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Abstract—Node pruning strategies based on probability dis-
tributions are developed for maximum-likelihood (ML) detection
for spatial-multiplexing multiple-input–multiple-output (MIMO)
systems. Uniform pruning, geometric pruning, threshold pruning,
hybrid pruning, and depth-dependent pruning are thus developed
in detail. By considering the symbol error probability in the high
signal-to-noise ratio (SNR) region, the desirable diversity order
of uniform pruning and the threshold level for threshold prun-
ing are derived. Simulation results show that threshold pruning
saves complexity compared with popular sphere decoder (SD)
algorithms, such as the K-best SD, the fixed-complexity SD (FSD),
and the probabilistic tree pruning SD (PTP-SD), particularly for
high SNRs and large-antenna MIMO systems. Furthermore, our
proposed node pruning strategies may also be applied to other
systems, including coded MIMO systems and relay networks.

Index Terms—Maximum likelihood (ML), multiple-input–
multiple-output (MIMO), sphere decoder (SD), statistical pruning,
wireless communications.

I. INTRODUCTION

A LTHOUGH multiple-input–multiple-output (MIMO) sys-
tems over rich-scattering wireless channels promise enor-

mous capacity improvements without bandwidth or signal
power increases [1], their realization depends on the avail-
ability of low-complexity high-performance signal detection
algorithms. These requirements are met by the sphere decoder
(SD) [2], with basic versions such as the Fincke–Pohst SD (FP-
SD) and the more efficient Schnorr–Euchner SD (SE-SD)1 [4],
[5]. Hardware implementation details of the SD can be found in
[6]. Although it avoids the exponential complexity of exhaus-
tive search maximum-likelihood (ML) detection [7], the SD’s
average complexity is exponential in the number of transmit
antennas [8]–[22]. In [9], an increasing radius algorithm (IRA)
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1We consider the SE-SD [3] only. The extension of our proposed algorithms
to the Fincke-Phost SD [2] is straightforward.

chooses a smaller radius for the lower layers in the search
tree and increases the radius gradually for higher layers. This
process amounts to pruning more nodes at lower levels and less
at higher layers. Thus, excessive pruning may need to restart
the IRA several times, which brings additional complexity.
In addition, the IRA cannot attain different diversity orders2

and achieve a flexible performance–complexity tradeoff. To
extend the IRA, Shim and Kang [10] propose probabilistic tree
pruning sphere decoding (PTP-SD), which prunes more nodes
by adding a probabilistic noise constraint on top of the sphere
constraint. Then, Shim and Kang [11] extend the PTP-SD and
provide further improvement of the computational complexity
with minimal extra cost and negligible performance penalty.
Additional pruning methods are also proposed in [12] and
[13]. References [14] and [16] combine the PTP-SD and fixed-
complexity SD (FSD) [17] to preserve the advantages of branch
pruning using an adaptively updated PTP-SD threshold. To
prune more nodes, a new probabilistic sorting rule is developed
by exploiting the properties of the path metric to yield more
effective sorting [18]. The K-best SD [19], which prunes all
but K-best nodes in each layer, traverses the search space in a
breadth-first manner.

All those SD algorithms [9]–[14], [16]–[22] implement dif-
ferent node pruning strategies, with different performance–
complexity tradeoffs. A general framework for such pruning is
desirable. For this purpose, we propose and develop a statistical
pruning SD (SPSD). Our main contributions in this paper are
summarized as follows.

• Our key idea is that each essential node, e.g., node i, is
assigned with probability f(i) that indicates the likelihood
of being pruned. For example, f(i) = 0 means that the
ith node is retained, and f(i) = 1 means that ith node is
eliminated. For other cases, given the probability distri-
bution f(i), our algorithm randomly generates a pruning
decision for node i based on f(i). We can choose f(i)
based on experimental results or common statistical distri-
butions. For example, f(i) may be set small for nodes in
upper layers of the search tree, which means more such
nodes are retained, and the ML solution is more likely
to be found. In addition, f(i) may be varied to achieve
different performance–complexity tradeoffs. Performance
and complexity are measured by the symbol error rate
(SER) and the number of nodes visited. The SER in the
high-SNR region is however closely related to the diversity

2If the error probability decays proportion to SNR−d, d is called the diversity
order.
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order. Thus, a flexible tradeoff between diversity order and
complexity reduction is achievable. Many existing SDs
(such as [5], [9], and [19]) can be cast as special cases
of the proposed approach.

• Based on several classical probability distributions, we
propose the following node pruning rules: 1) uniform
pruning, where all the child nodes of a node, except the
first one, are pruned independently with equal probability;
2) geometric pruning, where the child nodes are pruned
dependently where the pruning probability agrees with
the geometric distribution; 3) threshold pruning, where
the child nodes are pruned if its cost exceed a threshold;
4) hybrid pruning, where the threshold pruning or geomet-
ric pruning rule is combined with uniform pruning; and
5) depth-dependent pruning, where the pruning probability
depends on the search depth. Three cases of these rules are
given in this paper.

• The performance of the proposed SPSD is also analyzed
in this paper. The upper bounds for the frame error rate
(FER) of uniform and threshold pruning rules are derived.
We also show that both the uniform and threshold pruning
rules can achieve a desired diversity order by specifi-
cally setting the pruning probability for the former and
the threshold for the latter according to different SNRs.
Furthermore, pruning probability of the uniform rule is
analyzed when full diversity order is needed. It is also
shown that the FER upper bound in the full diversity
case could be affected by the predesignated SNR loss and
the achievable diversity orders or SNR gains could be
controlled by the choice of pruning probability and the
threshold. For example, for uniform pruning, to reduce
complexity, a large pruning probability should be chosen
based on the achievable diversity order, and vice versa.
This also happens for the threshold rule, with a smaller
desired diversity order; the threshold could be chosen to
be a smaller value, resulting in lower complexity.

