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Abstract—We derive simple uniform approximations (UAs) for
the bit error rate (BER), the symbol error rate (SER), and the
outage of wireless digital communication systems impaired by
fading, noise, and interference. The striking feature of the UAs
is their accuracy over the whole range of signal-to-noise ratio
(SNR) values, whereas the existing high-SNR approximations
break down as the SNR decreases. The UAs require slightly more
information than that for high-SNR expressions. The additional
information required in the case of error probabilities is the
several moments (fractional) of channel gain, which can be
extracted readily from the PDF, MGF or the Mellin transform
of the PDF. The computation of the UA is simple and requires
only the solution of a set of linear equations. Additionally, we
also generalize the previous asymptotic results of Wang and
Giannakis. The unified asymptotic results of the average of an
arbitrary performance measure are thus derived. Various BER
and SER expressions then become special cases of this unified
approach.

I. INTRODUCTION

Performance analysis of wireless systems over fading, noise

and other forms of interference is extensive [1], [2]. This

analysis typically requires averaging over the statistical dis-

tributions, and thus closed-form analysis of the bit error rate

(BER), outage and ergodic capacity, for instance, has been

pervasive. Although such works are extensive [1]–[3], simple

yet accurate large signal-to-noise ratio (SNR) approximations

have become popular recently. Large-SNR analysis provides

direct insights into how channel and modulation parameters

determine the diversity gain and SNR gain of various digital

receiver techniques, feasible for problems that are otherwise

analytically intractable. Important asymptotic SNR results may

be found in [4]–[6].

Wang and Giannakis [5] use the local information from a

first-order expansion of the probability density function (PDF)

of the instantaneous SNR near the origin to determine the high-

SNR error rate; i.e., just the first term of the Taylor expansion

of the PDF determines the diversity order and coding gain.

Importantly, the accuracy of this method is O(ρ−Gd), where

ρ is the unfaded link SNR, and Gd is the diversity order.

This level of accuracy at high SNR is more than sufficient

for wireless engineering applications. This approach has thus

been widely used in recent research (cited over 380 times, see

Google Scholar).

However, the accuracy of large SNR analysis [4]–[6] de-

grades as the SNR decreases. In some cases, the SNR must

exceed, say, 20 dB for the approximations of [5] to be

accurate. However, due to low power specifications or high

energy-efficiency requirements, many communication systems

may actually operate in the low SNR regime. Thus, accurate

approximations over the range −∞ < ρ < ∞ dB are highly

desirable. Is it possible to develop approximations that are

valid over the entire SNR range?

In this paper, we give an affirmative answer to this ques-

tion by deriving simple uniform approximations for the

BER, the symbol error rate (SER), and the outage of digital

communication systems impaired by fading and noise. The

UAs require slightly more information than that for high-SNR

expressions of [5]. The additional information required is the

several moments (fractional) of channel gain. This information

can be extracted from the PDF or moment-generating function

(MGF) of the channel gain or from the Mellin transform of

the PDF. The computation of the UA is extremely simple and

requires only the solution of a set of linear equations. The UAs

are highly accurate over the entire SNR range, −∞ < ρ <∞
dB. Not surprisingly, the UA and the approximation of [5]

coalesce into one in the high-SNR regime.

Additionally, we also generalize the results of [5] in two

distinct ways. First, we show the case-by-case approach of [5]

can be unified as the evaluation of the average of an arbitrary

performance measure. Various BER and SER expressions

then become special cases of this approach. In some cases,

an improved accuracy level of O(ρ−(Gd+1)) can even be

achieved. Moreover, [5] does not immediately reveal how

the coding gain relates to the modulation format. Our results

clearly show that the coding gain is determined by the Mellin

transform of the performance measure, which depends on the

modulation format ( [6] has derived high-SNR approximations

for the SER of linear modulations over non-Gaussian noise

and interference, via the Mellin transform of the PDF of the

noise). Second, we also derive both low-SNR and high-SNR

approximations for a generalized performance measure that

is a weighted sum of either a finite or an infinite number of

terms. For example, the union bound on coded systems and

all digital modulations can be treated under this formulation.

