairwise and non-pairwise transmission
strategies. To this end, the overall outage probability curves
for both optimal and arbitrary antenna subset selection are
plotted by using Monte-Carlo simulations for the three-way
relay network consisting of three sources each having three,
five and three antennas, respectively. The number of relay
antennas is fixed at twelve19 for both pairwise and non-
pairwise transmission strategies. For pairwise strategy, the op-

19It is worth noticing that the number of antennas at the relay exceeds by
ten than the minimum requirement for pairwise strategy.
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Optimal Relay Antenna Subset Selection − Pairwise
Arbitrary Node Antenna Subset Selection − Non−pairwise
Optimal Node Antenna Subset Selection − Non−pairwise

N
R
 = 12, N

1
 = 3, N

2
 = 5, N

3
 = 3

Two arbitary relay antennas

      Two optimal relay antennas
                   out of twelve

Fig. 7. The overall outage probability of the MIMO MWRNs with optimal
and arbitrary antenna subset selection. The SNR threshold is set to γth =
6.00 dB. The hop distances are modeled as dm,R = 0.5d0 for m ∈ {1, 2, 3}.
Moreover, the path-loss exponent is assumed to be � = 3.5.

timal dual-antenna subset out of twelve available antennas are
selected to minimize the overall outage probability. Similarly,
for non-pairwise strategy, the optimal triple-antenna subset
out of five possible antennas are selected at the second user
node. Fig. 7 clearly reveals that optimal relay antenna subset
selection for pairwise transmission strategy indeed improves
the achievable diversity order significantly by exploiting the
degrees of freedom provided by the additional relay antennas.
Moreover, Fig. 7 shows that the optimal node antenna subset
selection for non-pairwise strategy yields array/coding gains
over the arbitrary antenna subset selection. For example, at
an outage probability of 10−4, the optimal antenna subset
provides around 1 dB SNR gain over the arbitrary antenna
subset. Counter-intuitively, the optimal node antenna subset
selection for non-pairwise strategy does not provide any
diversity order advantage over its arbitrary counterpart because
no selection gain is achieved at the node with minimum
number of antennas (i.e., the node with Nmin antennas), where
all transmit antennas are utilized, and the overall achievable
diversity order is governed by the data subchannel with the
minimum diversity order. This result indeed agrees well with
the classical results for the optimal transmit antenna subset
selection for single-hop ZF MIMO systems [16], [22].

In Fig. 8, the achievable DMT curves for the pairwise ZF
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Fig. 8. The achievable DMT of MIMO AF MWRNs with pairwise ZF
transmissions.

transmission strategy are plotted for several system configura-
tions. Specifically, the DMT of the MIMO AF OWRN serves
as a benchmark to compare the performance of MWRNs.
The achievable multiplexing gain gradually improves as the
number of relay antennas increases. However, at the same
time, higher number of relay antennas significantly reduces
the achievable diversity gains. Interestingly, TWRN provides
the highest multiplexing gain for a given NR. However, as the
number of nodes increases, the achievable spatial multiplexing
gain gradually decreases to NR/2, which is exactly the same
multiplexing gain achieved by the MIMO AF OWRN. Thus,
the MIMO AF MWRNs with pairwise ZF transmission exhibit
diminishing multiplexing gains as the network size grows.
Thus, our DMT analysis suggests the performance limits
for practical MWRNs with optimal achievable diversity and
multiplexing gains.

Fig. 9 shows the achievable DMT of the non-pairwise ZF
transmission strategy for two specific system configurations.
To this end, a three-way relay network and a two-way relay
network with three specific antenna configurations as shown in
the legend of Fig. 9 are treated. The DMT curves correspond-
ing to three-way and two-way relay networks with the same
antenna configuration at each terminal reveal that the achiev-
able maximum spatial multiplexing gain does not depend on
the number of nodes available in the network. However, it is
evident from Fig. 9 that the multiplexing gain in fact depends
on the minimum antenna account at the nodes. On the contrary,
the achievable maximum diversity gain directly depends on the
total number of antennas equipped at the nodes for a fixed
relay antenna array size. Our DMT analysis thus provides
valuable insights into practical implementation of MIMO AF
MWRNs.