• The performance and complexity of all the proposed rules
and those of the existing SDs, such as PTP-SD [10], FSD
[17], and K-best SD [19], as a function of the number
of transmit antennas and receive antennas are compared
by simulations. The simulations show the advantages of
our approach to large MIMO systems at high SNRs. It
is noteworthy that our proposed threshold rule obtains
significant complexity savings than these SD algorithms.

This paper is organized as follows. Section II describes an
uncoded MIMO system and reviews the basic SD. The SPSD
is developed in Section III. Five pruning rules are proposed
in Section IV. Performance and complexity analyses of the
proposed SPSD are given in Section V. The simulation results
are presented in Section VI, followed by the conclusions in
Section VII.

Notation: Bold symbols denote matrices or vectors. (·)T de-
notes transpose. R denotes the real number set. �{x} and �{x}
denote the real part and the imaginary part of x, respectively.
‖(·)‖2 is the two-norm square of (·). A circularly complex
Gaussian variable with mean μ and variance σ2 is denoted by
z ∼ CN (μ, σ2). Ac denotes the complement event of A.

II. SYSTEM MODEL AND CONVENTIONAL

SPHERE DECODER

We consider a spatial-multiplexing MIMO system with N
transmit antennas and M receive antennas. A rich-scattering
memoryless (flat fading) channel is assumed [7]. The transmit-
ter selects complex symbols from a finite constellation Q. The
received signals may then be written as

r = Hx+w (1)

where x = [x1, . . . , xN ]T , xi ∈ Q is the transmitted signal
vector, r = [r1, . . . , rM ]T , ri ∈ C is the received signal vec-
tor, H = [hi,j ] ∈ CM×N is the channel matrix, and w =
[w1, . . . , wM ]T , wi ∈ C is an additive white Gaussian noise
(AWGN) vector. The elements of H are independent identically
distributed (i.i.d.) complex Gaussian, i.e., hi,j ∼ CN (0, 1). The
components of w are i.i.d., and wi ∼ CN (0, σ2). The channel
H is assumed to be perfectly known to the receiver, which
can be estimated by standard pilot-based channel estimation
methods [23]. The number of receive antennas exceeds the
number of transmit antennas N ≤ M (if N > M , the rank-
deficient system can be converted into a full-rank system with
N = M using the method in [24]). The channel matrix is
factorized as H = QR, where Q is unitary, and R is an N ×N
upper triangular matrix. Received signal r is multiplied by QH

as a part of the preprocessing stage. The ML detector is given by

x̂ = argmin
x∈QN

‖y −Rx‖2 (2)

where y = QHr. Note that (2) forms the basis for the SD.
In the following, without loss of generality, formulation (2)
and Q are considered real, e.g., pulse amplitude modulation
(PAM), which may be represented as Q = {2q − |Q|+ 1|q =
0, 1 . . . |Q| − 1}/E0, where E0 is the parameter to make the
average energy of the constellation to be 1. If Q is complex,
such as quadratic-amplitude modulation (QAM), then it can be
decoupled to two real PAM constellations, and (2) still holds,
with x,y ∈ R

n×1 and R ∈ R
n×n, where n = 2N . The reader

is referred to [25] for additional details on how this equivalent
real model is derived from the complex model.

A. Conventional SD

Here, the real-system formulation (2) is used to briefly
explain the basic SD. Define p(x) = y −Rx. The basic
SD operates by discarding x that do not satisfy ‖p(x)‖2 =∑n

i=1 |pi(x)|2 ≤ d2. Since R is upper triangular, pi(x) = yi −∑n
j=i ri,jxj is a function of xi, . . . , xn only, where ri,j is the

(i, j)th entry of R. Since |pi(x)|2, i = 1, . . . , n is positive, for
given xk+1, . . . , xn, a necessary condition for valid x is that
|pk(x)|2 ≤ d2 −

∑n
j=k+1 |pj(x)|2.

In the SE enumeration [3], the admissible points are searched
in a zigzag order from the midpoint xk,mid = �1/rk,k(yk−∑n

j=k+1 rk,jxj)	, where �x	 is the nearest integer around x.
The spanning order is xk,mid, xk,mid+1, xk,mid−1, xk,mid+
2, . . ., when yk − dk − rk,kxk,mid ≥ 0 (d2k = d2 −

∑n
j=k+1

|pj(x)|2 = d2k+1 − |pk+1(xk+1, . . . , xn)|2), and xk,mid,
xk,mid − 1, xk,mid + 1, xk,mid − 2, . . ., if otherwise. This
method is more efficient than the Phost enumeration [5].
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III. STATISTICAL PRUNING

Before describing specific pruning rules, we describe a
generic detector. For the search tree with n layers, this detector
is given in Algorithm 1,3 where k (k = n, n− 1, . . . 1) denotes
the current layer in the search tree, g is a vector that includes
the pruning probabilities that is designed to use the pruning
rules for the nodes in the kth layer and d2k is the current
partial upper bound obtained by the radius minus the current
accumulated partial cost. The algorithm is invoked as SPSD-
decode (n,g, d2n,y,R), where dn is the initial radius, and y
is the received signal. The initial radius dn can be selected
based on the noise level [26] for the original FP-SD, whereas
it also can be typically set as d2n = +∞ for the conventional
SE-SD [5].

