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Abstract—We derive uniform approximations (UAs) for typical
performance measures such as error probability, outage prob-
ability and capacity of wireless transmissions over flat fading
channels impaired by noise. Uniform refers to the fact that
these approximations are accurate over the whole range (low to
high) of signal-to-noise ratio (SNR) values. First, the high-SNR
results of Wang and Giannakis [2] are generalized and unified
for an arbitrary performance measure. Second, we develop a
Mellin-transform-based procedure to construct low- and high-
SNR asymptotics of error probability or outage. Specifically,
these asymptotics are related to the left- and right-sided poles of
a Mellin product with respect to its fundamental strip. Third, by
using multiple low-SNR terms and a single high-SNR term, UAs
for the error probability of coherent modulation are constructed
for Rayleigh fading, maximal-ratio-combining (MRC), selection-
combining (SC), dual hop relaying, and co-channel interference.
UAs are also developed for the error probability of single-
and multi-channel differential modulation, the product of two
Q functions, and the miss probability of energy detection. By
using a single low-SNR term and multiple high-SNR terms,
the outage probability UA is also developed. Finally, since the
capacity measure is not an exponentially decaying function, we
derive a UA for an intermediate function which is based on the
moment-generating function (MGF) and ultimately, the resulting
approximation for the capacity.

Index Terms—Capacity, error probability, fading channels,
outage probability, signal-to-noise ratio (SNR).

I. INTRODUCTION

THE performance of wireless transmissions impaired by
fading and noise has been extensively analyzed [3]–[5].

This analysis, typically requiring the averaging of the perfor-
mance metric over the statistical distributions, yields closed-
form expressions for the bit error rate (BER), outage, and
ergodic capacity, for example. Although such results have been
widely reported [3]–[8], analytical tractability and complexity
can still be an issue. As an alternative to exact closed-form
solutions, various high-signal-to-noise-ratio (SNR) approxima-
tions [2], [9], [10] and general approximations [11]–[14] have
thus been developed.

A popular high-SNR approximation for the error probability
PE of wireless transmissions over flat fading channels impaired
by Gaussian noise is [2], [3]

PE ≈ (Gcρ)−Gd , (1)

where ρ is the unfaded SNR (or simply SNR), and Gc and
Gd are referred to as the SNR gain and the diversity gain
(diversity order), respectively. Equation (1) holds for the error
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rate of non-Gaussian noise [10] and for the outage probability
as well. The diversity order Gd determines the absolute value
of the slope of the error rate versus the SNR curve in a log-log
scale at high SNR. For a specific error rate, the SNR gain Gc
(referred to as coding gain in [2]) determines the reduction
in the SNR as compared to the benchmark error rate curve
of ρ−Gd . These two parameters may even be evaluated for
problems that are otherwise analytically intractable.

While Gc and Gd (eq. (1)) provide a useful high-SNR
approximation, evaluation of the exact PE requires averaging
over the distribution of the instantaneous SNR γ = ρβ , where
β is a non-negative random variable that depends on the
channel gains and diversity-combining methods and has the
probability density function (PDF) f (β ). In a seminal paper
[2], Wang and Giannakis derived the critical parameters Gc
and Gd by approximating f (β ) by a monomial for β → 0+.
With this approach, they unified the high-SNR analysis of vari-
ous wireless systems (coded, uncoded, coherent, non-coherent,
differential) over different fading channels (e.g., Rayleigh,
Nakagami-m). Although this approach has been widely used
in recent research, the accuracy of eq. (1) predictably falls
as the SNR decreases. In some cases, SNRs over 20 dB
are needed for eq. (1) to be accurate. However, low-SNR
operation is typical due to low power specifications or high
energy-efficiency requirements, and the operating SNRs in
many practical systems are often below 20 dB [15]. Thus,
approximations that are accurate over the range of low to high
values of SNR are highly desirable. Is it possible to develop
approximations that are valid over the entire range of SNR
(e.g., 0 ≤ ρ < ∞)?

In this paper, we give an affirmative answer to this question
by developing uniform approximations (UAs) for perfor-
mance measures such as the BER, symbol error rate (SER),
outage and capacity. The UAs simultaneously match both
the low- and high-SNR series expansions of the performance
measures. Not surprisingly, the UA and the conventional
approximation [2] coincide in the high SNR regime.

The UA approach differs from that proposed in [13],
[14], which also consider rational function approximations.
These works consider the Padé approximant for the moment-
generating function (MGF) of the SNR, which thus requires
further treatment and analysis for computing the error and out-
age probabilities. In contrast, the UA is a rational approximant
for the performance measure itself. Moreover, references [13],
[14] perform only a one-sided match such that the rational
MGF approximant is obtained by matching only the Taylor
series expansion of the MGF at s = 0. In contrast, the UAs
perform a two-sided match.

The main contributions of the paper are outlined below.

1) Initially, we generalize the high-SNR results in [2] in
order to replace its case-by-case approach with a new ap-
proach applicable to any arbitrary performance measure.
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The generalized result offers an improved level of accu-
racy. Various BER and SER approximations of [2] can
be derived under the special case of this approach. This
generalization also shows a clear relationship between
the SNR gain and the modulation format through the
Mellin transform of the performance measure, similar
to the relation in [10].

2) To compute UAs, we derive both low- and high-SNR
expansions of a generalized performance measure that
is a weighted sum of either a finite or an infinite number
of terms. Specifically, these expansions are related to the
poles in the left and right sides of the fundamental strip
of a Mellin product.

3) By using multiple low-SNR terms and a single high-
SNR term, UAs for the error probability of coher-
ent modulation are constructed for Rayleigh fading,
maximal-ratio-combining (MRC), selection-combining
(SC), dual hop relaying, and co-channel interference.
UAs are also developed for the error probability of
single- and multiple-channel differential modulation, the
product of two Q functions, and the miss probability of
energy detection.

4) By using a single low-SNR term and multiple high-SNR
terms, UA for the outage probability is also developed.

5) Since the capacity measure is not an exponentially
decaying function, we derive a UA for an intermediate
function which is based on the MGF and ultimately, the
resulting approximation for the capacity.

6) Although we focus on the use of the Mellin transform
to derive the low- and high-SNR expansions, they can
also be developed via the PDF or the MGF of the
channel gain. Some details and connections are briefly
mentioned.

II. PRELIMINARIES

A. Notations

E[·], F(s) =
∫

xs−1 f (x)dx, and Mβ (s) = E[e−sβ ] denote the
statistical expectation, Mellin transform and MGF, respec-
tively. Further, Γ(·), I0(·), 2F1(·, ·; ·; ·), and Mκ ,μ(·) denote
the gamma function [16, Eq. (6.1.1)], zeroth-order modified
Bessel function of the first kind [16, Eq. (9.616)], the Gauss
hypergeometric function [16, Eq. (15.1.1)], and the Whit-
taker’s function [16, Eq. (13.1.32)], respectively.

If f (x) = ∑∞
n=0 anxn as x → 0+, we write f (x) = SN(x)+

O(xN+1) as x → 0+, where SN(x) = ∑N
n=0 anxn, to express

that the difference | f (x)− SN(x)| is smaller than C|xN+1| for
some constant C as x → 0+. Thus, the partial sum SN(x) is
an asymptotic (approximation) of f (x) with an error term
O(xN+1) as x→ 0+. Similar series of x−n forms an asymptotic
expansion as x → ∞.

