
Reduced-Overhead Multicasting of Different QoS

Data Classes

Zohreh Abdeyazdan, Masoud Ardakani, Chintha Tellambura

Department of Electrical and Computer Engineering, University of Alberta

Email: {abdeyazd,ardakani,chintha}@ualberta.ca

Abstract—In this paper we study the problem of transmitting
different quality of service (QoS) data classes on a broadcast
erasure channel where each data class is intended for a group of
users depending on their erasure rate. For real-time applications
such as multimedia, data block length is typically small. Over a
small data block length, the behavior of the erasure channel may
significantly differ from its average. Thus, to guarantee a certain
QoS, a considerable overhead may be needed. We provide a finite
block length analysis of the effect of erasure on the overhead.
We use this analysis to investigate a packet construction method
that mitigated the effect of short block length.

I. INTRODUCTION

Broadcasting data to a number of users with different chan-

nel quality can efficiently be done using fountain codes [1]–

[3]. The transmitter, however, has to continue the transmission

of a data block until all the receivers can decode it. Only at this

point, the transmitter can start transmission of the next block

of data. In this setup, although, the best user can receive one

block very quickly, it must remain idle until the transmission

of the next block has started.

In some applications, such as multimedia, different quality

of service (QoS) data classes can be defined to be sent

to different users. More specifically, users can be classified

according to their reception quality to receive different quality

multimedia. Since transmissions are done in packets, the user

quality can be defined based on the packet erasure rate. 1

A user with a low erasure rate can potentially receive more

QoS data classes than a user with a higher erasure rate.

This is in contrast with slowing down the high quality users

by the user with worst channel quality. As a result, users

that experience good channel quality can receive high quality

multimedia during the same time that users with poor channel

condition receive the same multimedia at a lower quality.

Another example is in vehicular networks. All the vehicles in a

highway can receive the necessary information about the traffic

and road conditions while those with better channel condition

may receive other data classes such as data for entertaining

applications or their requested data.

Here, we study the problem of multicasting different QoS

data classes on erasure channels. The source node has data

packets from different QoS classes intended for users that

experience various erasure rates. Users with smaller erasure

1For simplicity, we use “erasure rate” instead of “packet erasure rate” in
the remainder of the paper, but we notice that an erasure means one packet
is lost.

rates can receive more packets than users with poorer channel

conditions. Different solutions have been suggested using

rateless codes for multimedia multicasting with different QoS

data classes. For instance, [4], [5] propose expanding window

fountain codes. This method, however, alters the degree dis-

tribution of the fountain code whose increased complexity of

decoding is not desirable.

[6], [7] introduce a solution to this problem using fountain

codes and a scheduling algorithm based on data interleaving.

Since this method is based on scheduling and data interleaving,

we will refer to it as the SDI method. In this solution, there

are two data classes where users with good channel quality

will receive data from both classes. Users with poor channel

quality will only receive one class of data. Since SDI is

based on scheduling, data from different data classes are

transmitted separately. As we will see later, for applications

with small data block sizes such as realtime applications, this

data separation may result in a considerable overhead needed

to guarantee a certain probability of successful transmission.

The source of this overhead is the fact that the behavior of the

erasure channel may vary significantly from its average when

used over a small block length.

Another solution to this problem that will be discussed in

this paper is to mix the data of all QoS classes together [8].

In other words, the source can transmit the encoded data of

all classes together over all time slots. We will refer to this

method as MTS. This idea is used in [8] to formulate and

solve the allocation problem of source bits of different data

classes based on a defined cost criterion.

In this paper, we investigate the effect of this approach on

the overhead. For this purpose, we first provide a finite block

length analysis. Using, this analysis, we compare MTS with

SDI method in different erasure rates to show that MTS enjoys

a lower overhead. Thus, for applications such as multimedia

which usually have a short block length, MTS should be the

method of choice.

The rest of this paper is organized as follows. In Section II,

the system model and the problem statement are provided.

Section III will discuss problem solutions, starting with a

review of SDI method, discussing the effect of finite block

length on the system, and then discussing MTS solution.