Algorithm 1: Statistical Pruning Sphere Decoder
SPSD-decode (k,g, d2k,y,R)

Input: k, g, d2k, y, R
Output: xmin

1 Generate all the l0 successors A in the kth layer satisfying
(yk − rk,kai)

2 ≤ d2k by eliminating nonessential nodes;
2 Let [∼, temp] = sort(c), where c = [c1, c2, . . . , ci, . . . , cl0 ]

and ci = (yk − rk,kai)
2, and then A = A(temp);

3 for i ← 1 to |A| do
4 p = rand(1);
5 if p ≤ g(i) then
6 discard the ith node;
7 else
8 keep the ith node in A;
9 end
10 end
11 l = length(A);
12 for i ← 1 to l (every element in A) do
13 x̃k = ai;
14 if ai is not a leaf node then
15 Let yk−1 = yk−1 −

∑n
j=k rk−1,j x̃j ;

16 SPSD-decode (k − 1,g, d2k − ci,y,R);
17 else if ai is a leaf node (k = 1) and its cost is smaller

than the current best cost then
18 The best solution xmin = x̃;
19 Update d2n = ‖y −Rx̃‖2 and all d2i ,

i = n− 1, . . . , 1;
20 end

Note that Algorithm 1 is built on the top of the SE-SD
[3] along with additional pruning of essential nodes based on
heuristic rules. The full pruning rule g may be dependent on the
search layer. This allows further flexibility to implement, e.g.,
more aggressive/conservative pruning strategies at different
search layers. Recall that the pruning of nonessential nodes
(i.e., ci > c∗) does preserve the optimality of the algorithm. The
pruning of essential nodes by the probabilistic rules, however,

3A complete Matlab-like algorithm SD description can be found in [4].

is the main concern of this paper. Specifically, considering |Q|
nodes that are children of a node, their pruning probabilities
may be given as

g(i) =

{
1 if ci > c∗

f(i) i = 1, . . . , t
(3)

where i ∈ {1, 2, . . . |Q|}, c∗ and ci are the current best cost and
the partial cost of the current node, respectively. t is the number
of nodes whose partial cost is below c∗.

Note that, by pruning probability, we always refer to the
second item f(i) in (3), which defines the probability of
pruning for nodes with ci ≤ c∗ (essential nodes). This simple
but critical difference with the SD makes the SPSD terminate
sooner than the latter, hopefully with the ML solution. Set A
is sorted in line 2 of Algorithm 1 because smaller cost nodes
are more likely to give high-quality solutions. Experimentally,
we know that pruning at different layers of the search tree will
affect the performance–complexity tradeoff differently. Thus, in
Algorithm 1, heuristic rules may vary for different layers. Thus,
the pruning rule can be strong in the first few layers since the
bound d2k itself is not tight enough to identify nonessential
nodes and can be weak in the last few layers when bound d2k
is tight.

A search algorithm is complete if it is guaranteed to return at
least one valid solution. That is, at least the Babai point [4] or
the decision-feedback equalization point [7] is guaranteed. To
ensure this condition, in Algorithm 1, at least one child node is
always kept. Thus, the pruning probability assigned to the child
node with minimum cost is always zero.

To clarify these ideas, consider a simple example where a
node has four essential child nodes. Assume that the child
nodes are sorted in increasing cost and assigned their pruning
probabilities as [0, 0.2, 0.5, 0.8], i.e., the first child node is never
pruned, and others have more chance of being pruned because
they are less likely to lead to the ML solution. Similarly, with
different probability distributions, existing SDs can be cast as
special cases of our framework. Some examples are as follows:

1) The SE-SD [5]: This case arises when the pruning prob-
ability f(i) for all the child nodes is 0, i.e., SE-SD does
not use statistical pruning.

2) The IRA [9]: The nodes with the costs smaller than the
radius are retained, i.e., their pruning probabilities are
0. While the pruning probabilities are 1 for other nodes,
which are pruned for sure. This is an example of uniform
pruning rule.

3) The K-best SD [19]: At each layer of the search tree,
the pruning probability of the best K nodes is 0, whereas
the pruning probability of all the remaining (K + 1,K +
2, . . .) nodes is one.

In the next section, several specific pruning rules are also
proposed.

IV. PRUNING RULES

Five specific heuristic pruning rules are developed here.
Uniform, geometric, threshold, hybrid and depth-dependent
pruning rules are developed.



CUI et al.: PROBABILITY-DISTRIBUTION-BASED NODE PRUNING FOR SPHERE DECODING 1589

A. Pruning Probability Distribution Basics

To keep our statistical framework simple, we initially define
the pruning probability of the kth layer to be f(i, k), i = 1, . . . t
and k = 1, 2, . . . , n. The value of f(i, k) can be chosen to
execute a strong or weak pruning regime and is not dependent
on the layer number in the first several depth-independent rules,
denoted by f(i). However, f(i, k) can also be chosen to vary
with the layer. In the following, we only consider nodes that do
not exceed the current best cost c∗. The set of such nodes is A,
and its size is t [see (3)].

The probability that node ai is pruned is f(i), and f(i) is
a nondecreasing function in i with f(1) = 0 and 0 ≤ f(i) ≤ 1.
As previously mentioned, boundary condition f(1) = 0 ensures
the completeness of the SPSD. f(i) is chosen as a nondecreas-
ing function in i, because, intuitively, a child with a smaller
cost is more likely to lead to the optimal solution. Based on
the different probability distributions, several pruning rules are
proposed next.

B. Pruning Rules

In the following, several specific pruning rules are given.
1) Uniform Pruning Rule. f(i) = 1 − p, for 2 ≤ i ≤ t, and

f(i) = 0, for i = 1: All child nodes, except the first one, are
pruned with equal probability and independently. This rule is
rational when a priori information is not available as to which
child leads to the optimal solution and which ones should be
pruned.

2) Geometric Pruning Rule. f(i) = 1 − pi−1: Because all
the child nodes are ordered in an increasing cost, the pruning
probability could be defined to be an increasing function of
i, i.e., geometric distribution. In this case, the child nodes are
pruned dependently.

Since f(i), i ≥ 2 in the geometric pruning rule is greater than
that in the uniform pruning rule, the former is stronger than the
latter. In both pruning rules, the strength of pruning is controlled
through p.

These two pruning rules are defined with two well-known
classical probability distributions. However, we may design the
pruning probability distribution considering the cost ci of node
ai. For example, a child node whose cost is significantly larger
than its parent may not lead to an optimal solution. This idea
leads to the following threshold pruning rule.