B. Basics of Mellin-transform

Let f (x) be defined on the positive real axis 0≤ x < ∞. The
Mellin transform of f (x) on the complex plane is

M [ f (x);s] = F(s) =
∫ ∞

0
xs−1 f (x)dx, (2)

for some complex s [17]. F(s) is holomorphic (a function that
is complex differentiable in a neighborhood of every point in
its domain) in a vertical strip called the fundamental strip. For

example, for M [exp(−x);s] = Γ(s), the fundamental strip is
0 ≤ ℜ(s) < ∞. More generally, if f (x) = O(x−u) as x → 0+

and O(x−v) as x → ∞ with u < v, the fundamental strip is
u ≤ ℜ(s)< v.

Crucially, the Mellin transform maps the asymptotic ex-
pansions of f (x) at x = 0 and ∞ to the poles of F(s). In
order to understand this result, suppose f (x) decays rapidly as
x → ∞, and f (x) = ∑N−1

n=0 anxn +O(xN) as x → 0+. The Mellin
transform is then given by

F(s) =
∫ 1

0
xs−1

(
f (x)−

N−1

∑
n=0

anxn
)

dx+
∫ 1

0
xs−1

N−1

∑
n=0

anxndx

+

∫ ∞

1
xs−1 f (x)dx

=
∫ 1

0
xs−1

(
f (x)−

N−1

∑
n=0

anxn
)

dx+
N−1

∑
n=0

an

s+n

+

∫ ∞

1
xs−1 f (x)dx.

The first integral converges in the larger half-plane ℜ(s)>−N
and the second for all complex s. Thus, we see that F(s) is
singularity-free for all ℜ(s)> 0 with simple poles of residue
an at s=−n (n= 0, . . . ,N−1) and no other singularities. Thus,
the monomial assumption (AS2) made by [2] is equivalent to
a simple pole of residue a at s = −t, which also reveals the
polynomial growth rate of f (x) at 0.

C. Assumptions

The following assumptions where AS1 and AS2 are con-
sistent with those in [2] are stated here for completeness.

AS1) The instantaneous SNR at the receiver is given by γ =ρβ ,
where ρ is the unfaded link SNR (aka the transmit SNR),
or simply the SNR, and a nonnegative random variable, β
depends on the channel gains and the diversity-combining
techniques.

AS2) Unless otherwise stated, as in [2], the PDF of β can be
approximated with a monomial term as f (β ) = aβ t +
O(β t+1) as β → 0+, where a> 0. For example, if f (β ) =
e−β , β ≥ 0, then t = 0 and a = 1. As developed in
Proposition 2, the parameters a and t are also given by
the first left pole of the Mellin transform F(s) of the
PDF f (β ). Thus, when f (β ) is not completely known,
the MGF of β or the Mellin transform F(s) furnishes
an alternative route. The details of the former option are
given in [2] and [11]. The latter option is developed in
Proposition 2.

AS3) The system performance metric is denoted by h(x),
which is a conditional error probability, outage proba-
bility or capacity. Unless dealing with capacity, we can
safely assume that h(x) decays exponentially as x → ∞
and admits a polynomial expansion as x → 0+. From
Section II-B, this assumption implies that the Mellin
transform H(s) has poles in the left half-plane only.
This phenomenon shows up in common h(x) including
Q(

√
κx) =

∫ ∞√
κx

1
2π e−t2/2dt, which represents the BER or

SER of various coherent digital modulation and demodu-
lation schemes. Similarly, h(x)= pe−qx or the exponential
sum or integral represents the BER or SER of non-
coherent demodulation schemes [3], [5].
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III. APPROXIMATIONS FOR ARBITRARY PERFORMANCE

MEASURE

In this section, we lay the groundwork necessary to develop
the UAs. First, a general error probability Pe(ρ) and its
low- and high-SNR asymptotics are introduced. Second, in
Proposition 1, the result of [2] is generalized for an arbitrary
conditional error expression. Third, in Proposition 2, the low-
and high-SNR asymptotics of the error probability are derived
from the poles of H(s) and F(s). These poles also yield
diversity and SNR gains immediately.

A. Error Probability

We first consider a general expression for the error proba-
bility expressed as

Pe(ρ) =
∫ ∞

0
h(ρβ ) f (β )dβ , (3)

where h(x) represents a conditional error expression that
requires averaging over noise, fading and other effects. Ex-
tensions to outage and capacity will be provided in Sections
V and VI.

We need low-SNR (ρ → 0+) and high-SNR (ρ →∞) asymp-
totics of Pe(ρ). At high SNR, generically Pe(ρ) = ∑anρ−bn ,
where an and bn are real number sequences, with bn positive
and increasing. The first term of this series dominates and is
sufficient to develop UAs. Of course, [2] relates this first term
to the monomial expansion (AS2). At low SNR, generically
Pe(ρ) = ∑a′nρcn , where a′n and cn are real number sequences,
with cn positive and increasing. For coherent modulations, cn
is not an integer sequence because the conditional error is
a function of

√ρ , whereas for non-coherent and differential
modulations, cn is an integer sequence. To treat all such cases
in a unified way, we must use the following definition.

Definition 1. The low- and high-SNR asymptotics of Pe(ρ)
(eq. (3)) may be given as

Pe(ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M1

∑
l=0

c(l)xl +O(xM1+1) as x → 0+

M2

∑
l=0

b(l)

xδ+l
+O(x−(δ+M2+1)) as x → ∞,

(4)

where γ = ρβ as per AS1, and x = ρτ for a positive real
number τ such that both expansions have integer powers of
x, whereas the series in terms of ρ may not necessarily have
integer powers.

All error-probability cases involve either x = ρ1/2 or x = ρ .
The former is needed for coherent schemes and the latter for
non-coherent (differential) schemes. Thus, the rationale behind
the substitution x = ρτ is the need for the unified treatment
of all such cases. We will show under Proposition 2 that δ is
related to the diversity order of the system.

B. A general high-SNR approximation

Before presenting our generalization, we list the high-SNR
approximation of eq. (3) derived in [2] when h(x) = Q(

√
κx),

where κ > 0 for quick reference:

Pe(ρ) = E [Q(
√

κγ)]

=
2taΓ(t + 3

2 )√
π(t +1)

1
(κρ)t+1 +O

(
ρ −(t+2)

)
as ρ → ∞. (5)

Equation (5) reveals that the diversity order Gd is t+1, which
directly relates to the growth rate of the PDF f (β ) (AS2).
This result is observed because the exponential decay rate of
Q
(√

κρβ
)

as ρ → ∞ ensures that the main contribution to

the integral eq. (3) comes from the neighborhood of β = 0.
Thus, the monomial aβ t (AS2) determines both the diversity
and SNR gains.

Note that eq. (5) holds for coherent modulations such as
binary phase shift keying (BPSK) and frequency shift keying
(FSK). Other conditional error expressions h(x) involve linear
combinations and/or powers of the Q function, and weighted
exponentials like xp exp(−qx), where p,q > 0. Since a case-
by-case treatment of all those is tedious, a single, unified
expression applicable to any modulation format is highly
useful. Such a generalized result is developed next.