In Fig. 10, the overall sum rate of pairwise ZF transmission
strategy with symmetric traffic is plotted for several system
set-ups. To be more specific, sum rate curves of six-way and
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Fig. 9. The achievable DMT of MIMO AF MWRNs with non-pairwise ZF
transmissions.
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Fig. 10. The achievable average sum rate of MIMO AF MWRNs with
pairwise ZF transmissions and symmetric traffic. All nodes are assumed to
be located at the same distance from the relay, and hence, the average transmit
SNR for each node-to-relay channel is assumed to be the same. The path-loss
exponent is again assumed to be � = 3.5.

two-way relay networks with quadruple-antenna nodes are
plotted to study the effect of number of antennas at the relay
on the system sum rate. As expected, Fig. 10 clearly reveals
that the sum rate heavily depends on the relay antenna array
size. Interestingly, the MWRNs with single-antenna and dual-
antenna relays outperform the MWRNs with triple-antenna
relays in terms of the sum rate performance in the low-to-
moderate SNR regime. On the contrary, the MWRNs with
triple-antenna relays outperform the rest in terms of sum
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Fig. 11. The achievable average sum rate of MIMO AF MWRNs with
non-pairwise ZF transmissions and symmetric traffic. Again, all nodes are
assumed to be located at the same distance from the relay, and hence, the
average transmit SNR for each node-to-relay channel is assumed to be the
same. The path-loss exponent is assumed to be � = 3.5.

rate in the moderate-to-high SNR regime. This behavior is
observed as the spatial multiplexing gain provided by the
relays with larger antenna arrays becomes more prominent
on the achievable sum rate in high SNR regime over that in
low SNR regime, where the higher diversity/array gains are the
more dominant factor. Again, all the conclusions are valid only
for the case where all node have the same average transmit
SNR.

Similarly, in Fig. 11, the effect of number of participating
nodes on the sum rate performance of the non-pairwise ZF
transmission strategy with symmetric traffic is studied. In
particular, all nodes are assumed to have the same average
transmit SNR. In this context, two sets of sum rate curves
pertaining to antenna set-ups, namely (i) NR = 10, Ni = 1
for i ∈ {1, · · · ,M} and (ii) NR = 10, Ni = 2 for
i ∈ {1, · · · ,M} are plotted for two-way, three-way and four-
way relay networks. Specifically, the sum rate performance
improves as the number of nodes participating in the MWRN
increases in moderate-to-high SNR regime. For example, at
an average transmit SNR of 20 dB, four-way relay networks
with single-antenna nodes achieve almost two-fold sum rate
gain over the two-way relay counterpart. Our sum rate analysis
thus provides useful insights on the impact of number of nodes
and their antenna count on the overall performance of practical
MIMO MWRNs.

VII. CONCLUSION

The performance of (i) pairwise ZF transmission and (ii)
non-pairwise ZF transmission for the MIMO AF MWRNs
was studied over Rayleigh fading channels. In this context,
the lower and upper bounds of the overall outage proba-
bility were derived in closed-form. In particular, high SNR
outage probability approximations were derived, and thereby,

the achievable DMT, the maximum achievable diversity and
spatial multiplexing gains were quantified to obtain valu-
able insights into practical MIMO MWRN system-designing.
Moreover, the overall achievable sum rate expressions were
derived in closed form and used to obtain useful insights.
Interestingly, our outage probability bounds reduce to ex-
act outage probability for single-antenna relays, and hence,
they serve as benchmarks for practical MIMO AF MWRNs
with pairwise ZF transmissions. Furthermore, the pairwise
ZF transmission strategy requires each node to know only
its channel to the relay, and consequently, eliminates the
requirement of the global CSI for each node. Our DMT
analysis for this case reveals that increasing the number of
relay antennas reduces the diversity gains, however improves
the multiplexing gains. Counter intuitively, this multiplexing
gain gradually diminishes as the number of participating nodes
linearly grows. Interestingly, the multiplexing gain of MWRNs
with non-pairwise ZF transmissions does not depend on the
number of nodes in the network, and hence, are suitable for
large network deployments despite the inherent higher relay
processing complexity.

APPENDIX A
PROOF OF THE E2E SNR

To begin with, the signal vector belonging to the nth node,
received at the mth node in the jth time-slot of the BC phase
is re-written as

y
(j,n)
Sm

= Gjgnxn +Gjn
(j)
R +V(j)

m n(j)
m , (76)

where Gj =
√
PR/(g2j + g2j+1 + σ2

R), gn =
√
Pn/Tn, Tn =

NR/(Nn − NR), j ∈ {1, · · · ,M − 1}, m ∈ {1, · · · ,M},
n ∈ {1, · · · ,M}, and m �= n. The post-processing end-to-end
signal-to-noise ratio (e2e SNR) of the kth data subchannel of
y
(j,n)
Sm

can then be derived as

[
γ
S

(j,n)
m

]
k
=

G2
jg

2
n

G2
jσ

2
R + σ2

m

[
V

(j)
m

(
V

(j)
m

)H]
k,k

(77)

By substituting Gj and V
(j)
m in (7) into (77), the e2e SNR of

the desired data subchannel can be re-written as[
γ
S

(j,n)
m

]
k
=

PRg
2
n

PRσ2
R + σ2

m(g2j + g2j+1 + σ2
R) X

(j)
m

, (78)

where X
(j)
m =

[((
H

(j)
R,m

)H
H

(j)
R,m

)−1
]
k,k

. Next, by substi-

tuting g2n = Pn/Tn, g2j = Pj/Tj and g2j+1 = Pj+1/Tj+1

into (78) and performing some mathematical manipulations,
the desired result can be derived as shown in (11).