3) Threshold Pruning Rule: In the conventional SD, the
current node is pruned if its cost exceeds the current best cost.
A variation of this idea is proposed here. Thus, to further prune
nodes, a threshold δk is applied at the kth layer. As previously
mentioned, a1 is never pruned (f(1) = 0) for the completeness
of the SPSD. For i = 2, . . . , t, if the cost ci of child node ai is
larger than δk, ai is pruned, i.e., f(i) = 1 when ci > δk.

Here, threshold δk is associated with the kth layer. Since A
is in a nondecreasing order of cost, if node ai is pruned, all the
children aj for j ≥ i are pruned. The strength of pruning varies
inversely with δk. For example, if δk = +∞, it simply reduces
to the SD.

4) Hybrid Pruning Rule: The threshold rule can also be
combined with the uniform rule or the geometric rule to
possibly take advantage of both the cost information and

probabilistic pruning. Thus, the hybrid pruning rule could

be constructed as f(i) = 1 − p
√

ci/c1−1 or f(i) = min{(ci −
c1)(1 − p)/c1, 1}, where c1 is the minimum cost in the kth
layer. For these two examples, if the cost ci of the child node
ai is less than or equal to c1 (threshold rule), ai is not pruned.
Otherwise, the nodes are pruned by f(i) (uniform or geometric
rule).

5) Depth-Dependent Pruning Rule: In the search process,
if the pruning probability f(i) at early search layers is too
high, the probability of discarding the ML solution increases.
To keep the ML solution until the bottom search layer, f(i)
may be defined depending on different tree layers (depth-
dependent pruning rule) denoted by f(i, k), k = 1, 2, . . . n. In
the following, three cases are given.

Case I: f(i, k) = 1 − exp(−k), 2 ≤ i ≤ t.
The children at each layer are pruned by probability

f(i, k), which is a nonincreasing function in k. For large
k, the pruning probability decreases, which helps to avoid
discarding the ML solution. Once the node at the kth layer
is pruned, all the children of this node are pruned.

Case II: f(i, k) = (n− k)/2(n− 1), 1 ≤ k ≤ n where 2 ≤
i ≤ t. The pruning probability increases linear with the
layer. For the first layer, the pruning probability is zero,
and for the bottom layer, it is 1/2.

Case III: f(i, k) =

{
0 n1 + 1 ≤ k ≤ n
p0 1 ≤ k ≤ n1

, where 1 ≤ n1 ≤
n and 2 ≤ i ≤ t. The nodes at early search layers (n1 ≤
k ≤ n) are all kept and expanded; and the remaining nodes
are pruned by probability p0 (1 ≤ k ≤ n1 − 1). That is,
full enumeration at the beginning of the search process is
used to improve the probability of finding the ML solution.
However, in the latter search layers, nodes are pruned with
probability p0 to reduce the complexity. Note that, if n1 =
0, this rule is the conventional SD; if n1 = n, uniform
pruning becomes one special case with 1 − pk = p0.

In these three cases, the first node at each layer is never
pruned (f(1, k) = 0) for the detection completeness. Because
the pruning probability in Case II is larger than Case I for
each layer, the former is stronger than the latter. Only these
three cases are given in this paper; there are many other
cases for depth-dependent pruning rules, which are not further
discussed here.

Remarks:

• Our idea of probability-distribution-based node prun-
ing can be used with other tree search algorithms,
e.g., best-first search, breadth-first search, and iterative
deepening [27].

• More importantly, the same idea can also be applied to the
complex-valued SDs, such as [17], to achieve a flexible
performance–complexity tradeoff.

• The IRA in [9] is a special case of Algorithm 1. The IRA
chooses a smaller radius for the lower layers of the search
tree (see details in [9]). However, if the IRA cannot find
a point, the radius is increased, and the search resumes.
Our threshold pruning rule at least obtains one point as the
solution, and the threshold for each layer is different with
the IRA.
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• The threshold pruning rule can be readily incor-
porated into the SD algorithm by replacing d2k =
d2k+1 − |pk+1(xk+1, . . . , xn)|2 in Section II-A with d2k =
min{d2k+1 − |pk+1(xk+1, . . . , xn)|2, δk}. If d2k returns a
null set, we keep a1 = �ρk/rk,k	 in A. In fact, δk can
be considered as a local bound, as opposed to the global
bound d2 in the SD.

• The K-best SD is a special case of the depth-dependent
pruning rule (Case III). When n1 = 0, p0 = 0 for 2 ≤
i ≤ K, and p0 = 1 for K + 1 ≤ i ≤ t; the K-best SD is
obtained.

V. PERFORMANCE ANALYSIS AND

COMPLEXITY MEASUREMENT

A. Performance Analysis

Here, the performance of uniform and threshold rules is
analyzed. The parameters p and δk are determined to achieve
different diversity orders and performance gains. To make the
analysis tractable, detection ordering is ignored. The radius is
assumed infinite, and the effect of decreasing the radius as in
Algorithm 1 is ignored. The results here can be considered as
upper bounds for those cases with column reordering.

Proposition I: The upper bound on the FER of uniform
pruning is

Pf ≤ (1 − p)
n∑

i=1

|Q|(
1 +

d2
min

4σ2

)i
+

(
|Q|

1 +
d2
min

4σ2

)n

(4)

where dmin is the minimum Euclidean distance of Q, and σ2 is
the variance of the noise. For the proof, see Appendix A.

In the high-SNR region, the SER Ps can be approximated
by Pf , Ps ≈ Pf/n, where a frame error is caused by a single
symbol error with high probability.