Proposition 1. If the PDF of the channel gain is given
by f (β ) ≈ β tg(β ) as β → 0+ with g(0) �= 0, the error
probability Pe(ρ) eq. (3) can be approximated as

Pe(ρ) =
H(t +1)

ρ t+1 g

(
H(t +2)

ρH(t +1)

)
+O(ρ −(t+3)) as ρ → ∞,

(6)
where H(s) is the Mellin transform of h(x).

The proof is given in the Appendix.
Remark: f (β ) ≈ β t g(β ) as β → 0+ implies that g(β )

is a function with the asymptotic expansion ∑M
k=0 a(k)β k +

O(β M+1) as β → 0+ such that the first M + 1 coefficients
match with those of the expansion of f (β ) as β → 0+.
The error term associated with this PDF approximation is
O(β t+M+1). For example, the exact PDF of the dual-branch
SC system in independent and identically distributed (iid)
Rayleigh fading, given by f (β ) = 2(1− e−β )e−β , β > 0, can
be approximated as (i) f (β ) = 2β e−1.5β +O(β 3) as β →
0+, (ii) f (β ) = β 18−13β

9+7β +O(β 3) as β → 0+.
As an application of eq. (6), we consider an Nr-branch MRC

system in iid Rayleigh fading. The PDF of β takes the form
f (β ) = β Nr−1g(β ), where g(x) = e−x

(Nr−1)! . By using H(s) from
Table I, the BER of the coherent BPSK may be obtained as

Pe(ρ) =
Γ(Nr +

1
2 )

2
√

πNr!ρNr
e
− Nr(Nr+1/2)

(Nr+1)ρ +O(ρ −(t+3)) . (7)

The exact BER of this system is given by [5, eq. (9.6)].
Figure 1 compares the accuracy of the BER approximation
obtained in eq. (7) with that of the classical high-SNR result,
eq. (5), where κ = 2, a = 1/(Nr − 1)! and t = Nr − 1. The
relative errors computed as |exact −approximate|/exact for
Nr = 4 are plotted. We can observe that eq. (7) is at least an
order of magnitude better than eq. (5) in terms of the relative
error.

Note that a special case of Proposition 1 occurs when
g(β ) = a, that is, when the PDF model that appears in AS2
is used. (This case was treated in [2]). The approximation of
the error probability Pe(ρ) (eq. (3)) as ρ → ∞ can then be
expressed as

Pe(ρ) =
aH(t +1)

ρ t+1 +O(ρ−(t+2))

=
(
(aH(t +1))−1/(t+1) ρ

)−(t+1)
+O(ρ−(t+2)). (8)
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TABLE I
MELLIN TRANSFORMS OF h(x)

Application h(x) H(s)

Coherent BPSK Q(
√

2x)
Γ(s+1/2)

2s
√

π
Non-coherent FSK 1

2 e−
x
2 2s−1Γ(s)

DPSK 1
2 e−x 1

2 Γ(s)

Coherent FSK Q(
√

x)
2s−1Γ(s+1/2)

s
√

π

Energy detection 1−Qu(
√

2x,
√

λ )
e−λ/2Γ(s)

2π

∮
	

eλz/2

zu−s−1(z−1)s+1 dz

Outage probability u(γT − x)
γs
T
s

Non-coherent M-FSK 1
2(M−1)

M−1

∑
m=1

(−1)m+1
(

M
m+1

)
e−

mx
m+1

Γ(s)
2(M −1)

M−1

∑
m=1

(−1)m+1
(

M
m+1

)
(1+

1
m
)s
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Fig. 1. The relative errors eq. (5) and eq. (7) as a function of the SNR. An
MRC system with Nr = 4 is considered.

Comparing eq. (8) with the traditional high-SNR approxi-
mation eq. (1) shows that the SNR gain depends on H(s),
whereas the diversity gain strictly depends on the order of the
monomial aβ t .

C. Low- and high-SNR asymptotics from Mellin Transforms

Mellin transforms are a natural tool for the study of
asymptotics. To this end, we consider the Mellin transform
of a general h(x) expressed as a sum of either a finite or
an infinite number of terms derived from a common basis
function. For example, with basis function Q(

√
x), we consider

h(x) = ∑akQ(
√

bkx), which is powerful enough to cover
all coherent linear modulations, union bound on block and
convolutional coded systems and others. With suitable basis
functions, differential and non-coherent modulation can also
be treated. With this generalized h(x), we next show how the
low- and high-SNR asymptotics of Pe(ρ) can be obtained from
the left- and right-sided poles of a Mellin transform product
with respect to its fundamental strip.

Proposition 2. Consider a generalized conditional error prob-
ability given by the sum

h(x) = ∑
k

λkg(μkx), (9)

where g(x) is a general base function. If G(s) and F(s) are the
Mellin transforms of g(x) and the PDF f (β ), respectively, let
Λ(s) = G(s)F(1− s)∑k λkμ−s

k has an increasing sequence of

right-sided poles p̃0, p̃1, . . . and a decreasing sequence of left-
sided poles q̃0, q̃1, . . . with respect to the fundamental strip.
All the poles are assumed to be first-order ones. Then, the
low- and high-SNR asymptotics of Pe(ρ) can be expressed as
eq. (4), where δ = p̃0/τ and the non-zero coefficients are given
by⎧⎨
⎩ c

( |q̃l |
τ

)
b
(
( p̃l− p̃0)

τ

)
⎫⎬
⎭=

⎧⎨
⎩

lim
s→q̃l

[
(s− q̃l)G(s)F(1− s)∑k λkμ−s

k

]
lim
s→p̃l

[
(p̃l − s)G(s)F(1− s)∑k λkμ−s

k

]
⎫⎬
⎭ .

(10)

Otherwise, the coefficients are zero.

See Appendix for the proof. Several examples of eq. (10)
will be furnished later.

Remarks:
1) Since H(s) = G(s)∑λkμ−s

k , the term ∑λkμ−s
k does not

have any poles, and the poles of H(s) are simply those of
the base function. For example, consider an error bound
for a digital modulation given by h(x) = ∑akQ(

√
bkx),

where ak and bk represent the number of the nearest
neighbors and their distances. The poles of H(s) are
then from the Mellin transform of Q(

√
x) and are not

dependent on the ak and bk values. The poles are thus
contributed by G(s) and F(1−s). These in general yield
left-sided and right-sided poles, respectively, which in
turn determine the low- and high-SNR performance.

2) The first right-sided pole p̃0 makes the dominant contri-
bution to high-SNR performance. Thus, the high-SNR
error probability may be described by

Gd = p̃0,

Gc = lim
s→p̃0

[
(p̃0 − s)G(s)F(1− s)∑

k

λkμ−s
k

]−1/ p̃o

.

(11)

As per AS3, H(s) contributes left-sided poles only. The
diversity order is thus given by the first right-sided pole
of F(1− s).

3) The result in eq. (11) encompasses eq. (5) (the problem
treated in [2]). In order to understand this point, note
that the monomial f (β ) ≈ aβ t corresponds to F(1− s)
having a pole at s = 1+ t. Thus, [2] is derived from
f (β ), while our result is based on F(s).