II. PRELIMINARIES

A. Assumptions

We make the following assumptions where AS1 and AS2

are consistent with those in [5] and are stated for completeness.

AS1) The instantaneous SNR at the receiver is given by

γ = ρβ, where ρ is the unfaded link SNR (aka the
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transmit SNR), or simply the SNR, and β is the channel-

dependent, system-dependent nonnegative random vari-

able. We will refer to parameter β as the channel gain.

AS2) Unless otherwise stated, the PDF of β may be expanded

as f(β) = aβt + O(βt+1) as β → 0+. This as-

sumption amounts to a first-order Taylor series expansion

near the origin, as in [5]. The parameter t describes the

rate of growth of the PDF near the origin. Note that

this assumption is not limiting because this expansion

is possible in all practical cases.

AS3) The system performance metric is denoted by h(x); we

assume h(x) decays exponentially for large arguments;

i.e., h(x) ∼ e−x as x → ∞. The instantaneous perfor-

mance is h(γ). The average value E[h(γ)] is the quantity

of interest. The common performance metric function

h(x) includes Q(x) =
∫∞
x

1√
2π

e−t2/2dt, which is used to

represent the BER or SER of various digital modulation

schemes with a coherent demodulation process, while

e−x is used to represent the BER or SER of non-coherent

demodulation schemes and others [1], [2].

B. Diversity order and SNR gain

It is well known that for transmission over flat fading

channels impaired by Gaussian noise the SER PE at high

SNR can be approximated by

PE ≈ (Gcρ)
−Gd

as ρ → ∞, where ρ is the average SNR, and Gc and Gd

are referred to as the coding gain (also known as the SNR

gain or combining gain) and the diversity gain (diversity

order), respectively. The Wang and Giannakis [5] main result

is listed here for quick reference. The following high-SNR

approximation, with the assumption AS2) above, is valid as

ρ→∞:

E [Q (
√
κγ)] ∼ 2taΓ(t+ 3

2 )√
π(t+ 1)

1

(κρ)t+1
, κ > 0. (1)

The error term associated with eq. (1) is found to be

O
(
ρ−(t+1)

)
. This approximation (eq. (1)) shows that the

diversity order is equal to t + 1; that is, the diversity order

directly relates to the rate of growth of the PDF near the origin.

This result is intuitively satisfying. Similarly, the coding gain

is determined by both t and a. In sum, both the diversity order

and coding gain require information from only the first-order

expansion (AS2) of the PDF around the origin. In this paper,

we will directly generalize eq. (1) to an arbitrary modulation

format (see eq. (5)).

III. AVERAGE PROBABILITY OF ERROR

In this section, we provide our main results in terms of three

propositions. Their proofs are omitted for brevity and will be

provided in a journal version of this paper.

The error rates, capacity, outage and other related measures

are typically expressed as

E[h(γ)] =

∫ ∞

0

h (ρβ) f(β) dβ, (2)

where h(x) represents performance measures that need aver-

aging over noise, fading and other effects. Clearly, (eq. (1)) is

a special case of (eq. (2)) when h(x) = Q(
√
κx).

A. High SNR approximation

Proposition 1. The PDF of the channel gain is given by

f(β) = βtg(β) as β → 0+ (3)

with g(0) �= 0. The averaged performance metric eq. (2) can
be approximated by

E[h(γ)] ≈ H(t+ 1)

ρt+1
g

(
H(t+ 2)

ρH(t+ 1)

)
, (4)

where H(s) is the Mellin transform of h(x), and the error in
this approximation is O(ρ−(t+2)).

Note that a special case of the above occurs when g(β) = a,

that is, with the PDF model that appears in assumption AS2.