From (4), if p is fixed for all SNRs and p �= 1 (uniform
pruning), the first term dominates Pf . As (4) is only an upper
bound, it suggests that the diversity order of uniform pruning
is at least one. The simulation results indicate that the diversity
order of the uniform rule is indeed at least one. Since geometric
pruning is stronger than uniform pruning, the diversity order
in geometric pruning is also at least one for fixed p. Equation
(4) also indicates that, to achieve a diversity order n with
uniform pruning, 1 − p must at least decrease as fast as 1/(1 +
d2min/4σ2)n−1. Therefore, p must vary according to the SNR or
σ2. We thus choose

p = 1 − ξ

(
1

1 + d2min/4σ2

)K0−1

(5)

where ξ is a constant. Substituting (5) into (4), we have

Pf ≤ ξ
n∑

i=1

|Q|(
1 +

d2
min

4σ2

)K0+i−1
+

(
|Q|

1 +
d2
min

4σ2

)n

. (6)

If K0 < n, the first term dominates Pf in the high-SNR region,
and the other terms can be neglected. Therefore, uniform prun-
ing achieves at least a diversity order K0. From (6), we can see
that ξ controls the SNR gain of statistical pruning.

To achieve the full diversity order n, one can choose

p = 1 − βPML

(
|Q|

1 + d2min/4σ2

)−1

(7)

where PML is the FER of the ML detector. Substituting (7) into
(4), we have

Pf ≤ βPML

n∑
i=1

1(
1 +

d2
min

4σ2

)i−1
+

(
|Q|

1 +
d2
min

4σ2

)n

(8)

where β controls the SNR loss incurred by the statistical
pruning compared with the ML detector.

From [28], when SNR becomes high, the asymptotic form of
PML can be expressed as

PML = α(n,Q)

(
1

2γ

)n (
2n− 1
n− 1

)
(9)

where γ denotes SNR. α(n,Q) is a coefficient that depends on
n and the constellation. Let {dj} denote the set of vectors with
xk ∈ Q as their lth element, and {di} denote the set of vectors
that differ in their lth element from dj . α is given by [28]

α =
1

|Q|n
∑
xk∈Q

∑
i

∑
j

(
‖di − dj‖2

2Es

)−n

(10)

where Es is the average symbol energy of Q. Since (9)
scales as γn, from (8), statistical pruning by using (7) can
still achieve diversity order n. Note that performance analysis
here only consider a fixed pruning probability for all xk, k =
1, . . . , n. We may also assign a different pruning probability for
different xk’s.

Proposition II: The FER of threshold rule is bounded as

Pf ≤
n∑

i=1

+∞∫
δi
σ2

fi(x)dx+

(
|Q|

1 +
d2
min

4σ2

)n

(11)

where fi(x) is the probability density function (pdf) of the chi-
square distribution χ2(2(n− i+ 1)) [29]. For the proof, see
Appendix B.

To achieve a diversity order of at least K0, δi may be chosen
such that

+∞∫
δi
σ2

fi(x)dx =
ξ

(1 + d2min/4σ2)
K0

(12)

where ξ is a constant that controls the SNR gain. Since fi(x)
is known, (12) can be solved numerically. At each SNR, (12)
needs to be solved only once. We simply set δi = 0 for i ≤
n−K0 + 1. In this case, the upper bound on Pf is also given
by (11).

With the same δ, it can be easily verified that

+∞∫
δ

σ2

fi(x)dx <

+∞∫
δ

σ2

fj(x)dx (13)
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for i > j. Therefore, with the same δ, the first term in (11) al-
ways dominates Pf . A simplified rule to achieve a diversity or-
der of at least K0 can be obtained by setting δ as the solution of

1 − γ

(
1,

δ

2σ2

)
=

ξ

(1 + d2min/4σ2)
K0

. (14)

Similarly, we simply set δi = δ for i > n−K0 + 1 and δi = 0
for i ≤ n−K0 + 1. Using (11), it can be readily verified that
this choice of δi achieves a diversity order of K0. Interestingly,
the cost threshold δ only depends on the SNR and K0 but
not on i.

Remarks:
• The upper bound in (4) may not be tight. The p given

in (5) and (7) may achieve better performance than that
suggested by (4). This also holds for δi in (12) and (14).

• The simulation results (see Section VI) show that the
performance difference between uniform and geometric
rule is small when using the same p defined in (5) and
(7). For the same p, uniform pruning only has an SNR gain
over geometric pruning, although the latter is stronger than
the former, as remarked upon in Section IV. The value
of p given by (5) and (7) along with geometric pruning
achieves the same diversity order. However, the diversity
order analysis for this case seems intractable.

VI. SIMULATION RESULTS

Here, the SPSD is simulated for an uncoded MIMO system
over a flat Rayleigh fading channel. The modulation formats
4-QAM and 16-QAM are used. Both performance and com-
plexity of any SD are compared. The complexity is measured
by the average number of nodes visited. The computational
complexity of the preprocessing stage is not counted. The ML
curve, which is the optimal performance, is obtained with the
conventional SE-SD. The initial radius of the SPSD is chosen
to be infinite and is updated whenever it reaches a leaf node

(Algorithm 1). In hybrid pruning, f(i) = 1 − p
√

ci/c1−1, where
c1 is the minimum cost in the kth layer. For the depth-dependent
rule, only the result of Case I is given.

A. Comparison of Different Pruning Rules

Here, 4-QAM, and eight transmit antennas and eight receive
antennas are used in Figs. 1 and 2, where ξ is set to be 0.8 [ξ is
the constant in (5)]; the achievable diversity order K0 is set to
be 2 and 4 for uniform pruning, geometric pruning, and hybrid
pruning; ξ is chosen to be 1; and K0’s are chosen to be 4 or 8
for threshold pruning.

Fig. 1 shows the SER performance of the SPSD with
different statistical pruning rules. As shown, Case I of the
depth-dependent pruning Rule achieves near-ML performance,
which means the pruning probabilities for this rule are small
for all the layers. For other rules, our derivation of achievable
diversity order K0 in (5) and (14) is validated here. At the
desirable diversity order K0 of 2, geometric pruning achieves
a diversity order of 2. Likewise, with the achievable diversity
order of 4, the uniform, threshold, and hybrid pruning rules

Fig. 1. Performance comparison for different statistical pruning rules for an
8 × 8 4-QAM MIMO system. The ML curve is given by the SE-SD.

