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Abstract—The sum rate of multiple-input multiple-output
(MIMO) amplify-and-forward (AF) two-way relay networks
(TWRNs) with transmit/receive zero-forcing (ZF) is analytically
studied. Specifically, the exact sum rate expressions are derived
for uncorrelated and semi-correlated Rayleigh fading cases in
closed-form. Moreover, the closed-form upper and lower bounds
of the sum rate are derived for doubly-correlated Rayleigh fading.
In particular, these sum rate bounds are tight, and consequently,
serve as benchmarks providing valuable insights into practical
MIMO AF TWRN system-design. All the analyses are verified
by using Monte-Carlo simulations.

I. INTRODUCTION

Two-way relay networks (TWRNs) are widely considered
as the next evolution of conventional one-way relay net-
works (OWRNs) as the former promises significant spectral
efficiency improvements over the latter in the context of
wireless networks with half-duplex terminals [1]–[4]. Thus,
the forth-generation and subsequent wireless standards are ex-
pected to be equipped with this emerging cooperative two-way
relay technology. Specifically, multiple-input multiple-output
(MIMO) transmission schemes for TWRNs are currently re-
ceiving significant research attention as they can significantly
improve the performance of single-antenna TWRNs [5]–[7].
In this context, in [8], a novel transmit/receive (Tx/Rx) zero-
forcing (ZF) based transmission strategy has recently been
proposed and analyzed for MIMO amplify-and-forward (AF)
TWRNs. In this paper, the achievable sum rate of MIMO AF
TWRNs with Tx/Rx ZF is analytically studied.

Prior related research: The sum rate bounds are derived
for the single-antenna AF TWRNs in [1]–[4]. In [1], [2],
the sum rate is analytically quantified to verify that TWRNs
are twice as spectrum efficient as OWRNs. In [3], the sum
rate upper bounds are derived to compare the performance
of two time-slot and three time-slot TWRNs with physical
layer network coding. Reference [4] studies the sum rate of
distributed relay selection strategies for TWRNs.

References [5]–[7], [9] study the sum rate of MIMO AF
TWRNs. In particular, [5] studies the achievable sum rate
regions by deriving the optimal relay beamforming structures.
In [6], the sum-rate is derived for multi-relay TWRNs with op-
timal relay precoders. Reference [7] quantifies the detrimental
impact of channel estimation errors on the sum rate of MIMO
TWRN models proposed in [5], [6]. Furthermore, [9] studies
the achievable rate regions of MIMO multi-relay AF TWRNs.

Motivation and our contribution: The MIMO TWRN
transmission schemes proposed in [5]–[7], [9] employ compli-
cated precoder/decoder designs, and consequently, undermine
one of the key trade-offs of designing practical relay networks;

i.e., the implementation complexity versus performance. To
be more specific, the practical implementation of transceiver
structures of [5]–[7], [9] requires global channel state informa-
tion (CSI)1, and hence, results in increased feedback/overhead
and reduced spectral efficiencies. Recently, in [8], we pro-
posed and analyzed a suboptimal yet simple Tx/Rx ZF based
transmission strategy, which improves the trade-off between
implementation complexity and performance of MIMO AF
TWRNs. In this paper, the achievable sum rate of this trans-
mission strategy is studied.

Specifically, the exact sum-rate is derived for (i) independent
and identically distributed (i.i.d.) Rayleigh fading and (ii)
semi-correlated2 Rayleigh fading cases. Moreover, tight upper
and lower bounds of the sum rate are derived in closed-
form for doubly-correlated3 Rayleigh fading. In particular,
these sum rate bounds are tight, and hence, serves as useful
benchmarks for the exact sum rate. Specifically, our analysis
renders themselves useful to analytically quantify the detri-
mental impact of spatially-correlated fading on the sum rate.
Furthermore, numerical results are provided to obtain valuable
insights into practical MIMO TWRN implementation.