(This case was treated in [5]). The average defined in eq. (2)

can be approximated by the following as ρ→∞:

E[h(γ)] ≈ aH(t+ 1)

ρt+1
=

(
1

t+1
√
aH(t+ 1)

ρ

)−(t+1)
. (5)

This approximation (eq. (5)) shows that the coding gain

depends on the Mellin transform of h(x), whereas the diversity

gain depends on the degree of the Taylor expansion of the PDF

of β.

B. Low-SNR and High-SNR approximations - general case

In general, the performance metric can be the sum of either

a finite or an infinite number of terms (e.g., the SER of digital

modulations and the union bound of coded systems). The

next proposition provides a means to derive both low-SNR

and high-SNR approximations. The main idea is to transform

eq. (2) via the Parseval formula into a contour integral in

the complex plane (the vertical integration line lies in the so-

called fundamental strip). The approximations to the integral

are derived by considering the poles of F (1− s)H(s), where

F (s) is the Mellin transform of the PDF of β. The poles on

the right (left) of the fundamental strip yield the high-SNR

(low-SNR) approximation. We refer the reader to [7] for more

details on this process.

Proposition 2. Consider a generalized performance metric
given by the sum

h(x) =
∑
k

λkg(μkx), (6)

where g(x) is a general base function, whose Mellin transform
is G(s). Let Λ(s) =

∑
k λkμ

−s
k . Then the average defined in

eq. (2) has the following asymptotics:

E[h(γ)] ∼ ±
∑
s∈H

Res
{
1

ρs
G(s)Λ(s)F (1− s)

}
, (7)

where, for an expansion as ρ → 0+, the sum is over the set
H of poles to the left of the fundamental strip, and the sign
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is ’+’; for an expansion as ρ→∞, the sum is over the poles
to the right of the fundamental strip, and the sign is ’−’.

Suppose the sequence −t,−(t + p1),−(t + p2), . . . is the
left simple poles of F (s) with t ≥ 0 and {pl} (l = 1, 2, . . .)
real, positive and strictly increasing (p0 = 0); then

E[h(γ)] ∼
∑
l=0

lim
s→1+t+pl

[(1 + t+ pl − s)G(s)Λ(s)F (1− s)]

ρ1+t+pl
.

(8)

By considering the first term of this asymptotic series, the
diversity order is

Gd = 1 + t,

and the coding gain is

Gc =

{
lim

s→1+t
[(1 + t− s)G(s)Λ(s)F (1− s)]

}− 1
1+t

.

The result in eq. (8) encompasses [5] as a special case.

In order to understand this point, note that if f(β) = aβt,

then the Mellin transform is F (s) =
∫∞
0

βs−1f(β)dβ = a
s+t .

Thus, F (s) has a simple pole at s = −t, so that F (s) is

equivalent to F (1 − s) with a pole at s = 1 + t. Thus, the

main assumption AS2 used by [5] is equivalent to a simple

pole in the Mellin transform.

C. Uniform approximation

The UA for the error rate is developed next. The main idea

is to find a rational expression that matches with both the

low-SNR and high-SNR approximations simultaneously [8].

Proposition 3. As per AS2, the fading PDF is f(β) = aβt +
O

(
βt+1

)
as β → 0+ with t ≥ 0. We assume that t is

an integer. Define x =
√
ρ and μz =

∫∞
0

βzf(β) dβ. Recall
that γ = ρβ and substitute this in E

[
Q

(√
κγ

)]
. The average

error rate is then given by

E

[
Q

(√
κβx

)]
=

1 +

L∑
l=1

alx
l

2 +

K∑
k=1

bkx
k

+ E(x), (9)

where K = L + 2(t + 1), and L ≥ 2 is an integer. The
coefficient vector b = (b1, b2, . . . , bK)

T is given by

b = −2P−1 (c̃(1) c̃(2) . . . c̃(K − 1) c̃(K))
T
, (10)

where c̃(l) = c(l + L− 2), g = 2taΓ(t+3/2)√
π(t+1)κt+1 ,

c(l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 l = 0

(−1)(l+1)/2(κ/2)l/2μl/2√
π lΓ [(l + 1)/2]

l = 1, 3, . . .