Fig. 2. Complexity comparison of different statistical pruning rules for an
8 × 8 4-QAM MIMO system.

could achieve a diversity order of 4. All these rules achieve
the desirable diversity order corresponding to the value of
K0, which prove that the results for the uniform and threshold
rules are also applicable for the geometric and hybrid rules.
Another interesting observation is that, by setting a greater
desirable diversity order K0, the threshold rule performs closer
to the optimal ML detection. For example, at an SER of 10−3,
threshold rule with diversity order K0 of 8 attains 3-dB gains
than the case with a diversity order of 4.

Fig. 2 compares the complexity of different pruning rules
with that of the optimal SE-SD. As expected, the SE-SD has the
highest complexity compared with all the proposed rules. The
only exception is the depth-dependent pruning rule, which has
almost the same complexity as the SE-SD, but it does achieve
the near ML performance (see Fig. 1). An immediate obser-
vation is that the achievable diversity order K0 has significant
effect on complexity. With a smaller desired diversity order
K0, the complexity is lower. This shows that lower complexity
could be achieved by sacrificing the desirable diversity order or
SER performance. All the rules excluding the depth-dependent
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Fig. 3. Performance comparison of different statistical pruning rules for a
4 × 4 16-QAM MIMO system. The ML curve is obtained by the SE-SD.

rule obtain more complexity savings in the low-SNR region,
whereas their complexity saving over SE-SD reduces when
SNR increases. For example, at an SNR of 0 dB, the threshold
pruning (diversity order of 8) obtains about 86% of complexity
saving than the SE-SD. This number reduces to 50% at 10 dB.
Furthermore, the threshold pruning obtains complexity saving
for very high SNRs such as 20 dB. The reason is that the
SE-SD visits several unnecessary nodes at the early stages of
the search process. However, for threshold pruning, the local
bound prevents visiting those nodes, particularly when the cost
threshold δi is chosen to be 0 for i ≤ n−K0 + 1, which means
only a single node is visited at layers 1, . . . , n−K0 + 1.

The performance of the SPSD for different MIMO systems,
i.e., 16-QAM 4 × 4 MIMO system, is next assessed in Figs. 3
and 4, where the parameter setting is the same as 8 × 8 4-QAM
MIMO system, except K0 = 2, 3, 4. The SER of the SPSD for
different statistical pruning rules is given in Fig. 3. As discussed
in Fig. 1, by varying achievable diversity order K0, different
diversity orders are achieved. For example, the threshold rule
achieves full diversity order when the desirable diversity order
is set to be 4.

Fig. 4 shows the average number of nodes visited with dif-
ferent pruning rules. Again, similar trends, as shown in Fig. 2,
are observed. All the rules save complexity compared with the
SE-SD for low SNRs, but the complexity saving reduces with
increasing SNR. However, in the high-SNR region, threshold
pruning attains lower complexity than the SE-SD.

In Figs. 1–4, achieving full diversity order, threshold prun-
ing obtains the lowest complexity compared with other rules.
Therefore, for near-optimal performance with significant com-
plexity savings, threshold pruning is the best choice.

B. Comparison With Other Detectors

It is interesting to compare our SPSD with other existing
detectors that use node pruning. Thus, we consider PTP-SD
[10], the FSD, and the K-best SD [19]. For the PTP-SD, p′ is
set to be 0.1, where p′ is the pruning probability; for the FSD,

Fig. 4. Complexity comparison of different statistical pruning rules for a
4 × 4 16-QAM MIMO system.

Fig. 5. Performance comparison of different detectors for a 4 × 4 16-QAM
MIMO system. The ML curve is obtained by the SE-SD.

the case without channel ordering is used in this paper and the
distribution of nodes kept in each layer is [1, 1, 1, 16], whereas
K is chosen to be 4 and 16 for the K-best SD (mode 1 in [19]
without channel ordering is used for fair comparison). Figs. 5
and 6 compare different MIMO detectors for a 4 × 4 16-QAM
MIMO system. Only geometric and threshold rules are shown
because uniform pruning performs close to geometric pruning,
and threshold pruning performs better than hybrid pruning.

The SER performance comparison is shown in Fig. 5. Our
proposed threshold rule with desirable full diversity order of 4,
the PTP-SD, and the K-best SD (K = 16) achieve the near ML
performance. However, although the FSD has a fixed complex-
ity by full enumeration in the first layers and pruning all but the
first node with the minimum cost in the following layers, at an
SER of 10−4, it has 6-dB performance loss compared with our
threshold rule. To be fair, this gap is due to not using channel
matrix reordering. Similar with the FSD, the K-best SD also
obtains fixed complexity achieved; however, it requires large K
to achieve full diversity order [19]. Thus, the case (K = 4) only
achieves a diversity order of 1.
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Fig. 6. Complexity comparison of different detectors for a 4 × 4 16-QAM
MIMO system.

Fig. 6 shows the average number of nodes visited by different
detectors. As previously mentioned, the choice of smaller
desired diversity order K0 leads to lower complexity. For
example, the geometric rule (K0 = 3) has lower complexity
than that of the threshold rule (K0 = 4). Moreover, the
threshold rule has lower complexity than the PTP-SD in the
low-SNR region; for example, at an SNR of 0 dB, the former
obtains 78% complexity savings than the latter. The reason is
that the threshold rule prunes more nodes than the PTP-SD.
Another observation is both geometric and threshold rules
have significantly lower complexity than K-best SD, which
performs a breadth-first search and always prunes all but K-
best nodes at each layer. Even so, the complexity of threshold
rule is only 4.5% of the K-best SD (K = 16) on average,
whereas it also obtains 72% complexity savings than the FSD
as well. To summarize, with near optimal SER performance,
threshold pruning achieves the lowest complexity compared
with PTP-SD, FSD, and K-best SD.

To show the advantages of our approach to large MIMO at
high SNRs, a performance and complexity comparison as a
function of the number of transmit antennas and receive anten-
nas (16-QAM) is shown in Figs. 7 and 8, where N is the number
of transmit or receive antennas. The SNR is fixed at 20 dB.