Notations: In and 0n×m denote the n× n identity matrix
and n × m all zero matrix, respectively. ZH and ZT are
the Hermitian transpose and transpose of Z, respectively. The
(i, j)th element of Z is denoted as [Z]i,j . Zi and Zi,j are the
residue matrices resulted from removing the ith column, and
ith column and jth row of Z, respectively. H ∼ CN (M,Σ)
denotes a circular symmetric Gaussian random matrix with
mean M and covariance Σ. det(Z) and ⊗ denote the deter-
minant of Z and the Kronecker product, respectively. EΛ{z}
is the expectation of z over Λ. ψ(x) and Γ(a, x) are the
Euler’s digamma function [10, Eq. (8.360.1)] and the upper
incomplete Gamma function [10, Eq. (8.350.2)].

II. SYSTEM, CHANNEL AND SIGNAL MODEL

A. System model

We consider a half-duplex MIMO AF TWRN with two
sources (S1 and S2), and one relay (R), where each equipped
with N1, N2 and NR antennas, respectively. In particular,
N1, N2 and NR are restricted to satisfy the constraint NR <
min(N1, N2) in the sequel. This constraint not only enables us

1Here, global CSI refers to instantaneous full channel knowledge of both
hops, i.e., S1 → R and S2 → R.

2The semi-correlated fading is defined as uncorrelated fading at the two
sources and arbitrarily-correlated fading at the relay.

3The doubly-correlated fading is defined as arbitrarily-correlated fading at
the two sources and relay.
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to employ joint transmit/receive ZF for the same antenna set-
up but also renders mathematical tractability. In this context,
the maximum number of end-to-end (e2e) data subchannels is
constrained to NR.

B. Channel model

The channel matrix from Si to R is denoted by H(i,R) ∈
C NR×Ni for i ∈ {1, 2}. All the channel fading amplitudes
are assumed to be remain fixed over two consecutive time-
slots [1], [3], and consequently, the channel matrix from R

to Si, H(R,i) ∈ C Ni×NR , can be denoted as
(
H(i,R)

)T
for

i ∈ {1, 2}. The direct channel between S1 and S2 is assumed
to be unavailable due to heavy path-loss and shadowing [1],
[3]. All channel amplitudes are assumed to be distributed as
frequency-flat Rayleigh fading as follows:

1) Uncorrelated Rayleigh fading: Assuming a rich scatter-
ing scenario, no line-of-sight path, and larger relative antenna
spacing and angular spreads, the channel matrix between Si
and R can be written as [11]

H(R,i) = H(i)∼CN (0Ni×NR , INi ⊗ INR) for i ∈ {1, 2}. (1)

2) Semi-correlated Rayleigh fading: Assuming limited rel-
ative antenna spacing and angular spreads at R, the fading
channel matrix between Si and R can be written as [11]

H(R,i) = H(i)
(
Ψ(R,i)

) 1
2

for i ∈ {1, 2}, (2)

where Ψ(R,i) ∈ C NR×NR is the Hermitian and positive
definite correlation matrix at R. Thus, H(R,i) is denoted as
H(R,i) ∼ CN

(
0Ni×NR , INi ⊗Ψ(R,i)

)
for i ∈ {1, 2}.

3) Doubly-correlated Rayleigh fading: Assuming limited
relative antenna spacing and angular spreads at both sources
and the relay, the fading channel matrix between Si and R
can be written as [11]

H(R,i) =
(
Φ(R,i)

) 1
2

H(i)
(
Ψ(R,i)

) 1
2

for i ∈ {1, 2}, (3)

where Φ(R,i) ∈ C Ni×Ni and Ψ(R,i) ∈ C NR×NR are the
Hermitian and positive definite correlation matrices at the
source and relay, respectively. Thus, H(R,i) is denoted as
H(R,i) ∼ CN

(
0Ni×NR ,Φ

(R,i) ⊗Ψ(R,i)
)

for i ∈ {1, 2}.