To sum up, Proposition 2 states that the positive poles of
F(1− s) describe the high-SNR expansion whereas the neg-
ative poles of F(1− s) together with those of H(s) describe
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TABLE II
MELLIN TRANSFORMS OF β

Fading f (β) F(s)
Rayleigh e−β Γ(s)

Nakagami-m mmβm−1e−mβ

Γ(m)

m1−sΓ(s+m−1)
Γ(m)

Rician (1+K)e−(K+(1+K)β)I0

(
2
√

K(1+K)β
) Γ(s)eK/2

√
K(1+K)s

M 1
2 −s,0(K)

Hoyt ae−a2β I0 (bβ)
2s−1Γ

( s
2

)
Γ
( s+1

2

)
√

a2s−1π
2F1

(
s+1

2
,

s
2

;1;
b2

a4

)

Weibull
bβ

b
2 −1

2a
b
2

e
−
(

β
a

) b
2

as−1Γ
( 2s+b−2

b

)
MRC(Rayleigh)

β Nr−1e−β

(Nr −1)!
Γ(Nr + s−1)
(Nr −1)!

SC(Rayleigh) Nr(1− e−β )Nr−1e−β Nr

Nr−1

∑
l=0

(−1)l
(Nr−1

l

)
Γ(s)

(l +1)s

the low-SNR expansion. The first positive pole of F(1− s)
gives the diversity order. Tables I and II give H(s) and F(s)
for several common cases.

Low- and high-SNR expansions form the basis for the UA,
which will be developed subsequently. Specifically, to develop
the error probability UA, only b(0) and δ from high-SNR
series and c(l) for l = 0,1,2, . . . ,M1 from low-SNR series
are needed. As mentioned above, the first high-SNR term is
determined by the first positive pole p̃0 of F(1− s); thus,

b(0) = aH(p̃0), (12)

where a= lims→p̃0 [(p̃0 − s)F(1− s)] is the residue of F(1−s)
at s = p̃0 and is also the coefficient of the monomial approxi-
mation to f (β ) considered in [2] (AS2). As per this monomial,
p̃0 is equivalently t+1. Note that the high-SNR approximation
in [2] uses two parameters a and t. As b(0) and δ are closely
related to a and t, either set of parameters may thus be used
to develop UAs.

For channel fading with F(1 − s) having positive poles
only (this condition is satisfied for most of the popular
fading models and diversity-combining systems), the low-SNR
coefficients c(l), l = 0,1,2, . . . given by the first equality in
eq. (10) can be shown to depend directly on the moments of
β . This point will be verified by the subsequent examples of
UAs.

Although we focus on the use of Mellin transform to obtain
these low- and high-SNR coefficients, they can also developed
via the PDF or the MGF of β . We briefly comment on these
alternative approaches below.

1) PDF: if one follows [2], a and t are given by monomial
expansion of f (β ) near 0. Similarly, by using the PDF
f (β ), the moments μn =

∫ ∞
0 β n f (β )dβ can be easily

obtained.
2) MGF: as MGF is readily available in some problems

(e.g., the case of MRC), it is fairly simple to extract a
and t by the monomial expansion of Mβ (s) near s = ∞
[2]. Fortunately, the fractional moments are also simple
to compute from the MGF [18]. Consider an Nr-branch
MRC system in iid Rayleigh fading as an example. The
MGF of β is Mβ (s) = (1+s)−Nr , which can be expanded
for s → ∞ as Mβ (s) = s−Nr +O

(
s−(Nr+1)

)
, and hence, a

and t are obtained to be 1/Γ(Nr) and Nr−1, respectively
[2].

The fractional moments of β , μl/2, l = 1,3,5, . . . can be
computed by using [18] as

μl/2 = E[β l/2] = Γ(λ )−1
∫ ∞

0
tλ−1ζ (−t)dt,

where λ is chosen to be 1/2 such that n = l/2+λ is
a positive integer while satisfying 0 < λ < 1; ζ (s) =
dnMβ (s)

dsn .
By using the above equation, μl/2 can be obtained as

μl/2 =
Γ(Nr +n)

Γ(1/2)Γ(Nr)

∫ ∞

0
t−1/2(1+ t)−(Nr+n)dt

=
Γ(Nr + l/2)

Γ(Nr)
,

where the last equality is obtained by using [19, eq.
(3.191.3)].

IV. AVERAGE PROBABILITY OF ERROR

Proposition 3 is our main result for the error probability
UA. We use the asymptotics of eq. (4) to develop the UA;
however, only the first term of the high-SNR series and
several low-SNR terms are utilized. These terms feed into
a linear equation to yield the coefficients of the numerator
and the denominator of the UA. To illustrate this process,
UAs for the error probability of coherent modulation for
diversity-combining systems, relay channels, and co-channel
interference are derived. The UAs for the error probability of
non-coherent or differential detection schemes, the product of
two Q functions, and the miss probability of energy detection
are also derived.

A UA is a rational function that matches with both the
low- and high-SNR asymptotics simultaneously [20]. That is,
if the UA is expanded into two series of ρ−n and ρk, then
those expansions will match the appropriate terms of eq. (4).

Definition 2. A rational function r(x) is given by

r(x) =
p0 + p1x+ p2x2 + . . .+ pLxL

q0 +q1x+q2x+ . . .+qKxK , (13)

where L and K are are the degrees of the numerator and
the denominator, respectively. To fit this rational function into
Pe(ρ) eq. (3), the coefficients p0, p1, . . . pL and q1,q2, . . . ,qK
are determined from the asymptotics in eq. (4). The values of
L and K depend on the number of the low- and high-SNR
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terms used to construct r(x). If L < K, the rational function is
called proper, and this is the case in our applications.

Proposition 3. The UA for the error probability Pe(ρ) eq. (3)
is given by

Pe(ρ) = r(x)+ ε(x), (14)

where r(x) is a rational function defined in eq. (13), x = ρτ ,
K = L+ δ , L ≥ 2 is an integer, p0 = 1 and q0 = 1/c(0). The
denominator coefficient vector q = (q1,q2, . . . ,qK)

T is given
by

q =−1/c(0)W−1(c̃(1) c̃(2) . . . c̃(K − 1) c̃(K)
)T

,
(15)

where c̃(l) = c(l + L− 2) and W = {wi j}, i = 1, . . . ,K, j =
1, . . . ,K with

wi j =

{
c̃(i− j)− b(0) i = 1,2; j = i+K− 2
c̃(i− j) otherwise.

(16)

The numerator coefficient vector p= (p1, p2, . . . , pL)
T is given

by

pi =

⎧⎪⎨
⎪⎩c(i)/c(0)+

i

∑
k=1

qkc(i− k) i = 1, . . .L− 2

b(0)qK− j j = 0,1; i = L− j.

(17)

The error term ε(x) of eq. (14) is O
(
xK+L−1

)
as x → 0+

(low-SNR) and O
(

x−(δ+1)
)

as x → ∞ (high-SNR).

Proposition 3 is a general result for error probability,
applicable to a variety of modulation schemes, fading channels
and interference. The basic inputs required are τ , several
coefficients (c(l), l = 0,1,2, . . .) of the low-SNR series and
the first coefficient b(0) and δ of the the high-SNR series.
The extraction of these inputs for the construction of several
UAs is demonstrated next.