0 otherwise

, (11)

and P = {pij}, i = 1, . . . ,K, j = 1, . . . ,K with

pij =

{
c̃(i− j)− g j = i+K − 2

c̃(i− j) otherwise.
(12)

TABLE I
MELLIN TRANSFORMS OF FADING MODELS

Fading f(β) F (s)

Rayleigh e−β Γ(s)

Nakagami-m mmβm−1e−mβ

Γ(m)

m1−sΓ(s+m− 1)

Γ(m)

Weibull
bβ

b
2
−1

2a
b
2

e
−
(

β
a

) b
2

as−1Γ
(
2s+b−2

b

)

MRC
βNr−1e−β

(Nr − 1)!

Γ(Nr + s− 1)

(Nr − 1)!

SC Nr(1− e−β)Nr−1e−β Nr

Nr−1∑
l=0

(−1)l(Nr−1
l

)
Γ(s)

(l + 1)s

The coefficient vector a = (a1, a2, . . . , aL)
T is given by

ai =

⎧⎪⎨
⎪⎩
2c(i) +

i∑
k=1

b(k)c(i− k) i = 1, . . . L− 2

gbK−j j = 0, 1; i = L− j

(13)

for i = 1, . . . L.

The approximation E(x) of eq. (9) is O
(
ρK+L

)
as ρ→ 0

(low-SNR region) and O
(
ρ−(t+1)

)
as ρ → ∞ (high-SNR

region).

D. BPSK performance in Nr branch MRC in iid Rayleigh

Maximal ratio combining (MRC) is an optimal diversity

combining method [2, Chap. 9]. An exact analysis of the BER

of MRC under independent and identical (iid) Rayleigh fading

is given in [1, Sec. 14.4].

The PDF of β for the case of MRC with Nr diversity

branches and its Mellin transform is given in Table I. We

observe that F (1−s) has simple poles at s = Nr, Nr+1, . . .,
which are on the right of the fundamental strip. As per eq. (7),

these poles describe the asymptotic values of E[h(γ)] as

ρ→∞.
For coherent BPSK, h(x) = Q(

√
2x). From Table 2, the

Mellin transform of h(x) has poles at s = 0,−1/2,−3/2, . . ..
Hence, by using Proposition 2, we obtain the following result:

E[Q(
√
2γ)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1

2
−

∞∑
k=0

(−1)k
k!

Γ(Nr + k + 1/2)√
π(2k + 1)Γ(Nr)

ρk+1/2

Γ(Nr + 1/2)

2
√
π(Nr)Γ(Nr)ρNr

,

(14)

where the upper expansion holds for ρ→ 0+ and the other for

ρ→∞. Low-SNR and high-SNR approximations in eq. (14)

provide sufficient information to compute the UA for this case,

which will be accurate over the whole range, 0 ≤ ρ <∞. By

converting the above to the uniform error rate format given

in eq. (9), we can obtain an approximation valid for both the

low and high regions of SNR.

Example 1: For the single branch case (Nr = 1), by using

Proposition 3, the following simple UA can be obtained:

E[Q(
√
2γ)] =

1 + x+ 0.5x2

2 + 4x+ 5x2 + 4x3 + 2x4
, (15)
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Fig. 1. The exact BER of MRC system, the high-SNR approximation eq. (1)
and the UA eq. (9). In the UA, L = 2.