C. Signal model

During the first time-slot, S1 and S2 transmit x1 and x2

simultaneously by employing transmit-ZF precoding to R
over a multiple access channel. These information-bearing
vectors satisfy E

[
xix

H
i

]
= INi for i ∈ {1, 2}. The received

superimposed-signal vector or the analog network code vector
at R is given by

yR = g1H
(1,R)F1x1 + g2H

(2,R)F2x2 + nR, (4)

where nR is the NR × 1 zero mean Gaussian noise vector at
R satisfying E

(
nRnHR

)
= INRσ

2
R, and Fi is the transmit-ZF

precoding matrix at Si, and is given by [12]

Fi =
(
H(i,R)

)H(
H(i,R)

(
H(i,R)

)H)−1

Πi for i ∈ {1, 2},(5)

where Πi is the NR ×Ni permutation matrix4 constructed to
ensure only NR data streams are transmitted by Si for i ∈
{1, 2}. In (5), gi, i ∈ {1, 2}, is the power normalizing factor
designed to constraint the long-term total power at Si as

gi =

√
Pi

Tr
(
E
[
FiFHi

]) =

√
Pi
Ti
, for i ∈ {1, 2}, (6)

where Ti , Tr
(
E
[
FiF

H
i

])
= NR

Ni−NR [13] and Pi is the
transmit power at Si for i ∈ {1, 2}.

During the second time slot, R amplifies yR with a gain5

G =
√
PR/(g2

1 + g2
2 + σ2

R) and transmits back to both
sources over the broadcast channel. Here, PR is the transmit
power at R. Then, each source receives the NR × 1 signal
vector by employing the receive-ZF reconstruction matrix as
follows:

ySi = Wi

(
GH(R,i)yR + ni

)
, for i ∈ {1, 2}, (7)

where H(R,i) =
(
H(i,R)

)T
and ni is the Ni × 1 zero mean

Gaussian noise vector at Si satisfying E
(
nin

H
i

)
= INiσ

2
i

for i ∈ {1, 2}. In (7), Wi, i ∈ {1, 2}, is the receive-ZF
reconstruction matrix at Si, and given by [12]

Wi =

((
H(R,i)

)H
H(R,i)

)−1(
H(R,i)

)H
, for i ∈ {1, 2}. (8)

By substituting (4) and (8) into (7), and by removing the
self-interference6 [1], the post-processing end-to-end signal-
to-noise ratio (e2e SNR) of the kth, k ∈ {1 · · ·NR}, data
subchannel at Si can be derived as in (9). In (9), γ̄i,R , Pi

σ2
R

,

γ̄R,i , PR
σ2
i

, i ∈ {1, 2}, i′ ∈ {1, 2} and i 6= i′. It is worth
noticing the statistical independence of γ

S
(k)
1

and γ
S

(k)
2

of
(9) for a given k. However, the post-processing SNRs of
multiple subchannels belong to a given source are correlated.
Nevertheless, by employing the simple detection scheme in
[14], [15], the corresponding symbols of each antenna can
be independently decoded. Thus the achievable sum rate
assuming independent decoding at both S1 and S2 can be
written as the sum of rates of all subchannels as [14]–[16]

C =
1

2

2∑
i=1

NR∑
k=1

E
{

log2

(
1 + γ

S
(k)
i

)}
. (10)

III. SUM RATE ANALYSIS OF MIMO AF TWRNS

In this section, the sum rate of MIMO AF TWRNs with
Tx/Rx ZF is analytically quantified. To this end, the exact sum
rate expressions for uncorrelated Rayleigh fading and arbitrar-
ily semi-correlated Rayleigh fading are derived in closed-form.
Moreover, tight upper and lower bounds of the sum rate are
derived for arbitrarily doubly-correlated Rayleigh fading.

4The permutation matrix, Πi, i ∈ {1, 2}, can be constructed by horizon-
tally concatenating a NR×NR permutation matrix and a NR×(Ni−NR)
zero matrix [8].