In Fig. 7, the proposed threshold rule with full diversity order
N and the PTP-SD always achieves the near ML performance
for different number of transmit antennas. However, the geo-
metric rule with the fixed achievable diversity order of 4 does
not reach the optimal performance for large MIMO systems.
Due to the same reason, K-best SD with K = 4 and K = 16
could not also achieve near ML performance. This means that,
with increasing the number of antennas N , the achievable
diversity order K0 for the geometric rule and the K for the
K-best SD should be larger.

The complexity comparison with the same setup in Fig. 7 is
given in Fig. 8. The complexity of the PTP-SD is almost the
same of the SE-SD, which grows exponentially with N . Thus,
PTP-SD does not achieve complexity savings than the SE-SD
for large MIMO systems and high SNRs. However, the com-
plexity of threshold pruning obtains significant complexity sav-

Fig. 7. Performance comparison of different detectors for a 16-QAM
MIMO system and different numbers of transmit and receive antennas N .
SNR = 20 dB.

Fig. 8. Complexity comparison of different detectors for a 16-QAM
MIMO system and different numbers of transmit and receive antennas N .
SNR = 20 dB.

ings than the above two SDs. Further, the complexity savings
increase with the number of transmit antennas. For example,
for N = 10 and N = 14, the threshold rule obtains one and two
orders of magnitude of complexity savings compared with SE-
SD and PTP-SD. Although the K-best SD has less complexity
when the number of antennas is large, it could not achieve the
near ML performance. Therefore, for high SNRs, the threshold
pruning rule significantly reduces the complexity with the near-
optimal performance, particularly for the MIMO systems with
a large number of transmit antennas.

VII. CONCLUSION

Probability-distribution-based SPSD has been proposed, and
five specific pruning rules have been developed: uniform prun-
ing, geometric pruning, threshold pruning, hybrid pruning, and
depth-dependent pruning. We analyzed the SER performance
of uniform and threshold pruning rules, and derived the pruning
probability and the threshold for achievable diversity order K0.
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All these rules achieve lower complexity than the conven-
tional SD in the low-SNR region. In particular, the threshold
pruning rule obtains the most significant complexity saving
while achieving the full diversity order. For example, in low
SNR, 80% and 95% complexity savings are possible over
the PTP-SD and K-best SD, while also achieving a slightly
better SER performance. Moreover, complexity savings are also
obtained for high SNRs (e.g., 20 dB), which also increases with
the number of transmit antennas.

For future work, four directions are suggested.
• The probability-distribution-based node pruning that has

been introduced in this paper simply uses several clas-
sical probability distributions, which are not contingent
upon specific channel knowledge. We can expect even
better performance by choosing the probability distribu-
tion based on specific channel knowledge and adapting to
different conditions. Thus, there is much room to develop
other pruning probability distributions.

• The probabilistic node pruning idea can also be applied
to the soft detection of coded MIMO systems including
an outer encoder [30]. For this case, soft information on
the coded bits and extrinsic information exchange must be
developed.

• The proposed algorithms could be combined with lattice-
reduction-aided detection methods (e.g., in [31] and [32])
to achieve more performance improvements or complexity
savings.

• Finally, our algorithm could be used elsewhere in wireless
communications (e.g., code-division multiple access [33],
MIMO relay networks [34], and multiuser networks).

APPENDIX A

To derive the FER upper bound in uniform rule, let x(1)=

[x
(1)
1 ,. . . ,x

(1)
n ]T denote the transmitted vector and x̂=[x̂1,. . . ,

x̂n]
T denote the vector returned by the SPSD. We have Pf =

Pr(x̂ �= x(1)). Denote A as the event that x(1) is visited. By
using the total probability theorem [29], the FER can be ex-
pressed as

Pf = Pr
(
x̂ �= x(1)|Ac

)
Pr(Ac) + Pr

(
x̂ �= x(1)|A

)
Pr(A)

= Pr(Ac) + Pr
(
x̂ �= x(1)|A

)
Pr(A) (15)

where Pr(x̂ �= x(1)|Ac) = 1. We first derive Pr(Ac) [or 1 −
Pr(A)] and then analyze the second term of (15). Let x̃ =
[x̃1, . . . , x̃n]

T be the temporary value for x = [x1, . . . , xn]
T

during the statistical pruning search, as in Algorithm I, which
corresponds to a leaf node in the search tree. Denote Ai as the
event that x(1)

i is visited. Note that Pr(A) = Pr(x̃ = x(1)) is
the probability that the leaf node corresponding to x(1) is visited
and is given by

Pr(A) = Pr
(
x̃ = x(1)|x̃n = x(1)

n

)
Pr

(
x̃n = x(1)

n

)
+ Pr

(
x̃ = x(1)|x̃n �= x(1)

n

)
Pr

(
x̃n �= x(1)

n

)
= Pr

(
x̃ = x(1)|x̃n = x(1)

n

)
Pr(An) (16)

where Pr(x̃n=x
(1)
n )=Pr(An), and Pr(x̃=x(1)|x̃n �=x

(1)
n )=0.