A. Coherent modulations

1) Single-branch BPSK in Rayleigh fading: We first show
how Proposition 2 helps to get the low- and high-SNR
expansions of Pe(ρ) (eq. (3)) for coherent modulations. For
the BERs of the coherent BPSK and the coherently de-
tected binary FSK modulations (Table I), we have generic
h(x) = Q

(√
κx
)
. Table I reveals that H(s) has simple poles at

s = 0,−1/2,−3/2, . . .. These poles together with the negative
poles of F(1− s) describe the low-SNR expansion of Pe(ρ).
However, for common fading models, F(1−s) has a sequence
of positive poles p̃0, p̃1, . . . only, which describe the high-
SNR Pe(ρ). The non-integer poles of H(s) indicate that the
low-SNR expansion involves

√ρ . We thus substitute x =
√ρ

with τ = 1/2. Then, δ = 2 p̃0, and the necessary coefficients
computed according to proposition 2, are as follows:

b(0) = a
2 p̃0−1Γ(p̃0 + 1/2)

p̃0
√

πκ p̃0

c(l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 l = 0
(−1)(l+1)/2(κ/2)l/2F(l/2+ 1)√

π l Γ [(l + 1)/2]
l = 1,3, . . .

0 otherwise.

(18)

From the definition of Mellin transform eq. (2), F(n+ 1) =
E[β n] = μn is the n-th moment of β . Note that c(l) can also

be obtained by using the series expansion of Q
(√

κρβ
)

[19]

and averaging over f (β ).
The UA for the error probability of the BPSK (κ = 2)

modulation in Rayleigh fading can now be readily computed
by using eq. (14). The basic inputs required are a, p̃0 and sev-
eral moments μn. For single-branch Rayleigh fading, F(1− s)
(Table II) has the first right-sided pole at p̃0 = 1 of residue
a = 1. The required moments can be obtained from F(s) as
μn = Γ(n+1).

We now present a few additional examples of error proba-
bility UAs (Proposition 3) for coherent modulations. For this
purpose, examples of diversity combining, relay communica-
tions and co-channel interference are used.

2) Performance in Nr-branch MRC in iid Rayleigh fading:
MRC is an optimal diversity-combining method when no
interference is present [5, Chap. 9]. Its performance has been
analyzed extensively; for example, the BER of the coherent
BPSK modulation with MRC under Rayleigh fading is given
in [3, Sec. 14.4].

The Mellin transform of β is given in Table II. We observe
that F(1−s) has simple right-sided poles at s = Nr,Nr +1, . . ..
As per Proposition 2, these poles describe the high-SNR Pe(ρ).
Since the first pole is at s = Nr, the diversity order is Nr. The
required low- and high-SNR coefficients for the computation
of the UA eq. (14) can be obtained by using eq. (18), where
p̃0 = Nr, a = 1/Γ(Nr), and the moments μn = F(n + 1) =
Γ(Nr + n)/Γ(Nr). For the single-branch (Nr = 1) case, the
following simple UA can be obtained for the coherent BPSK
modulation:

Pe(ρ) =
1+ x+0.5x2

2+4x+5x2+4x3 +2x4 + ε(x), (19)

where x=
√ρ . The exact error rate for this case is well-known

[3, Sec. 14.4]. Note that the UA eq. (19) matches the first
three non-zero low-SNR terms and the first high-SNR term.
Similar UAs for any other Nr can be readily derived and are
omitted for brevity. To test their accuracy, the BER UAs for
the BPSK modulation when Nr = 1,2,4 are plotted along with
the exact result [3, Sec. 14.4] and the conventional high-SNR
result (eq. (5)) in Figure 2. Notice that the UA coincides with
the exact BER for the entire range −10≤ ρ < 30 dB, while the
high-SNR result, eq. (5), fails as the SNR decreases. Clearly,
the UA provides an excellent approximation over the whole
range of the SNR.

3) Performance in Nr-branch SC in iid Rayleigh fading:
SC, a classical diversity-combining technique, has less imple-
mentation complexity than MRC, but suffers a relative loss in
SNR gain. From Table II, the Mellin transform can be written
as

F(1− s) =

[
Nr

Nr−1

∑
n=0

(−1)n
(

Nr −1
n

)
1

(n+1)1−s

]
Γ(1− s)

= ν(1− s)Γ(1− s). (20)

Given Γ(1−s) has poles at s= 1,2,3, . . . , if these are the poles
of F(1− s), then the diversity order of the system would be
just one, which is incorrect. Surprisingly, the zeros of ν(1−s)
at s = 1,2, . . . ,Nr −1, exactly cancel out the first Nr −1 poles
of Γ(1− s). Therefore, the right-sided simple poles are at s =
Nr,Nr +1, . . . and they describe the high-SNR approximation
for Pe(ρ) (eq. (3)). Due to the first pole at s=Nr, the diversity
order of the system is Nr. The error probability UA eq. (14)
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Fig. 2. The exact BER of an Nr-branch MRC system, the high-SNR
approximation eq. (5) and the UA eq. (14). In the UA, L = 2.
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Fig. 3. The BER of a dual-hop relay system in Rayleigh fading.

for general coherent modulation can now be directly computed
with b(0) and c(l) given by eq. (18), where p̃0 = Nr, a =
(−1)Nr−1ν(−Nr+1)/Γ(Nr) and the moments μn =F(n+1)=
ν(n+1)Γ(n+1).

4) Dual Hop relay Performance: Figure 3 shows the BPSK
error performance of a dual hop relay system over Rayleigh
fading. The exact curve is plotted by using the results from
[21] and the UA by using Proposition 3 with L = 2 and
the required coefficients of series expansions obtained from
eq. (18). The high accuracy of UA in the entire SNR range
is visible in the figure. The required parameters a, p̃0 and
moments μn in eq. (18) are computed as follows. By using
[21, eq. (27)], the first-order expansion of the cumulative
distribution function (CDF) of the end-to-end SNR, Fγeq(γ)
can be easily shown to be

Fγeq(γ) =
(

1+
1
ζ

)
γ
ρ1

+O

(
γ
ρ1

)
, (21)

where ζ = ρ2/ρ1 ρ1, and ρ2 are the average SNRs of the first
and second hop, respectively. Let γ = ρ1β , the coefficient and
the order of the monomial aβ t (AS2) are thus obtained as
a = (1+ 1

ζ ) and t = 0, which are also our required parameters
a and p̃0 in eq. (18) ( p̃0 = t + 1 = 1). The required moments

are then computed as

μn =
∫ ∞

0
nβ n−1

(
1−Fγeq

ρ1

(β )
)

dβ

=
2n

√
π√

ζ
2B

(A+B)n+2

Γ(n+2)Γ(n)
Γ(n+3/2)

× 2F1

(
n+2,

3
2

;n+
3
2

;
A−B
A+B

)
,

(22)

where A = 1+ 1
ζ , B = 2

√
1
ζ . The final result for the moment

is obtained by substituting [21, eq. (27)] into the integral
expression and solving the resultant integral by using [19, eq.
(6.621.3)].

5) Performance in co-channel interference: In cellular
wireless systems, co-channel interference, rather than noise,
limits the performance [22]–[24]. The performance of these
systems is analyzed based on the signal-to-interference-and-
noise ratio (SINR) which may be defined as

γ =
Ω0X0

∑NI
l=0 ΩlXl +σ2

, (23)

where X0 and Xl , l = 1,2, . . . ,NI are the channel gains of
the desired and NI interference links, respectively; Ω0 and
Ωl , l = 1,2, . . . ,NI are the average received powers of the
desired signal and NI interfering signals, respectively; and σ2

is the additive white Gaussian noise power. While eq. (23)
can represent a multitude of co-channel scenarios, for the
sake of brevity we limit ourselves to the following case:
(a) the noise power is negligible and (b) all interferers have
identical powers, i.e., Ωl = ΩI ,(l = 1,2, . . . ,NI). Then γ can
be expressed as γ = ρβ , where ρ = Ω0/ΩI , and β = X0/Z,
Z = ∑NI

l=1 Xl . The Mellin transforms then relate as

Fβ (s) = FX0(s)FZ(2− s).