5This amplification factor, G, is designed as a normalizing constant to
constraint the long-term total power at R [8].

6It is assumed that Si knows its own information-bearing symbol vector,
xi, CSI of Hi,R, and G which requires Ψi, where i ∈ {1, 2}.
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γ
S

(k)
i

=
Tiγ̄R,iγ̄i′,R

TiTi′ γ̄R,i+(Tiγ̄i′,R+Ti′ γ̄i,R+TiTi′)
[((

H(R,i)
)H

H(R,i)
)−1
]
k,k

, for k∈{1,· · ·, NR}, i∈{1, 2}, i′∈{1, 2} and i 6= i′. (9)

C≤Cub=
1

2 ln (2)

2∑
i=1

NR∑
k=1

ln


(ζi+ηi)(NR)! det

(
A(i)

)Ni−1∏
u<v

(τ
(i)
v,kk−τ

(i)
u,kk) + µφi,k (NR−1)! det

(
A(i)
kk

) Ni∏
p<q

(τ (i)
q −τ (i)

p )

ζi (NR)! det
(
A(i)

)Ni−1∏
u<v

(τ
(i)
v,kk−τ

(i)
u,kk) +µφi,k (NR − 1)! det

(
A(i)
kk

) Ni∏
p<q

(τ (i)
q −τ (i)

p )

. (14)

C≥Clb=
1

2 ln (2)

2∑
i=1

NR∑
k=1

ln

1+

ηi

Ni∏
p<q

(
τ (i)
q −τ (i)

p

)Ni−1∏
u<v

(
τ

(i)
v,kk−τ

(i)
u,kk

)
exp

NR∑
l=1

ψ(l)+

(
Ni∏
p<q

(
τ (i)
q −τ (i)

p

))−1 Ni∑
l=Ni−NR+1

det
(
B(i,k)

)
ζi (NR)! det

(
A(i)

)Ni−1∏
u<v

(
τ

(i)
v,kk−τ

(i)
u,kk

)
+µφi,k (NR − 1)! det

(
A(i)
kk

) Ni∏
p<q

(τ (i)
q −τ (i)

p )

. (17)

A. Uncorrelated Rayleigh fading

The sum rate of MIMO AF TWRNs with Tx/Rx ZF over
i.i.d. Rayleigh fading is derived as (see Appendix I for the
proof)

C= NR
2 ln (2)

2∑
i=1

[J(Ni−NR, µ, ηi+ζi)−J(Ni−NR, µ, ζi)] , (11)

where the function J(·, ·, ·) in (11) is defined as

J(a, b, c)=ln(b)+exp
(
b

c

) a∑
m=0

m∑
n=0

(
m
n

)
(−b)m−nΓ

(
n, bc

)
(m)!cm−n

. (12)

Moreover, µ = T1γ̄S2R + T2γ̄S1R + T1T2, η1 = T1γ̄RS1
γ̄S2R,

η2 = T2γ̄RS2
γ̄S1R, ζ1 = T1T2γ̄RS1

, and ζ2 = T1T2γ̄RS2
.

B. Semi-correlated Rayleigh fading

For arbitrarily correlated antennas at R and uncorrelated
antennas at Si, where i ∈ {1, 2}, the sum rate of MIMO AF
TWRNs with Tx/Rx ZF is derived as (see Appendix I for the
proof)

C =
1

2 ln (2)

2∑
i=1

NR∑
k=1

[ J(Ni −NR, µφi,k, ηi + ζi)

− J(Ni −NR, µφi,k, ζi) ] , (13)

where φi,k for i ∈ {1, 2} and k ∈ {1, · · ·NR} is the kth
diagonal element of Ψ−1

R,i. Again, the function J(·, ·, ·) is
defined in (12).

C. Doubly-correlated Rayleigh fading

The exact sum rate of MIMO AF TWRNs with Tx/Rx ZF
over doubly-correlated Rayleigh fading appears mathemati-
cally intractable. Thus, the upper and lower bounds of the
sum rate are derived as follows:

1) Upper bound: An upper bound of the sum rate of MIMO
AF TWRNs with Tx/Rx ZF over doubly-correlated Rayleigh
fading is derived as in (14) (see Appendix II for the proof).