TABLE II
MELLIN TRANSFORMS OF PERFORMANCE MEASURES

Application h(x) H(s)

Coherent BPSK Q(
√
2x)

Γ(s+ 1/2)

2s
√
π

NCFSK 1
2
e−

x
2 2s−1Γ(s)

DPSK 1
2
e−x 1

2
Γ(s)

Coherent FSK Q(
√
x)

2s−1Γ(s+ 1/2)

s
√
π

Outage probability u(γT − x)
γs
T
s

where x =
√
ρ. The exact average error rate for this case is

well-known [1, Sec. 14.4]. Note that the expression eq. (15)

matches the first three low-SNR terms and the high-SNR term

in eq. (14). Similar UAs for any other Nr can be readily

derived and are omitted for brevity. To test its accuracy, the

UA is plotted along with the exact result [1, Sec. 14.4] and the

high-SNR result of Wang and Giannakis (eq. (1)) in Figure 1.

Notice that the UA coincides with the exact value for the entire

range −10 ≤ ρ < 30 dB, while the high-SNR result of Wang

and Giannakis, eq. (1), fails as the SNR decreases. Clearly,

the UA provides an excellent approximation over the whole

range of the SNR.

E. Approximation with Proposition 1

Consider the case of MRC with Nr diversity branches in

iid Rayleigh fading. The PDF of β takes the form

f(β) = βNr−1g(β), (16)

where g(x) = e−x

(Nr−1)! . By using H(s) from Table 2, the fol-

lowing approximation based on Proposition 1 can be obtained:

E[Q(
√
2γ)] ≈ Γ(Nr +

1
2 )

2
√
πNr!ρNr

e−
Nr(Nr+1/2)

(Nr+1)ρ . (17)

Figure 2 shows how this approximation compares against the

Wang and Giannakis result, eq. (1). The relative error of both

these approximations compared to the exact result is plotted.

In terms of the relative error, the approximation of Proposition

1 is at least an order of magnitude better than eq. (1). However,

this improved level of accuracy is not always achievable.

F. BPSK performance in Nr branch SC in iid Rayleigh fading

Selection combining (SC) is another classical diversity

combining technique. It has less implementation complexity

than MRC, but suffers a loss in performance. The PDF of β
and its Mellin transform in this case are given in Table I and

can be written as

F (1− s) =

[
Nr

Nr−1∑
n=0

(−1)n
(
Nr − 1

n

)
1

(n+ 1)1−s

]
Γ(1− s)

= ν(s)Γ(1− s). (18)

Given the term Γ(1 − s), it seems that F (1 − s) has simple

poles at s = 1, 2, . . . and this suggests that the diversity order

of the system is just one, which is incorrect. Surprisingly, it

turns out that ν(s) has zeros at s = 1, 2, . . . , Nr − 1, and

these zeros cancel out the first Nr − 1 poles of Γ(1 − s).
Therefore, the poles are at s = Nr, Nr + 1, . . ., which are on

the right of the fundamental strip. These are simple poles. As

per Proposition 2, they describe the high-SNR approximation

(ρ→∞).
As before, we consider the average error performance of

BPSK, for which, h(x) = Q(
√
2x) and its Mellin transform

is given in Table 2, with poles at s = 0,−1/2,−3/2, . . ..
Thereby, using Proposition 2, we find

Pe(ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1

2
−

∞∑
k=0

(−1)k
k!

ν(−1/2− k)Γ(k + 3/2)√
π(2k + 1)

ρk+1/2

1

(Nr)!

ν(Nr)Γ(Nr + 1/2)

2
√
π(Nr)ρNr

,

(19)

where the upper expansion holds for ρ → 0+ and the other

for ρ→∞.
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Fig. 2. The accuracy of eq. (1) and eq. (17).

G. Application of Proposition 3 with the MGF only

Proposition 3 requires quantities a, t and μl/2, l =
1, 3, 5, . . .. When the PDF is unavailable, we can use the MGF

to extract this information. That a and t can be computed
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from the MGF is already known [5] and fortunately, so

are the fractional moments [9]. Consider Nr branch MRC

in iid Rayleigh fading as an example. The MGF of β is

Mβ(s) = E(e−sβ) = 1
(1+s)Nr

, which can be expanded for

s → ∞ as Mβ(s) =
1

(s)Nr
+ O

(
1

(s)Nr+1

)
, and hence, a and

t are obtained to be 1
Γ(Nr)

and Nr − 1 respectively [5].