By using Fβ (s) and H(s), Proposition 2 provides the required
asymptotics of Pe(ρ) and finally, Proposition 3 yields the
desired UA.

As an example, consider an Nr-branch MRC system in
the presence of NI co-channel interferers. For all signals
with Rayleigh fading, X0 and Z are central chi square with
2Nr and 2NI degrees of freedom, respectively [24], and
their Mellin transforms are FX0(s) = Γ(s+Nr −1)/Γ(Nr) and
FZ(s) = Γ(s+NI −1)/Γ(NI). Thus, we find

Fβ (s) =
Γ(s+Nr −1)Γ(1+NI − s)

Γ(Nr)Γ(NI)
.

We can observe that Fβ (1 − s) has positive poles at s =
Nr,Nr + 1, . . . and negative poles at s = −NI,−(NI + 1), . . ..
Note that Fβ (1− s) in this case has both positive and negative
poles, whereas in the former cases, Fβ (1−s) has only positive
poles, which determine the high-SNR behavior only. As the
first positive pole is at s = Nr, the diversity order is Nr. The
negative poles of Fβ (1− s) together with those of H(s) thus
describe the low-SNR error probability. For coherent modu-
lation (h(x) = Q(

√
κx)), the low-SNR expansion includes the

powers of
√ρ and thus, τ = 1/2. Accordingly, from eq. (10),
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we obtain the following coefficients:

b(0) =
2Nr−1Γ(NI +Nr)Γ(Nr + 1/2)√

πNrκNr Γ(Nr)Γ(NI)

c(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

l = 0

(−1)(l+1)/2(κ/2)l/2
√

π l Γ [(l + 1)/2]

×Γ(l/2+Nr)Γ(NI − l/2)
Γ(Nr)Γ(NI)

l = 1,3, . . .

(−1)(l+2−2NI)/2(κ/2)l/2
√

π l Γ [(l + 2− 2NI)/2]

×Γ(l/2+Nr)Γ((1− l)/2)
Γ(Nr)Γ(NI)

l = 2NI,2(NI +1), . . .

0 otherwise.
(24)

The UA for the average error rate Pe(ρ) can now be readily
computed by using Proposition 3.

B. Non-coherent/differential systems

UAs for differential and non-coherent systems with equal
energy and equiprobable signaling for single-channel reception
and multi-branch receiver with equal gain combining (EGC)
are developed.

1) Single channel differential modulations: The conditional
BER of such systems can be expressed as [25, eq. (27)]

h(γ) =
1

2π

∫ π

0

1−α2

1− 2α cosφ +α2

× exp

[
−v2γ

2
(1− 2α cosφ +α2)

]
dφ ; 0 ≤ α =

u
v
< 1,

(25)

where u and v are modulation specific parameters such that
v > u. For example,

• u = 0,v = 1 :non-coherent orthogonal binary FSK,
h(γ) = 1

2 e−γ/2

• u = 0,v =
√

2 : binary differential phase shift keying
(DPSK), h(γ) = 1

2 e−γ

• u =
√

2−√
2,v =

√
2+

√
2 : differential quadrature

phase shift keying (DQPSK).

The Mellin transform of h(x) is given by

H(s) =
Γ(s)2s(1−α2)

2πv2s

∫ π

0

1
(1− 2α cosφ +α2)s+1 dφ . (26)

According to Proposition 2, the simple poles of H(s) at s =
0,−1,−2, . . . describe the low-SNR expansion, a power series
of ρ and hence, τ = 1. With the first right-sided pole of F(1−
s) at p̃0, the high-SNR term can be found by using eq. (12).
The BER UA can finally be expressed as eq. (14) with the
required coefficients given by

b(0) = a
2 p̃0−1Γ(p̃0)

(v2 −u2) p̃0
Pp̃0

(
v2 + u2

v2 − u2

)

c(l) =

⎧⎨
⎩
(−1)lF(l +1)

2l+1l!
(v2 − u2)lPl−1

(
v2 + u2

v2 − u2

)
l = 0,1,2, . . .

0 otherwise,
(27)
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Fig. 4. Average BER of DQPSK over single-channel Rayleigh fading.

where Pn(·) is a Legendre polynomial [19], and F(l + 1) =
μl are the integer moments of β . Expressions [19, (3.661.3)
and (3.661.4)] are used to solve the respective integrals to
obtain the above closed-form solutions. For Rayleigh fading,
p̃0 = 1, a = 1 and F(l +1) = μl = Γ(l +1). For DQPSK over
Rayleigh fading, the BER UA (L = 4), exact BER and high-
SNR approximation eq. (8) are compared in Figure 4.

2) Multichannel reception of differential modulations: The
conditional BER of Nr-branch non-coherent systems for binary
DPSK and orthogonal binary FSK can be expressed as [3, eq.
(12.1-13)]

h(γ) =
Nr−1

∑
n=0

1
n!

Nr−1−n

∑
i=0

(
2Nr−1

i

)
︸ ︷︷ ︸

qn

(gγ)le−gγ

22Nr−1 , (28)

where g = 1 for binary DPSK, and g = 1/2 for orthogonal
binary FSK. The Mellin transform of h(x) is thus given by

H(s) =
Nr−1

∑
n=0

qn
Γ(s+n)
22Nr−1gs , (29)

which has simple poles at s = 0,−1,−2, . . .. By using Proposi-
tion 2, the coefficients of the low- and high-SNR asymptotics
can be expressed as

b(0) =
a∑Nr−1

n=0 qnΓ(n+ p̃0)

22Nr−1τ p̃0

c(l) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

glF(l +1)
22Nr−1

l

∑
n=0

(−1)l−n

(l −n)!
qn 0 ≤ l ≤ Nr −2

glF(l +1)
22Nr−1

Nr−1

∑
n=0

(−1)l−n

(l −n)!
qn l ≥ Nr −1

0 otherwise.

(30)

The UA eq. (14) for the average BER of an Nr-branch DPSK
system over Rayleigh fading can be readily obtained with p̃0 =
Nr, a = 1/Γ(Nr), g = 1 and F(l +1) = Γ(Nr + l)/Γ(Nr). The
UA thus derived by taking L= 2 is compared against the exact
error rate and the high-SNR result eq. (8) in Figure 5 for
different values of Nr.
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Fig. 5. Average BER of Nr branch system with DPSK modulation over
Rayleigh Fading.

C. Other Applications

1) Product of two Gaussian Q functions: The average of
the product of two Gaussian Q functions is required for
the performance analysis of rectangular quadrature amplitude
modulation (QAM) [26], [27], two-user synchronous code-
division multiple-access (CDMA) systems [27], and repetition
codes [26].