Section IV provides the numerical results, where MTS method

is compared with SDI. The paper is concluded in Section V.

2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)
978-1-4673-1433-6/12/$31.00 ©2012 IEEE

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a source that multicasts data to R users. In

multicasting, a direct transmission from the source is not a

desirable solution. This is because, even if one of the users

fails to receive the packet, the packet must be retransmitted.

Thus, as the number of users increases, direct transmission

becomes less desirable. It is well known that fountain codes

can avoid this problem [1]–[3]. With fountain codes, the source

continues the transmission until the data for all intended users

is provided. Another benefit of fountain coding over direct

transmission is that instead of needing a feedback per each

received packet per user, it only needs a feedback at the end of

reception of the whole block by each user. Moreover, fountain

codes can handle users with various or even unknown erasure

rates. Thus, here we assume that data is transmitted using

fountain codes.

The R users experience different erasure rates. Therefore,

they can be classified into L different classes based on their

erasure rates where L ≤ R. Users in the same class are

assumed to have equal erasure rate 2.

Let ei be the erasure rate of users in class i. The receiving

rate can then be defined as ri = 1 − ei. We also order user

classes according to their erasure rate such that for any two

user classes i, j ∈ {1, . . . , L}, i < j ⇒ ei > ej . A typical

user in class i ∈ {1, . . . , L} will be referred to as ui. With this

definition, if i < j, potentially uj can receive more packets

than ui during the same period of time. Therefore, different

QoS classes can be defined for users with various erasure rates.

Multimedia streaming is an application of the setup de-

scribed above because different QoS levels of data can nat-

urally be defined since users can receive multimedia with

different qualities. Suppose the data stream is split into M
classes, C1, C2, . . . , CM . Here, C1 is the part of stream which

provides the lowest quality multimedia and therefore necessary

for any user who wants to receive the multimedia stream.

Packets in Cm,m ≥ 2 are intended for users that want

higher quality of service. So, the more QoS classes a user

receives, the better the quality of the stream it receives. The

best quality is provided to the users that receive all M classes.

Similar discussions are valid when these data classes are

completely independent and from various applications with

different priorities.

Without loss of generality we assume L = M . In other

words, the number of classes of users is equal to the number

of different QoS classes of data. With this assumption, by class

i, we mean the users whose erasure rate is ei and expect to

receive data from classes C1, C2, . . . , Ci. We also assume that

all data classes are greedy, meaning that they always have data

to send.

Similarly, one can view this as a system, where M data

classes are broadcasted on the channel. Each data class has a

predefined erasure threshold, and its data is intended for any

user whose erasure rate is below the threshold. In this view,

em represents the predefined threshold for class m. Notice

2In practice, users with almost equal erasure rates are grouped together

that in this setup, the transmitter does not need to know the

erasure rates of users. Moreover, users are naturally classified

to different classes according to their erasure rates.

For the defined system, the problem is to devise a data trans-

mission algorithm that ∀i, 1 ≤ i ≤ M provides C1, . . . , Ci

to ui with a failure rate guaranteed to be less than δ for all

user classes. A failure at user class i is defined as not having

enough received data from data classes C1, . . . , Ci to be able

to decode the data of all i classes.

Here, we assume erasures are the only reason for packet

loss, so our results are valid for memoryless erasure channels.

The next section explains two solutions to this problem. One

solution is SDI method and the other is the MTS method. To

motivate MTS solution, the effect of finite block length on the

system is also studied in the next section.

III. PROBLEM SOLUTION

As mentioned earlier, to handle the problem of various

erasure rates of different users, the methods discussed in this

section use fountain codes [1]–[3]. When N data packets

are fountain coded, any user who received N ′ = (1 + ǫ)N
encoded packets can decode the N data packets. Here, ǫ is

the overhead of the fountain code and is typically due to

the linear dependency of some received encoded packets and

the suboptimal decoding. Since all methods discussed in this

section use fountain codes, we treat N ′ as the block size when

comparing these methods. In other words, the block size is

defined as the number of encoded packets needed at the user

side. This way, we can compare different methods without the

need to consider the fountain coding. From this point of view,

by one bit in data class m we mean a fountain encoded bit

of this data class. In the remainder of this work, we use N
instead of N ′ for the ease of notations.