The fractional moments of β, μl/2, l = 1, 3, 5, . . . can be

computed by using [9] as

μl/2 = E[βl/2] = Γ(λ)−1
∫ ∞

0

tλ−1ζ(−t)dt, (20)

where λ is chosen to be 1/2 such that n = l/2+λ is a positive

integer while satisfying 0 < λ < 1; ζ(s) =
dnMβ(s)

dsn .

By using eq. (20), μl/2 can be obtained as

μl/2 =
Γ(Nr + n)

Γ(1/2)Γ(Nr)

∫ ∞

0

t−1/2(1 + t)−(Nr+n)dt

=
Γ(Nr + l/2)

Γ(Nr)
, (21)

where eq. (21) is obtained by using [10, eq. (3.191.3)]. This

example shows that the entire UA can be computed from the

MGF only, facilitating the use of UA in many cases where the

MGF is directly available.

H. Co-channel Interference

The analysis of such interference is based on the signal

to interference and noise ratio (SINR). In most cases, the

SINR(γ) is approximated by the ratio of the central chi-

squared distributed random variables [11]. For the case of

MRC with Nr diversity branches and NI interferers, we write

γ = ρβ, where β = X
Z and X,Z are central chi-squared

distributed random variables with 2Nr and 2Ni degrees of

freedom, respectively.

The Mellin transform of the PDF of β can be obtained easily

even without knowing the PDF itself, as F (s) = FX(s)FZ(2−
s). For this analysis, FX(s) = Γ(s + Nr − 1)/Γ(Nr) and

FZ(s) = Γ(s + Ni − 1)/Γ(Ni). The poles of F (s) can

thus be readily determined, which, along with Proposition

2, enable the development of both low-SNR and high-SNR

approximations. These can then be combined (i.e., as in

Proposition 3) to develop a UA for the error rate.

I. Dual-Hop relay performance analysis

Figure 3 shows the BPSK error performance of a dual hop

relay system over Rayleigh fading where the exact curve is

plotted by using the results from [12]. By using [12, eq. (27)],

the first-order expansion of the CDF of the end-to-end SNR,

Fγeq (γ) can be easily shown to be

Fγeq (γ) =

(
1 +

1

ζ

)
γ

ρ1
+O

(
γ

ρ1

)
, (22)

and hence, we obtain our required parameters a = (1 + 1
ζ )

and t = 0, where ζ = ρ2/ρ1, ρ1 and ρ2 are the average SNRs

of the first and second hop respectively. If we say γ = ρ1β,
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Fig. 3. The BER of a dual-hop relay system in Rayleigh fading.

the required moments information for UA can be computed

by using

μz =

∫ ∞

0

zβz−1
(
1− F γeq

ρ1

(β)
)
dβ

=
2z
√
π√
ζ

2B

(A+B)z+2
Γ(z + 2)Γ(z)

Γ(z + 3/2)

× 2F1

(
z + 2,

3

2
; z +

3

2
;
A−B

A+B

)
,

(23)

where A = 1 + 1
ζ , B = 2

√
1
ζ , 2F1(., .; .; .) is the Gaussian

Hypergeometric function. eq. (23) is obtained directly by

substituting [12, eq. (27)] into the top equation and solving

the resultant integral by using [10, eq. (6.621.3)].

J. Energy detection

The determination of the presence or absence of an un-

known signal over a noisy channel through energy detection

is of great interest [13]. Recently, energy detection has gained

wide-spread attention for spectrum sensing in cognitive radio

[14], [15]. For 2u samples, with λ threshold and γ instanta-

neous SNR, the average miss probability [15, Eq. 4] Pm =∫∞
0
(1−Qu(

√
2x,
√
λ ))fγ(x) dx, where QM (a, b) is the gen-

eralized Marcum-Q function. Let h(x) = 1−Qu(
√
2x,
√
λ ).