In (14),A(i)is an Ni×Ni matrix with (a, b)th entry given by

[
A(i)

]
a,b

=


(
τ

(i)
a

)b−1

, b = 1, · · · , Ni −NR(
τ

(i)
a

)b
, b = Ni −NR + 1, · · · , NR

, (15)

where τ (i)
a for a ∈ {1, · · ·Ni} is the real, positive eigenvalues

of receive correlation matrix at Si denoted by Φ(i). Similarly,
A(i)
kk is an (Ni − 1) × (Ni − 1) matrix with (a, b)th element

given by

[
A(i)
kk

]
a,b

=


(
τ

(i)
a,kk

)b−1

, b = 1, · · · , Ni −NR(
τ

(i)
a,kk

)b
, b = Ni −NR + 1, · · · , NR

, (16)

where τ (i)
a,kk for a ∈ {1, · · ·Ni} is the real, positive eigenvalues

of Φ
(i)
kk .

2) Lower bound: A lower bound of the sum rate of MIMO
AF TWRNs with Tx/Rx ZF over doubly-correlated Rayleigh
fading is derived as in (17) (see Appendix III for the proof).
In (14), Bi,k is an Ni×Ni matrix with (a, b)th entry given by

[
B(i,k)

]
a,b

=


(
τ

(i)
a

)b−1

, b 6= k(
τ

(i)
a

)b−1

ln (τ
(i)
a ), b = k

. (18)

IV. NUMERICAL RESULTS

This section presents the numerical results for the sum rate
performance of MIMO AF TWRNs with Tx/Rx ZF.

A. Sum rate over uncorrelated Rayleigh fading

Fig. 1 shows the sum rate of MIMO AF TWRNs over
i.i.d. Rayleigh fading. The analytical sum rate curves are
plotted by using (11) for several antenna configurations. The
sum rate curves corresponding to single-antenna relays are
plotted as a benchmark. Our results reveals that the number of
antennas at the relay directly determines the achievable spatial
multiplexing gain. For example, at the average transmit SNR

4685



−10 −5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Average Transmit SNR (dB)

S
u
m

 R
a
te

 p
e
r 

U
n
it
 B

a
n
d
w

id
th

 

 

Analytical

Simulation

N
1
 = 4, N

R
 = 3, N

2
 = 4  

N
1
 = 3, N

R
 = 2, N

2
 = 3  

  N
1
 = 4, N

R
 = 1, N

2
 = 4   

  N
1
 = 2, N

R
 = 1, N

2
 = 2    

Fig. 1. The sum rate of a MIMO AF TWRN with Tx/Rx ZF over i.i.d.
Rayleigh fading.
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Fig. 2. The sum rate of a MIMO AF TWRN with Tx/Rx ZF over semi-
correlated Rayleigh fading. The angle of arrival/departure is given by θR,i=
θ̄R,i+θ̂R,i with θ̂R,i∼N (0, σ2

as,(R,i)
), where θ̄R,i=π/6 for i ∈ {1, 2}.

of 15 dB, the triple-antenna relay corresponding to the TWRN
with Ni|2i=1 = 4 antenna set-up achieves approximately two-
fold capacity improvement compared to its single-antenna
relay counterpart. The exact match between the analytical and
simulation points validates our analysis.