A. SDI Method

For the defined system with M data classes and different

erasure rates, [6] proposed an interleaving based method to

transmit data. In this method, each class has its own Raptor

[3] encoder and therefore data of each layer (class) will first be

encoded internally. At each time slot, class m ∈ {1, . . . ,M}
will be chosen with probability αm. Then an encoded packet

from this class will be broadcasted over the channel. [6],

[7] optimize probabilities α1, . . . , αM based on the channel

erasure rates. The results show that these probabilities are

proportional to the erasure rate of their corresponding classes.

Please note that in the time slots that the source transmits

packets from Ci, uj , ∀j < i, is in idle mode. Moreover, since

uj has a higher erasure rate than ui, the total number of

packets transmitted from Cj is more than what ui needs. Thus,

even ui will be in idle mode for a portion of time when packets

from Cj are transmitted.

Before discussing MTS [8], we provide a finite block length

analysis of the system. While MTS is proposed in [8] for the

first time, it is suggested for solving the allocation problem

of various data classes. Here, we discuss another advantage

of MTS, i.e., its lower overhead compared to SDI. For this

purpose, we first need a finite length analysis of the system.

Also, in order to make this advantage more clear, we will

review MTS from a new point of view in Section III-C.

B. Finite Block Length

On an erasure channel, erasures happen randomly and

independently. For finite block length, the actual number of

erasures may differ from the average expected number. Thus,

if we need N received packets at the output of a channel with

erasure rate e, N/(1 − e) transmissions may not be enough.

In fact, to guarantee N received packets with high probability,

the number of transmissions must be larger than N/(1 − e).
Thus, the number of extra packets needed can be define as the

transmission overhead. This overhead is especially important

and fairly large in applications that have small block sizes

such as realtime applications. Please note that this overhead

is different from the overhead of fountain codes that we

discussed earlier.

We previously defined failure for user in class i, i ∈
{1, . . . ,M} as “ui does not receive enough encoded packets

to decode the whole block of data from classes 1, 2, . . . , i.”
Then, to guarantee a probability of failure smaller than δ, one

can find the needed transmission overhead of each data class.

Now, consider the data class m, with data blocks of size Nm

packets. For users in any class l, l ≥ m that experience channel

erasure rate el, the number of received packets Xl from data

class Cm after Km transmissions is a Binomial(Km, 1 − el)
random variable. For guaranteed transmission of Cm to user

class l, we wish to have Xl ≥ Nm with probability at least

1− δ or equivalently

p[Xl < Nm] < δ.

When Nm is larger than a few hundreds, this Binomial

distribution can accurately be approximated with a Gaussian

distribution. Thus, Xl ∼ N (Km(1 − el),Kmel(1 − el)) and

p(Xl < Nm) can be found using the Q function. Thus, the

reception condition for ul is

Q

(

Km(1− el)−Nm
√

Kmel(1− el)

)

< δ. (1)

This means that for finite block length, the number of trans-

missions Km must be larger than Nm/(1− el). Thus, a trans-

mission overhead representing the number of extra encoded

packets (compared to the expected number) can be defined as

kl,m = Km −
Nm

1− el
.

Although ul is supposed to receive data from C1 to Cl,

since its erasure rate el is smaller than e1, e2 . . . , el−1, the

overhead considered for those user classes would satisfy the

reception condition of ul. Thus, among the users that receive

data from data class Cm, i.e., um, um+1, . . . , uM , the highest

erasure rate belongs to um. As a result, um needs the largest

overhead among all user classes that need Cm. In other words,

for each data class m we only need to satisfy the reception

condition for um. Thus, the actual needed overhead for class

m is

km = Km −
Nm

1− em
,

where Km can be found using

Q

(

Km(1− em)−Nm
√

Kmem(1− em)

)

< δ. (2)

The overall overhead is the sum of the overheads of each data

class, which can be found as

ktotal =

M
∑

i=1

ki (3)

Clearly as the block length increases, the needed overhead

compared to the block length becomes smaller. For small block

length, however, the transmitting time of overhead can be a

significant portion of the total transmission time. We like to

emphasize that by sending km extra encoded packets for each

data class m, the transmitter guarantees a probability of failure

less than δ.