By using the contour integral representation of the generalized

Marcum-Q function from [16], the Mellin transform H(s)
can be derived. For example, under Nakagami-m fading with

fading parameter m, by using Proposition 3, we find

Pm =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
1−

∞∑
k=0

∞∑
n=0

(−1)nΓ(u+ k, λ
2 )Γ(m+ k + n)

k!n!Γ(u+ k)mk+nΓ(m)
ρk+n

∞∑
k=0

(−1)k
(k)!

mm+kH(k +m)

Γ(m)ρk+m
,

(24)

where the upper expansion holds for ρ → 0+ and the other

for ρ → ∞. These expansions can be used to derive an UA

for this case. IV. OUTAGE PROBABILITY

Outage probability, a common quality-of-service parameter

for fading channel communication, is the probability that the
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Fig. 4. The UA, exact outage and high-SNR approximation.

instantaneous SNR falls below threshold γT :

Pout(γT , ρ) = Pr[ρβ ≤ γT ]. (25)

The high-SNR approximation to the outage under AS2 can be

readily obtained from (5) and Table 2, as

Pout(γT , ρ) ≈ a

t+ 1

(
γT
ρ

)t+1

, (26)

which is nothing more than Proposition 5 given in [5].

We next give a UA for the outage.

Proposition 4. Generalize AS2 as the following: the fading
PDF is f(β) =

∑K
k=0 akβ

(k+t) + O
(
βt+1

)
as β → 0+

with t ≥ 0. We assume that t is an integer. The outage is then

Pout(γT , ρ) =
1 +

∑L
l=1 clρ̃

l

1 +
∑K

l=1 clρ̃
l
+ E(ρ̃), (27)

where K = L + (t + 1) ≥ 2 is an integer, and ρ̃ = ρ/γT .
The coefficient vector c = (c1, c2, . . . , cK)

T is given by
c = P−1eK−L, where ei is a K × 1 column vector whose ith

element is 1, all other elements being 0 and P = {pij}, i =
1, . . . ,K, j = 1, . . . ,K with

pij =

{
−1 i = K − n, j = L− n; n = 0, 1, . . . , L− 1

b(j − i) otherwise,
(28)

b(n) defined as, b(n) =

{
0 n < 0

an

n+t+1 otherwise.

Example 2: Consider a simple case of single-branch

Rayleigh fading channel. Proposition 4 in this case yields the

UA:

Pout(γT , ρ) ≈ 1 + 3 ρ̃+ 6 ρ̃2

1 + 3 ρ̃+ 6 ρ̃2 + 6 ρ̃3
. (29)

The UA (27), along with the high-SNR approximation (26)

and the exact outage for the Nr branch MRC in iid Rayleigh

fading, are plotted in Figure 4. The excellent accuracy of the

UA over the entire range of SNR is clearly evident.

V. CONCLUSION

Simple uniform approximations for the BER, SER and the

outage were derived. The UAs are accurate over the whole

range of SNR values, unlike all existing high-SNR approxi-

mations. The additional information required to compute the

UA of error probabilities is the several moments (fractional)

of channel gain, which can be extracted readily from the PDF,

MGF or the Mellin transform of the PDF. The computation

of the UA is extremely simple. Additionally, in Proposition 1,

we provided a simple generalization of the previous asymptotic

results of [5], yielding unified asymptotic results of the average

of an arbitrary performance measure. In Proposition 2, we

provided a means to generate both low-SNR and high-SNR

approximations simultaneously.

This paper seems to be the first one to develop the notion

of UAs. They provide an alternative to closed-form analysis

and also an excellent validation tool for simulations. While

several applications were roughly outlined, we only scratched

the surface, for the number of applications is vast.
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