B. Sum rate over semi-correlated Rayleigh fading

In Fig. 2, the sum rate is plotted over semi-correlated
Rayleigh fading (i.e., spatially-correlated fading at the re-
lay only). The correlation matrices at the relay, Ψ(R,i) for
i ∈ {1, 2}, is constructed by employing the practical MIMO
channel model in [17]7. Three different correlation scenarios

7The (p, q)th element of Ψ(R,i) for i ∈ {1, 2} is constructed as [17][
Ψ(R,i)

]
p,q

= e−j2π(p−q)lR,icos (θ̄R,i)e−
1
2 (2π(p−q)lR,isin (θ̄R,i)σas,(R,i))

2

,
where lR,i is the relative antenna spacing, θ̄R,i is the mean angle of
arrival/departure, and σ2

R,i is the angular spread. This correlation model
typically arises in practice in uniform linear antenna arrays.
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Fig. 3. The sum rate of a MIMO AF TWRN with Tx/Rx ZF over doubly-
correlated Rayleigh fading. The angle of arrival/departure is given by θR,i=
θ̄R,i+θ̂R,i with θ̂R,i∼N (0, σ2

as,(R,i)
), where θ̄R,i=π/6 for i ∈ {1, 2}.

are obtained as (a) high correlation, (b) medium correlation,
and (c) low correlation. Since lR,i and σ2

as,(R,i) are the
relative antenna spacing and angular spreads, smaller the
lR,i and σ2

as,(R,i), higher the spatial correlation [17]. Our
results clearly reveal that correlated fading results in signif-
icant sum rate degradation. For example, at a sum rate of
4 bits/second/channel-use, high correlation results in almost
13 dB SNR loss.
C. Sum rate over doubly-correlated Rayleigh fading

In Fig. 3, the sum rate over doubly-correlated Rayleigh
fading is plotted for several antenna set-ups. In particular, the
upper bound, lower bound and exact sum rate are plotted by
using (14), (17), and Monte-Carlo simulations, respectively.
The correlation matrices are constructed by again employing
the practical MIMO channel model in [17]. Fig. 3 clearly re-
veals that our analytical bounds are relatively tight specifically
for lower number of antennas at each terminal, and hence,
provides valuable insights. Thus they render themselves useful
as benchmarks for practical TWRN system-designs.

V. CONCLUSION

The sum rate of Tx/Rx ZF based spatial multiplexing trans-
mission strategy for MIMO AF TWRNs is analytically studied.
The exact closed-form sum rate expressions are derived for
uncorrelated and semi-correlated Rayleigh fading. Moreover,
doubly-correlated Rayleigh fading case is treated by deriving
closed-form tight upper and lower bounds of the sum rate. Our
numerical results reveals that the spatially-correlated fading
degrades the sum rate significantly. Our analysis and numerical
results provides valuable insights into practical MIMO AF
TWRN system-design.

APPENDIX I
Proof of the sum rate for i.i.d. Rayleigh fading and

semi-correlated Rayleigh fading

In this Appendix, the proof of the sum rate of MIMO AF
TWRNs over semi-correlated Rayleigh fading is first sketched,
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and then used to derive the sum rate over i.i.d. Rayleigh fading.
To this end, the e2e SNR of the k-th data stream at Si for
i ∈ {1, 2} in (9) can be re-written as

γ
S

(k)
i

=
ηi

ζi + µXi
, for i ∈ {1, 2}, (19)

where Xi =

[((
H(i,R)

)H
H(i,R)

)−1
]
k,k

. Here, µ, ηi, and ζi

are defined in (11). The CDF of γ
S

(k)
i

can now be derived as

Fγ
S
(k)
i

(x) = Pr(γ
S

(k)
i
≤ x) = 1− Pr

(
Xi ≤

ηi − ζix
µx

)
. (20)

For x≥ ηi
ζi

, Fγ
S
(k)
i

(x) = 1, and for x < ηi
ζi

, Fγ
S
(k)
i

(x) becomes

Fγ
S
(k)
i

(x) = 1−
∫ ηi−ζix

µx

0

fXi(y) dy. (21)