Now let us define a time slot, as the time period needed

to transmit one packet over the channel. Here, the total of

K time slots are available where K = K1 + . . . + KM .

In SDI method, these time slots are first divided among M
data classes, meaning that the transmission time allocated to

data class m is αmK. Depending on the number of data

classes, αmK can be significantly smaller than K resulting

in a significant needed overhead to combat the finite block

length effect.

Our main insight in this work is to reduce the overhead

by sending the data of all classes over all time slots, so that

the needed overhead will be calculated for time K instead of

αmK . As a result, the needed overhead is for a much larger

data block and therefore is smaller. The details of this idea is

provided in the next section.

C. The MTS Method

Considering M QoS data classes, C1, C2, . . . , CM , let cji
represent the jth encoded bit of data class Ci. We define

symbol sj as an ordered M -tuple constructed from fountain

encoded bits of all data classes i.e. sj = (cj1, c
j
2, . . . , c

j
M). A

symbol in this method is the smallest unit of data from which

a packet is formed. A transmitted packet, therefore, contains

⌊P/M⌋ symbols where P is the size of a packet. Fig. 1(a)

shows different data classes and Fig. 1(b) shows a symbol sj
and a transmitted packet p in this method. We call this method

MTS, because it works with M -tuple symbols.

In MTS, similar to SDI, each data class has its own fountain

encoder. In other words, the data of each QoS data class is

fountain encoded separately and then the encoded bits are

used to generate symbols. Thus, as long as each user receives

enough number of encoded packets from a data block of a

certain data class, it will be able to decode the whole block.

This means that our method does not effect the coding part.

C1

C2

CM

...
...

c11 c21 . . . cK1

c12 c22 . . . cK2

c1M c2M . . . cKM

(a) Blocks of data from different classes, C1, C2, . . . , CM

which contain encoded bits

cj1 cj2 cjM. . .

. . .p

sj

s1 s2 s⌊ P

M
⌋

(b) A generic symbol, sj , and a transmitted packet, p, which is formed
by defined symbols

Fig. 1. Generating transmitted packets in MTS method

Thus, comparisons can be made without considering the effect

of fountain codes.

Although in MTS the same number of bits from all classes

are put into each packet, it does not mean that users of all

classes are receiving the same amount of data. This is because,

each class is working independently and the symbols are

created by encoded bits (not raw bits). To clarify this point, let

us consider data class Cm. The number of transmitted encoded

bits is determined based on three factors. The first one is the

data block length Vm (similar to Nm in SDI method) which is

determined based on the requirements of the application. The

second factor is the erasure rate em of the worst case user that

can receive this data. So, on average, Vm

1−em
encoded bits are

required to be transmitted, but as we discussed in Section III,

for guaranteed QoS, the actual number of needed transmissions

is K ′
m = Vm

1−em
+k′m, where k′m is the overhead which depends

on the acceptable probability of failure δ and the data block

length. Here, K ′
m which is the total transmission time for class

m, is equal to K for m = 1, . . . ,M , because encoded bits of

any class are present in all K transmitted packets.
To summarize, ⌊P/M⌋K fountain encoded bits from Cm

are used in the construction of symbols during K time slots

which include overhead bits as well. As soon as these symbols

are constructed, the next data block from Cm will be used

for construction of new symbols. Any other data class is

performing a similar procedure in parallel and independently

from class m. As we mentioned, it is assumed that all data

classes are greedy and always have data to send. To clarify,

Fig. 2 shows an example of different data classes, where each

class (Ci) has a block of data (Vi) plus the needed overhead

C1

C2

CM

K

V1/(1− e1)

V2/(1− e2)

VM/(1− eM)

k′1

k′2

k′M

. . .

s1 s2 . . .