By a similar argument, (16) can be expanded as

Pr(A)=Pr(An)
n−1∏
i=1

Pr
(
Ai|x̃i+1=x

(1)
i+1, . . . , x̃n=x(1)

n

)
. (17)

Let Bi denote the event that x(1)
i is not the first element of A

in Algorithm I. We have

Pr (Ac
n) = Pr (Ac

n|Bn) Pr(Bn) + Pr (Ac
n|Bc

n) Pr (B
c
n)

= (1 − p) Pr(Bn) (18)

where Pr(Ac
n|Bn) = 1 − p, and Pr(Ac

n|Bc
n) = 0. The union

bound for Pr(Bn) is given by

Pr(Bn) ≤ E
rn,n

E
x
(1)
n

⎡
⎣ ∑
x
(2)
n �=x

(1)
n

Pr

(∣∣∣yn − rn,nx
(2)
n

∣∣∣2

<
∣∣∣yn − rn,nx

(1)
n

∣∣∣2 ∣∣∣x(1)
n , rn,n

)]
(19)

where x
(2)
n is the nearest neighbor of x

(1)
n . From [29], the

squared norm of the entries of upper triangular matrix R have
a χ2 distribution with different degrees of freedom without
column reordering; specifically, |ri,i|2 ∼ χ2(2(n− i+ 1)), for
i = 1, . . . , n, and |ri,j |2 ∼ χ2(2), for j > i, where χ2(k) de-
notes the chi-squared distribution with k degrees of freedom.
We can obtain

Pr

(∣∣∣yn − rn,nx
(2)
n

∣∣∣2 <
∣∣∣yn − rn,nx

(1)
n

∣∣∣2 ∣∣∣x(1)
n , rn,n

)

= Q

(√∣∣∣rn,n (
x
(2)
n − x

(1)
n

)∣∣∣2 /2σ2

)
. (20)

where Q(·) is the Q-function. Using the Chernoff bound for the
Q-function, Pr(Bn) can be bounded as

Pr(Bn) ≤ E
rn,n

E
x
(1)
n

⎡
⎢⎣ ∑
x
(2)
n �=x

(1)
1

exp

⎛
⎜⎝−r2n,n

∣∣∣x(2)
n − x

(1)
n

∣∣∣2
4σ2

⎞
⎟⎠

⎤
⎥⎦

= E
x
(1)
n

∑
x
(2)
n �=x

(1)
1

1

1 +

∣∣x(2)
n −x

(1)
n

∣∣2
4σ2

≤ |Q|
1 + d2min/4σ2

,

(21)

where dmin is the minimum Euclidean distance of Q, and the
equality comes from the moment-generating function of rn,n,
Mrn,n

(t) = E{etrn,n}. Therefore, Pr(Ac
n) can be bounded as

Pr(Ac
n) ≤ (1 − p)

|Q|
1 + d2min/4σ2

. (22)

Similarly, the conditional probability is bounded as

Pr
(
Ac

i |x̃i+1 = x
(1)
i+1, . . . , x̃n = x(1)

n

)
≤ (1 − p)

|Q|
(1 + d2min/4σ2)

n−i+1
, i = 1, . . . , n− 1. (23)
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Finally, an upper bound on Pr(Ac) is obtained as

Pr(Ac)= 1−Pr(A)

= 1−Pr(An)

n−1∏
i=1

Pr
(
Ai|x̃i+1=x

(1)
i+1, . . . , x̃n=x(1)

n

)

= 1−(1−Pr (Ac
n))

×
n−1∏
i=1

(
1−Pr

(
Ac

i |x̃i+1=x
(1)
i+1, . . . , x̃n=x(1)

n

))
. (24)

In the high-SNR region, Pr(Ac
n) and Pr(Ac

i |x̃i+1 = x
(1)
i+1, . . . ,

x̃n = x
(1)
n ), i = 1, . . . , n− 1 are small. Pr(Ac) can be well

approximated as

Pr(Ac) ≈ Pr (Ac
n)+

n−1∑
i=1

Pr
(
Ac

i |x̃i+1=x
(1)
i+1, . . . , x̃n=x(1)

n

)

≤ (1−p)

n∑
i=1

|Q|
(1+d2min/4σ2)

i
. (25)

We then bound Pr(x̂ �= x(1)|A) in (15) in the following.
Denote the set of all the visited leaf nodes by I, which is the
candidate set for the output of the statistical pruning detection.
Since some leaf nodes may be pruned, |I| ≤ |Q|n. In the
case of A, x(1) ∈ I. The union bound for Pr(x̂ �= x(1)|A) is
given by

Pr
(
x̂ �=x(1)|A

)
≤ 1

|Q|n

×
∑

x(1)∈Qn

∑
x(2)∈I,x(2) �=x(1)

Pr

(∥∥∥y−Rx(2)
∥∥∥2

≤
∥∥∥y−Rx(1)

∥∥∥2
)
.

(26)

By using the Chernoff bound for the Q-function to the sum-
mand in (26), it can be readily obtained that

Pr
(
x̂ �=x(1)|A

)
≤ 1

|Q|n
∑

x(1)∈Qn

∑
x(2)∈I,x(2) �=x(1)

1(
1+

d2
min

4σ2

)n

≤ |I| 1(
1+

d2
min

4σ2

)n ≤
(

|Q|
1+

d2
min

4σ2

)n

. (27)

Combining (27) and (25), the FER can be bounded as

Pf = Pr(Ac) + Pr
(
x̂ �= x(1)|A

)
Pr(A)

≤ (1 − p)

n∑
i=1

|Q|(
1 +

d2
min

4σ2

)i
+

(
|Q|

1 +
d2
min

4σ2

)n

. (28)

APPENDIX B

For the threshold rule, the approach is similar to the analysis
of the uniform rule. All the events are defined the same as
before. For the threshold pruning rule, the union bound for
P (Ac

n) is given by

P (Ac
n) ≤ E

rn,n

E
x
(1)
n

[
Pr

(
|nn|2 > δn

)]

=

+∞∫
δn
σ2

fn(x)dx = 1 − γ

(
1,

δn
2σ2

)
(29)

where δn controls the strength of pruning as in Pruning Rule 2,
fn(x) is the pdf of χ2(2), and γ(α, x) is the incomplete gamma
function. Similarly, we can obtain

Pr
(
Ac

i |x̃i+1 = x
(1)
i+1, . . . , x̃n = x(1)

n

)
≤

+∞∫
δi
σ2

fi(x)dx (30)

where fi(x) is the pdf of χ2(2(n− i+ 1)). The FER is upper
bounded as

Pf ≤
n∑

i=1

+∞∫
δi
σ2

fi(x)dx+

(
|Q|

1 +
d2
min

4σ2

)n

. (31)
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