APPENDIX B
PROOF OF THE OUTAGE PROBABILITY LOWER BOUND OF

Sm FOR PAIRWISE ZF TRANSMISSION STRATEGY

In this Appendix, the lower bound of the outage probability
of the mth node is sketched. To this end, the maximum
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diagonal element of the inverse of a Wishart matrix can be
lower bounded by its arbitrary ath diagonal element as

max
k∈{1···NR}

[((H
(j)
R,m)HH

(j)
R,m)−1]k,k ≥ [((H

(j)
R,m)HH

(j)
R,m)−1]a,a,

(79)

where a ∈ {1, · · · , NR}. Next, the smallest post-processing
subchannel SNR of Sm received in the jth time-slot of the
BC phase can be upper bounded as

min
k∈{1···NR}

[γ
S

(j)
m
]k ≤ γ

(j),ub
Sm,min

=
η
(j)
m

ζ
(j)
m +μ

(j)
m

[
((H

(j)
R,m)HH

(j)
R,m)−1

]
a,a

,

(80)

where μ
(j)
m , η(j)m , and ζ

(j)
m are defined in (23). By substituting

(80) into (21), Pout,m can be lower bounded as

Pout,m ≥ P lb
out,m = Pr

(
min

j∈{1,··· ,M−1}
γ
(j),ub
Sm,min

≤ γth

)
. (81)

In order to derive P lb
out,m in closed-form, the CDF of γ (j),ub

Sm,min

is obtained as follows:

F
γ
(j),ub
Sm,min

(x) = 1− Pr

(
X(j)

m ≤ η
(j)
m − ζ

(j)
m x

μ
(j)
m x

)
, (82)

where X
(j)
m =

[
((H

(j)
R,m)HH

(j)
R,m)−1

]
a,a

. For x ≥ η
(j)
m /ζ

(j)
m ,

F
γ
(j),ub
Sm,min

(x) = 1, and for x < η
(j)
m /ζ

(j)
m , F

γ
(j),ub
Sm,min

(x) becomes

F
γ
(j),ub
Sm,min

(x) = 1−
∫ η

(j)
m −ζ

(j)
m x

μ
(j)
m x

0

f
X

(j)
m

(y) dy, (83)

where f
X

(j)
m

(x) can be obtained by substituting the PDF

of 1/X
(j)
m , which is given by f

1/X
(j)
m

(x) = xNm−NRe−x

Γ(Nm−NR+1)

[16] into the transformation f
X

(j)
m

(x) = 1
x2 f1/X(j)

m
(1/x) as

follows:

f
X

(j)
m

(x) =
e−1/x

Γ(Nm −NR + 1)xNm−NR+2
. (84)

Next, by substituting (84) into (83), and by applying a change
of variable, y = 1/t, (83) can be rearranged as

F
γ
(j),ub
Sm,min

(x) = 1−
∫ ∞

μ
(j)
m x

η
(j)
m −ζ

(j)
m x

tNm−NRe−t

Γ(Nm −NR + 1)
dt. (85)

By using [23, Eq. (8.350.2)], (85) can now be evaluated in
closed-form as in (23). By substituting (85) into the CDF of
minimum of M−1 independent random variables, the desired
results can be derived as in (22).

APPENDIX C
PROOF OF THE OUTAGE PROBABILITY UPPER BOUND OF

Sm FOR PAIRWISE ZF TRANSMISSION STRATEGY

In this Appendix, the outage upper bound of the mth node
is derived. To this context, the maximum diagonal element of
the inverse of a Wishart matrix is upper bounded as [16]

max
k∈{1···NR}

[
((H

(j)
R,i)

HH
(j)
R,i)

−1
]
k,k

≤ λ−1
min

(
(H

(j)
R,i)

HH
(j)
R,i

)
.(86)

The smallest subchannel SNR of Sm received in the jth time-
slot of the BC phase can then be lower bounded by substituting
(86) into (11) as follows:

min
k∈{1···NR}

[γ
S

(j)
m
]k ≥ γ

(j),lb
Sm,min

=
η
(j)
m

ζ
(j)
m +μ

(j)
m λ−1

min

(
(H

(j)
R,i)