Data Overhead

Fig. 2. The frame shows overheads and data of different classes for a fixed
period of time K . It also shows the construction of symbols in MTS method.

(k′i). As we can see, depending on the various erasure rates,

the length of the overhead of different data classes are not the

same. This figure also shows how symbols and consequently

packets are constructed in MTS method.

The benefit of MTS, as discussed earlier, is that data class

m, instead of being sent over only αmK , is sent over K ,

i.e., all time slots. This way, the data experiences an erasure

channel whose behavior is closer to its average. Thus, the

needed overhead for guaranteed reception is reduced. By using

Eq. (2) for MTS, we have

Q

(

K(1− em)− Vm
√

Kem(1− em)

)

< δ. (4)

and Vm can be calculated for each class m. It is important to

note that in Eq. (4) and in Fig. 2 , k′m and Vm are number of

bits not packets. This should be considered when comparing

the overhead of two methods. Having Vm and K , the overhead

of class m can be found as

k′m = K −
Vm

1− em
,

where k′m is the number of overhead bits from data class

Cm. To compare the overhead of MTS with that of SDI, the

total number of overhead packets for MTS is calculated as the

average of k′i’s which is

k′total =

M
∑

i=1

k′i

M
(5)

The average arises since different data classes have various

size overheads. The numerical results in the next section verify

that MTS reduces the overhead of SDI. Moreover, MTS does

not need any optimization and the implementation is fairly

simple.

IV. NUMERICAL RESULTS

In this Section, we numerically compare the overhead of

MTS and SDI methods where the number of data classes are

TABLE I
THE OVERHEAD OF SDI AND MTS METHODS FOR VARIOUS RECEIVING RATES OF DATA CLASS 1 AND 2, (r1, r2), WHEN K = 1000 AND M = 2 AND

THE PERCENTAGE OF OVERHEAD REDUCTION

(r1, r2) (0.4, 0.45) (0.4, 0.65) (0.4, 0.83) (0.5, 0.63) (0.5, 0.75) (0.5, 0.93) (0.6, 0.71) (0.6, 0.85) (0.6, 0.93) (0.7, 0.81) (0.7, 0.89) (0.7, 0.95)
kSDI 231 193 162 174 153 114 141 116 95 106 90 62

k′
MTS

158 132 110 119 105 79 97 80 66 74 62 43

OR% 32 31 31 31 31 31 31 31 31 30 30 30

TABLE II
THE OVERHEAD OF SDI AND MTS METHODS FOR VARIOUS RECEIVING RATES OF DATA CLASS 1 AND 2, (r1, r2), WHEN K = 2000 AND M = 2 AND

THE PERCENTAGE OF OVERHEAD REDUCTION

(r1, r2) (0.4, 0.45) (0.4, 0.65) (0.4, 0.83) (0.5, 0.63) (0.5, 0.75) (0.5, 0.93) (0.6, 0.71) (0.6, 0.85) (0.6, 0.93) (0.7, 0.81) (0.7, 0.89) (0.7, 0.95)
kSDI 324 270 226 243 215 160 198 163 134 149 126 88

k′
MTS

223 187 157 169 149 111 137 113 93 104 88 61

OR% 31% 31% 31% 31% 31% 31% 30% 30% 30% 30% 30% 30%

TABLE III
THE OVERHEAD OF SDI AND MTS METHODS FOR VARIOUS RECEIVING RATES OF CLASS 1, 2, AND 3, (r1, r2, r3), WHEN M=3 AND K = 1000 AND THE

OVERHEAD REDUCTION IN PERCENTAGE

(r1, r2, r3) (0.3, 0.47, 0.6) (0.3, 0.53, 0.72) (0.3, 0.69, 0.94) (0.4, 0.55, 0.63) (0.4, 0.65, 0.73) (0.4, 0.67, 0.9) (0.5, 0.63, 0.76) (0.5, 0.65, 0.84) (0.5, 0.71, 0.88)
kSDI 300 266 178 255 241 194 239 203 194

k′
MTS

162 144 98 139 131 107 130 111 106

OR% 46% 46% 45% 45% 45% 45% 45% 45% 45%

M = 2 and M = 3 and the total transmission time, i.e., data

plus overhead is equal for both methods. We consider total

transmission time as K = 1000 and K = 2000 time slots.