We thus consider h(x) = Q
(√

k1x
)

Q
(√

k2x
)
, whose Mellin

transform can be shown to be

H(s) =
2s−1√k1k2Γ(s+ 1)

πs(2s+1)(k1 + k2)s+1

(
2F1(1,s+ 1;s+

3
2

;

k1

k1 + k2
)+ 2F1(1,s+ 1;s+

3
2

;
k2

k1 + k2
)

)
. (31)

We can find that H(s) has simple poles at s =
0,−1/2,−1,−3/2,−2, . . .. These negative poles describe the
low-SNR expansion of E[h(ρβ )] as a power series of

√ρ , and
thus, τ = 1/2. For Nakagami-m fading, F(1−s) (Table II) has
simple positive poles at s=m,m+1,m+2, . . ., which describe
the high-SNR E[h(ρβ )]. The low- and high-SNR coefficients
for the average of the product of two Q functions in Nakagami-
m fading can thus be found by using eq. (10) as

b(0) =
mmH(m)

Γ(m)
c(l) =

⎧⎨
⎩hR(l)

Γ(l/2+m)

ml/2Γ(m)
l = 0,1,2, . . .

0 otherwise,
(32)

where hR(l) = lims→−l/2 [(s+ l/2)H(s)] is the residue of H(s)
(eq. (31)) at s = −l/2, l = 0,1,2, . . .. The details of hR(l)
are omitted here for brevity. Once hR(l) is determined, the
required UA can be obtained by using Proposition 3.

2) Energy detection: The presence or absence of an un-
known signal over a noisy channel can be determined from
energy detection [28], which has recently been considered for
spectrum sensing in cognitive radio [29]–[32]. We next show
how the UA can be obtained for the probability of missing
detection (Pm) of an energy detector.

For 2u samples, with λ threshold and γ = ρβ instantaneous
SNR, [32, Eq. 4]

Pm = E[1−Qu(
√

2ρβ ,
√

λ )], (33)

where QM(a,b) is the M-th order generalized Marcum-Q
function.

Let h(x) = 1 − Qu(
√

2x,
√

λ ). The Mellin transform of
h(x) obtained by using the contour integral representation of
QM(a,b) [33], is given in Table I. We can see that H(s) does
not have any positive singular points.

Under Nakagami-m fading, Proposition 2 yields low- and
high-SNR coefficients of Pm as

b(0) =
mmH(m)

Γ(m)

c(l) =

⎧⎪⎪⎨
⎪⎪⎩

∑
n+k=l

(−1)nΓ(u+ k, λ
2 )Γ(m+ k+n)

k!n!Γ(u+ k)mk+nΓ(m)
l = 1,2, . . .

1− Γ(u,λ/2)
Γ(u)

l = 0.

(34)

The UA now follows from Proposition 3.

V. OUTAGE PROBABILITY

This section develops the UA for the outage probability.
Recall that previously, error-probability UAs were developed
by using a single high-SNR term and multiple low-SNR terms.
Similar process must be developed for the outage case.

Outage probability, a common quality-of-service parameter
for wireless systems, is the probability that the instantaneous
SNR falls below threshold γT :

Pout(γT ,ρ) = Pr[ρβ ≤ γT ] =

∫ γT /ρ

0
f (β )dβ . (35)

Thus, the performance measure h(x) = 1 for x < γT and h(x) =
0 for x > γT . Consequently, such h(x) has only one term in its
series expansion as x → 0+. Thus, the low-SNR coefficients
c(l) (eq. (4)) are zero for all l, except for l = 0. Previously,
an error-probability UA required several low-SNR terms and a
single high-SNR term, the latter depending on the first pole of
F(1− s). Conversely, matching a single low-SNR term (i.e.,
c(0) = 1) and several high-SNR terms is needed for the outage
UA.

Proposition 4. Generalize AS2 to the following: the fading
PDF is f (β ) = ∑K−1

k=0 a(k)β (k+t) +O
(
β K+t

)
as β → 0+ with

t ≥ 0. We assume that t is an integer. The outage probability
UA is then given by

Pout(γT ,ρ) = r(x)+ ε(x), (36)

where r(x) is a rational function defined in eq. (13), x = ρ/γT ,
K = L+(t + 1) ≥ 2 is an integer, p0 = q0 = 1 and pi = qi,
i = 1,2, . . . ,L. The coefficient vector q = (q1,q2, . . . ,qK)

T is
given by q = W−1eK−L, where ei is a K × 1 column vector
whose ith element is 1, all other elements being 0 and W =
{wi j}, i = 1, . . . ,K, j = 1, . . . ,K with

wi j =

{
−1 i = K −n, j = L−n; n = 0, . . . ,L−1
b( j− i) otherwise,

(37)

where

b(l) =

{
0 l < 0

a(l)
l+t+1 otherwise.

(38)

Example 1. The conventional high-SNR outage under AS2
can be readily obtained from eq. (8) and Table I as
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Fig. 6. The UA, exact outage and high-SNR approximation for Nr-branch
MRC in iid Rayleigh fading.

Pout(γT ,ρ)≈ a
t+1

(
γT
ρ

)t+1
, which is consistent with the result

given under Proposition 5 in [2]. Consider a simple case of a
single-branch Rayleigh fading channel. Proposition 4 in this
case yields the UA:

Pout(γT ,ρ) =
1+ 3x+ 6x2

1+ 3x+ 6x2+ 6x3 + ε(x).

For an Nr-branch MRC in iid Rayleigh fading, the outage UA
(L = 2) eq. (36), conventional high-SNR approximation and
exact outage are plotted in Figure 6. The excellent accuracy
of the UA over the entire range of SNR is clearly evident.

VI. CAPACITY

Capacity refers to the maximum rate of error-free infor-
mation transfer per unit bandwidth. With the performance
metric h(x) = log(1 + x), the average (ergodic) capacity is
Ĉ(ρ) = E[log(1+ γ)]. As h(x) does not decay exponentially,
our previous UA results (e.g., Propositions 3 and 4) do not
apply directly. For this reason, we exploit an MGF-based
approach for capacity analysis [34]; i.e.,

Ĉ(ρ) =
∫ ∞

0

e−x/ρ

x
[1−Mβ (x)]dx =

∫ ∞

0
e−x/ρϕ(x)dx, (39)

where ϕ(x) = 1−Mβ (x)
x . A UA to ϕ(x) can be computed by

using the following asymptotics:

ϕ(x) =

⎧⎨
⎩

∞

∑
n=0

(−1)n

(n+ 1)!
μn+1xn as x → 0+

1
x as x → ∞.

(40)

Again, the moment μn follows directly from the Mellin trans-
form F(s). Now, by using these asymptotics, r(x) in eq. (13)
can be similarly computed as in Proposition 3. The x → ∞
limit above yields the constraints K−L = 1 and pL = qK . The
resulting rational function may be given as

r(x) =
K

∑
k=1

Ak

x+αk
. (41)
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Fig. 7. The UA and exact capacity of an Nr-branch MRC in iid Rayleigh
fading.

where αk and Ak denote partial fraction coefficients. Now,
by using eq. (39) and eq. (41), the average capacity can be
approximated as

Ĉ(ρ)≈
K

∑
k=1

−Akeαk/ρ Ei(−αk/ρ), (42)

where Ei(x) is the exponential integral function [19]. For
example, for a 3-branch MRC in iid Rayleigh fading, ϕ(x)
can be approximated with the rational function as follows by
using K = 2 and L = 1:

ϕ(x)≈ 9+6x
3+8x+6x2 . (43)

The capacity UA is now obtained by applying eq. (42) after
the partial fraction expansion of eq. (43) The UAs for any Nr
can be similarly obtained. These UAs are compared against
the exact solution in Figure 7.