Next, the PDF of 1/Xi over semi-correlated Rayleigh fading
is given by [14]

f1/Xi(x) =
φNi−NR+1
i,k xNi−NRe−φi,kx

Γ(Ni −NR + 1)
, (22)

where φi,k is the kth diagonal element of Ψ−1
R,i. The PDF of X

can then be derived by substituting (22) into the transformation
fXi(x) = 1

x2 f1/Xi(1/x) as follows:

fXi(x) =
φNi−NR+1
i,k e−φi,k/x

Γ(Ni −NR + 1)xNi−NR+2
. (23)

Next, by substituting (23) into (21), and by applying a change
of variable, y = 1/t, (21) can be rearranged as

Fγ
S
(k)
i

(x) = 1−
∫ ∞

µx
ηi−ζix

φNi−NR+1
i,k tNi−NRe−φi,kt

Γ(Ni −NR + 1)
dt. (24)

The PDF of γ
S

(k)
i

, fγ
S
(k)
i

(x), can readily be derived by

differentiating (24) with respect to variable x by using the
Leibniz integral rule [18] as follows:

fγ
S
(k)
i

(x)=
φNi−NR+1
i,k e

−
µφi,kx

ηi−ζix

Γ(Ni−NR+1)

(
µx

ηi−ζix

)Ni−NR d

dx

[
µx

ηi−ζix

]

=
ηi(φi,kµ)Ni−NR+1xNi−NR e

−
µφi,kx

ηi−ζix

Γ(Ni−NR+1)(ηi−ζix)
Ni−NR+2

, 0≤ x< ηi
ζi
. (25)

By averaging over the respective PDFs, the sum rate over semi-
correlated Rayleigh fading can now be derived as

C=

2∑
i=1

NR∑
k=1

∫ ∞
0

tNi−NRe−t

2 ln (2)Γ(Ni−NR+1)
ln

(
φi,kµ+(ηi+ζi)t

φi,kµ+ ζit

)
dt

=
1

2 ln (2)

2∑
i=1

NR∑
k=1

[J (a, b, c1)− J (a, b, c2)] , (26)

where a = Ni−NR, b = φi,kµ, c1 = ηi+ζi, and c2 = ζi. In
(26), the function J (a, b, c) is defined as

J (a, b, c) ,
1

Γ(a+ 1)

∫ ∞
0

tae−t ln (b+ ct)dt. (27)

By first using the identity tae−t = − d
dt (Γ(a+ 1, t)) and

then employing partial integration of (27), J (a, b, c) can be
simplified as

J (a, b, c) = ln (b) +
c

Γ(a+ 1)

∫ ∞
0

Γ(a, t)

b+ ct
dt, (28)

By using the identity [10, Eq. (8.352.2)], and then applying
a change of variable, s = b + ct, (28) can be evaluated in
closed-form by using [10, Eq. (3.351.2)] as in (12).

Next, the PDF of γ
S

(k)
i

for i.i.d. Rayleigh fading can readily
be obtained by substituting φi,k = 1 for i ∈ {1, 2} and k ∈
{1, · · · , NR} into (25) as

fγ
S
(k)
i

(x)=
ηiµ

Ni−NR+1xNi−NRe
− µx
ηi−ζix

Γ(Ni−NR+1)(ηi−ζix)
Ni−NR+2

, 0≤x< ηi
ζi
. (29)

Now, by using similar steps to those in (26), (27) and (28), the
sum rate over i.i.d. Rayleigh fading can be derived as given
in (11).

APPENDIX II

Proof of the sum rate upper bound for doubly-correlated
Rayleigh fading

In this Appendix, the proof of the upper bound of the sum
rate over doubly-correlated Rayleigh fading is sketched. To
this end, we recall the following identity [14]

[((
H(i,R)

)H
H(i,R)

)−1
]
k,k

=

det

((
H

(i,R)
k

)H
H

(i,R)
k

)
det
((

H(i,R)
)H

H(i,R)
) . (30)

By substituting (30) into (10), the sum rate can be re-written
as in (31). By applying Jensen’s inequality, an upper bound of
the sum rate can be derived as in (32). Next, we employ the
following two recent results in random matrix theory [19] to
evaluate (32) in closed-form.