HH
(j)
R,i

) ,
(87)

where μ
(j)
m , η(j)m , and ζ

(j)
m are defined in (23). By substituting

(87) into (21), Pout,m can now be upper bounded for 0 <

γth < η
(j)
m /ζ

(m)
j as

Pout,m ≤ P ub
out,m =Pr

(
min

j∈{1,··· ,M−1}
γ
(j),lb
Sm,min

≤ γth

)

=1−
M−1∏
j=1

(
1−F

λ
(j,m)
min

(
μ
(j)
m γth

η
(j)
m −ζ

(j)
m γth

))
, (88)

where λ
(j,m)
min = λmin

((
H

(j)
R,m

)H
H

(j)
R,m

)
and the CDF of

λ
(j,m)
min is given by [20, Eq. (2.73)]. By using similar steps

to those in Appendix B, we can show that Pout,m = 1 for
γth ≥ η

(j)
m /ζ

(m)
j .

APPENDIX D
PROOF OF THE HIGH SNR OUTAGE PROBABILITY

APPROXIMATION FOR PAIRWISE ZF TRANSMISSION

STRATEGY

In this Appendix, the proof of the lower bound for the
diversity order is sketched. To begin with, the PDF of γ (j),ub

Sm,min

for j ∈ {1, · · · ,M−1} is derived by differentiating (22) with
respect to variable x by using the Leibniz integral rule as

f
γ
(j),ub
Sm,min

(x)=
e
− μ

(j)
m x

η
(j)
m −ζ

(j)
m x

Γ(Nm−NR+1)

(
μ
(j)
m x

η
(j)
m −ζ(j)m x

)Nm−NR
d

dx

[
μ
(j)
m x

η
(j)
m −ζ

(j)
m x

]

=
η
(j)
m

(
μ
(j)
m

)Nm−NR+1

xNm−NR e

−μ
(j)
m x

η
(j)
m −ζ

(j)
m x

Γ(Nm−NR+1)
(
η
(j)
m − ζ

(j)
m x

)Nm−NR+2
, (89)

where 0 ≤ x <
η(j)
m

ζ
(j)
m

. By substituting μ
(j)
m , η

(j)
m , and ζ

(j)
m ,

defined in (23) into (89), and then by taking the Taylor
series expansion around x = 0, the first order expansion of
f
γ
(j),ub
Sm,min

(x) when limx→0 is derived as

fx→0

γ
(j),ub
Sm,min

(x)=

(
φ
(j)
m

)Nm−NR+1

xNm−NR

(Nm−NR)! (βγ̄SR)
Nm−NR+1

+o
(
xNm−NR+1

)
.(90)

The first order expansion of the PDF20 is indeed the single-
term polynomial approximations of the exact PDF of γ (j),ub

Sm,min

consisting with the lowest power of x [24]. The first order
expansion of the CDF of γ (j),ub

Sm,min when limx→0 is derived by
using (90) as [24]

F x→0

γ
(j),ub
Sm,min

(x) = Ω
(j)
lb,m

(
γth
γ̄S,R

)Glb
d,m

+ o

(
γ̄
−(Glb

d,m+1)

S,R

)
, (91)

20Kullback–Leibler divergence (KLD) is a good measure to quantify the
difference between exact and the approximated probability distributions. In
order to define the KLD accurately, both the exact PDF and its approximation
need to be valid PDFs. However, in this case, the first order expansion (90)
is only the first term of the Taylor series expansion at the origin, and hence,
the corresponding KLD cannot be defined.
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where Glb
d,m and Ω

(j)
lb,m are defined in (33) and

(34). Next, the first order expansion of the CDF
of Ym = min j∈{1,··· ,M−1}

(
γ
(j),lb
Sm,min

)
can be

derived by using substituting (91) into FYm(x) =

1 −
∏M−1

j=1

(
1− F

γ
(j),ub
Sm,min

(x)
)

and by using the well-

known identity for dual-variable expansion
∏L

l=1(1 − yl) =

1+
∑L

l=1(−1)l
∑L−l+1

λ1=1

∑L−l+2
λ2=λ1+1· · ·

∑L
λl=λl−1

∏l
n=1 yλn , as

FY ∞
m
(x)=

⎡
⎣M−1∑

j=1

Ω
(j)
lb,m

⎤
⎦( x

γ̄S,R

)G(j),lb
d,m

+ o
(
x(G

(j),lb
d,m +1)

)
. (92)

Next, by using a similar technique, the first order expansion
of the CDF of Z = min j∈{1,··· ,M−1} (Ym) can be derived
by substituting (92) into the expansion of FZ(x) = 1 −∏M

m=1

(
1−FY ∞

m
(x)

)
to obtain the desired result in (35).
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