VII. CONCLUSION

We have developed UAs for error probability, outage and
the ergodic capacity. It is evident from our extensive numerical
results that the UAs’ main feature is their accuracy over the
whole range of SNR (e.g., −∞ < ρ < ∞ in a dB scale).

A UA is a rational function that simultaneously matches
both the low- and high-SNR expansions of a performance
metric. For both error probability and outage, matching the
exact performance is feasible, but for capacity, an indirect step

is required. Thus, a UA to ϕ(x) = 1−Mβ (x)
x must be developed

first.
Although both PDF and MGF can yield the necessary coef-

ficients of the low- and high-SNR expansions, we developed
a unified Mellin tranform solution in Proposition 2. In this
method, the right-sided poles contributed by F(1− s) deter-
mine the high-SNR expansion, the first of which yields the
traditional diversity and SNR gains. Similarly, the left-sided
poles contributed by H(s) and F(1− s) together, determine
the low-SNR expansion. However, for common fading and
diversity-combining systems, F(1− s) contributes only right-
sided poles.

We also provided a simple generalization (Proposition 1)
of the high-SNR results of [2], yielding a unified high-
SNR approximation for an arbitrary performance measure.
Although not directly related to UAs, this result provides
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insights on how the SNR gain depends on the modulation
format and in general, may be more accurate than that of [2].

This paper appears to be the first one to develop the notion
of UA. It provides an alternative to closed-form analysis and
also an excellent validation tool for simulations. We presented
only a few of the vast number of potential applications, for
UAs may also be developed for advanced wireless applications
such as relay communications and cognitive radios.

APPENDIX

A. Proof of Proposition 1

Let H(s) be the Mellin transform of h(x), the perfor-
mance measure under consideration. It then follows that∫ ∞

0 h(ρβ )β q dβ = H(q+1)/ρq+1. Substituting a Taylor series
expansion of g(β ) at β = 0 in eq. (3), we find

Pe(ρ) =
∫ ∞

0
h(ρβ )β t

(
g(0)+ g′(0)β +

g′′(ε1)

2
β 2
)

dβ

=
H(t +1)

ρ t+1

(
g(0)+

H(t + 2)
H(t + 1)ρ

g′(0)
)
+

g′′(ε1)H(t +3)
2ρ t+3 ,

(44)

where ε1 ∈ (0,∞). Noting that g(0)+ H(t+2)
H(t+1)ρ g′(0) is the first

two terms of the Taylor series for g
(

H(t+2)
ρH(t+1)

)
, we get Propo-

sition 1. The error term in eq. (44) is clearly O
(

ρ−(t+3)
)

.

B. Proof of Proposition 2

The error probability eq. (3) is a type of convolution and
thus can be transformed via the Parseval formula [17] as

Pe(ρ) =
1

2π ı

∫ c+ı∞

c−ı∞

1
ρ s H(s)F(1− s)ds, (45)

where the parameter c is chosen to be in the fundamental strip
〈u,v〉 where both H(s) and F(1−s) are holomorphic. For h(x)
given in eq. (9), the Mellin transform H(s) = G(s)∑ λkμ−s

k .
To find the asymptotic of eq. (45) as ρ → 0+, we may con-

sider a large rectangular contour to the left of the fundamental
strip with sides ℜ(s) = c and ℜ(s) =−M for −M < u. Given
that the functions G(s) and F(1− s) decrease faster than any
negative power of |s|, and that the series ∑λkμ−s

k is of, at most,
polynomial growth in the extended strip 〈−M,u〉 as |s| → ∞,
the integrand in eq. (45) when evaluated along the top and
bottom lines of the rectangle has a negligible contribution.
In contrast, the integral along the vertical line ℜ(s) =−M is
bounded by O(ρM) [17]. By applying the residue theorem,

Pe(ρ) = ∑
s∈HM

Res

{
1
ρ s G(s)F(1− s)∑λkμ−s

k

}
+O(ρM),

where HM is the set of poles enclosed by the rectangular
contour, and M is as large as we want it to be.

One can similarly consider a large rectangular contour to
the right of the fundamental strip with sides ℜ(s) = c and
ℜ(s) = M for M > v to get the asymptotic expansion as ρ →
∞. However, there is an additional negative sign due to the
contour being clockwise. By assuming first-order poles, we
get the formula (10) and complete the proof.

C. Proof of Proposition 3

To construct UA, we require the rational function r(x) in
eq. (13) to satisfy the low- and high-SNR asymptotics in
eq. (4) simultaneously. Let us use only the first term of the
high-SNR expansion. As x → ∞, we find that

pL−1xL−1 + pLxL

qK−1xK−1 +qKxK =
b(0)
xK−L

if pL−1 = b(0)qK−1 and pL = b(0)qK , where K−L= δ . These
conditions thus determine the values of pi for i = L−1,L as
expressed in eq. (17). To satisfy the low-SNR expansion, we
must have(

∞

∑
l=0

c(l)xl

)(
q0 +

K

∑
k=1

qkxk

)
= p0 +

L

∑
l=1

plx
l . (46)

By comparing the coefficients of xl on both sides of eq. (46)
for l = L−1,L, . . . ,K +L−2, we get

c(L−2+ i)q0+
K

∑
j=1

c(L−2+ i− j)q j =

{
pL−2+i i = 1,2
0 i = 3, . . .K.

(47)
It follows from eq. (46) that c(0)q0 = p0. Thus, if we set
p0 = 1, we get q0 = 1/c(0). After substituting for q0, pL−1
and pL, eq. (47) can be given in matrix form eq. (15). The
solution of eq. (15) completely determines the denominator of
r(x). Again, by the comparing the coefficients of xi on both
sides of eq. (46) for i = 1,2, . . . ,L−2 , we get the values of
pi for i = 1,2, . . .L−2 as expressed in eq. (17).

D. Proof of Proposition 4

For r(x) to match with the single low-SNR term, which is
1, we must have

p0 +
L

∑
l=1

plx
l = q0 +

K

∑
k=1

qkxk, (48)

which implies that pi = qi, i = 0,1,2, . . . ,L. We can set p0 =
q0 = 1 such that Pout(γT ,0) = 1.

With the fading PDF f (β ) = ∑K−1
k=0 a(k)β (t+k) +O

(
β t+K

)
as β → 0+, the outage probability can be expressed as
Pout(γT ,ρ) =∑K−1

l=0 b(l)x−(t+1+l)+O(xt+1+K) as x →∞, where
x = ρ/γT , and b(l) = a(l)/(t+1+ l). To satisfy this high-SNR
expansion, we must have(

K−1

∑
l=0

b(l)yK−L+l

)(
yK +

K

∑
l=1

qly
K−l

)
= yK +

L

∑
l=1

qly
K−l ,

(49)
where y = 1/x, K−L= t+1. By comparing the coefficients of
yi on both sides of eq. (49) for i =K−L,K−L+1, . . . ,K,K+
1, . . . ,2K −L−1, we get

K

∑
j=1

b( j− i)q j =

⎧⎪⎨
⎪⎩

0 i = 1,2, . . . ,K −L−1
1 i = K −L

qL−n i = K −n,n = 0,1, . . . ,L−1.

(50)

This set of linear equations is expressed in the form of a matrix
in Proposition 3 and completely determines the coefficient
vector q.
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