E
{

det

((
H(i,R)

)H
H(i,R)

)}
= det

(
Ψ(R,i)

)
E
{

det

((
H(i)

)H
Φ(i)H(i)

)}

=
(NR)! det

(
Ψ(R,i)

)
det
(
A(i)

)
∏Ni
p<q

(
τ

(i)
q − τ (i)

p

) , (33)

where A(i) and τ (i)
q are defined under (14). Similarly, by notic-

ing the fact that H
(i,R)
k ∼ CN

(
0Ni×NR−1,Φ

(i) ⊗Ψ
(R,i)
kk

)
,

(33) can be extended as [16]

E
{

det

((
H

(i,R)
k

)H
H

(i,R)
k

)}
=

(NR−1)! det
(
Ψ

(R,i)
kk

)
det
(
A(i)
kk

)
∏Ni−1
p<q

(
τ

(i)
q,kk − τ

(i)
p,kk

) ,

(34)

where A(i)
kk and τ

(i)
q,kk are again defined under (14). Now, by

substituting (33) and (34) into (32), and after some manipula-
tions, the desired result can be derived as in (14).
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C=
1

2

2∑
i=1

NR∑
k=1

E
{

log2

[
(ζi+ηi)det

((
H(i,R)

)H
H(i,R)

)
+µdet

((
H

(i,R)
k

)H
H

(i,R)
k

)]
− log2

[
ζi det

((
H(i,R)

)H
H(i,R)

)
+µdet

((
H

(i,R)
k

)H
H

(i,R)
k

)]}
. (31)

C ≤ Cub =
1

2 ln (2)

2∑
i=1

NR∑
k=1

ln

 (ζi + ηi)E
{

det
((

H(i,R)
)H

H(i,R)
)}

+ µE
{

det

((
H

(i,R)
k

)H
H

(i,R)
k

)}
ζiE
{

det
((

H(i,R)
)H

H(i,R)
)}

+ µE
{

det

((
H

(i,R)
k

)H
H

(i,R)
k

)}
. (32)

C=1

2

2∑
i=1

NR∑
k=1

E
{

log2

[
1+ηiexp

(
ln

[
det

((
H(i,R)

)H
H(i,R)

)]
−ln

[
ζi det

((
H(i,R)

)H
H(i,R)

)
+µdet

((
H

(i,R)
k

)H
H

(i,R)
k

)])]}
.(36)

C ≥ Clb =
1

2

2∑
i=1

NR∑
k=1

log2

1 +
ηiexp

(
E
{

ln
[
det
((

H(i,R)
)H

H(i,R)
)]})

ζiE
{

det
((

H(i,R)
)H

H(i,R)
)}

+ µE
{

det

((
H

(i,R)
k

)H
H

(i,R)
k

)}
 . (37)

APPENDIX III
Proof of the sum rate lower bound for doubly-correlated

Rayleigh fading

In this Appendix, the proof of the lower bound of the sum
rate over doubly-correlated fading is sketched. In this context,
the sum rate in (10) can be re-written as [16], [20]

C=
1

2

2∑
i=1

NR∑
k=1

E

{
log2

[
1+ηie

ln

[
1/

(
ζi+µ

(
(H(i,R))

H
H(i,R)

)−1
)]]}

.

(35)
By substituting (30) into (35), the sum rate can further be
expanded as given in (36). Next, by employing the Jensen’s
inequality [20], a lower bound for the sum rate can be derived
as in (37). Again, (36) can be evaluated in closed-form by
employing the following identity [19]

E
{

ln

[
det

((
H(i,R)

)H
H(i,R)

)]}

=

NR∑
l=1

ψ(l) +

∑Ni
l=Ni−NR+1 det

(
B(i,k)

)
(∏Ni

p<q

(
τ

(i)
q − τ (i)

p

)) , (38)

where B(i,k) is defined under (17). Next, by substituting (33),
(34) and (38) into (37), the sum rate lower bound can be
derived as (17).
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