For a certain δ and a fixed K with various erasure rates, the

overhead is found. Here we added the constraint that after

K transmissions all classes should be done by transmission

of one block. Thus, the block size of different classes vary.

This has no effect on the overhead comparisons of these two

methods, and is merely done for the ease of comparison.

In SDI, the overhead for data class m, km, m = 1, . . . ,M
is found for each class separately and the overall overhead is

obtained from Eq. (3). For MTS method, by using Eq. (5) the

overhead can be calculated as well.

Table I provides the results for M = 2 and K = 1000.

(r1, r2) is the receiving rate of users in class one and two

respectively. Table II represents the same results for K =
2000 and Table III shows the results for M = 3 and K =
1000 where in all tables ri shows the receiving rate of class

i. To compare these methods more directly, we also report

the percentage of overhead reduction (OR) by MTS. If k is

the overhead of SDI and k′ is the overhead of MTS, then the

overhead is reduced by

OR =
k− k′

k

The results shows that the needed overhead of MTS method

is smaller than SDI method in all three cases. As expected,

by increasing K , the ratio overhead/K for both methods

is reduced. For asymptotically large K, since the channel

behavior converges to its average, the overhead compared to

the data block size will be negligible for both methods.

V. CONCLUSION

We studied the problem of transmitting different QoS data

classes to users with various erasure rates. Each data class

was intended for any user whose erasure rate was better than

a predefined threshold. Since for some applications such as

multimedia small block length is needed and in that case the

number of erasures introduced by the channel can significantly

be greater than its average, a large overhead may be needed

for acceptable probability of success.We studied the effect of

the block length on the overhead and provided an analysis to

compare different solutions in terms of their overhead. Our

results showed that MTS requires a much lower overhead

compared to SDI.

REFERENCES

[1] D. MacKay, “Fountain codes,” Communications, IEE Proceedings-, vol.
152, no. 6, pp. 1062–1068, Dec. 2005.

[2] M. Luby, “LT codes,” in Proc. 43rd Annu. IEEE Symp. Foundations of

Computer Science (FOCS), Vancouver, BC, Canada, Nov. 2002, pp. 271–
280.

[3] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[4] D. Sejdinovic, D. Vukobratovic, A. Doufexi, V. Senk, and R. Piechocki,
“Expanding window fountain codes for unequal error protection,” Com-

munications, IEEE Transactions on, vol. 57, no. 9, pp. 2510 –2516, Sep.
2009.

[5] D. Vukobratovic, V. Stankovic, D. Sejdinovic, L. Stankovic, and Z. Xiong,
“Scalable video multicast using expanding window fountain codes,”
Multimedia, IEEE Transactions on, vol. 11, no. 6, pp. 1094 –1104, Oct.
2009.

[6] C. Yu, S. Blostein, and C. Wai-Yip, “Optimization of rateless coding
for multimedia multicasting,” in Broadband Multimedia Systems and

Broadcasting (BMSB), 2010 IEEE International Symposium on, Shanghai,
China, Mar. 2010, p. 1.

[7] ——, “Unequal error protection rateless coding design for multimedia
multicasting,” in Int. Symp. on Inform. Theory (ISIT), Austin, TX, Jun.
2010, p. 2438.

[8] W. Sheng, W.-Y. Chan, S. D. Blostein, and Y. Cao, “Asynchronous and
reliable multimedia multicast with heterogeneous QoS constraints,” in
Communications (ICC), 2010 IEEE International Conference on, Cape
Town, South Africa, May 2010, pp. 1 –6.

