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Abstract—In this paper, a list sphere decoding method based
on an extension of the signal noise ratio (SNR)-adaptive sphere
decoder (SSD) is proposed to perform joint iterative detection
and decoding in coded multiple-input multiple-output (MIMO)
systems. The SSD offers almost optimal symbol error rate (SER)
performance over the entire range of SNRs, while keeping its
complexity roughly constant for uncoded MIMO systems. The
proposed list SSD (LSSD) further improves the complexity of
detection schemes in coded MIMO systems, which can greatly
reduce the number of nodes visited when generating the can-
didate list. The simulation results show that the LSSD achieves
mostly equivalent performance to the original list sphere decoder
(LSD), and much lower complexity compared to the LSD.
Index Terms—Sphere decoder, MIMO, ML, soft information

I. INTRODUCTION

With the large demand for high rates wireless communi-
cations, multiple-input multiple-output (MIMO) systems are
capable of providing high speed transmission. To achieve the
capacity on a channel normally requires the help of channel
coding that provides redundancy to improve the reliability.
The sphere decoder (SD) is used to provide soft information
for coded MIMO systems. One jointly iterative detection and
decoding method has been proposed [1], which uses a list
version of the SD (LSD) to provide a combined detection
method for coded MIMO systems. In this scheme, the error
correction code (ECC) could be any code that can be decoded
by using soft inputs and outputs, such as convolutional codes
and turbo codes. There are several papers [2]–[4] focusing
on the improvements of the soft detection for coded MIMO
systems.
The optimal detector for spatial multiplexing MIMO sys-

tems is the maximum likelihood (ML) detector. However, the
complexity of the ML detector by exhaustive search grows
exponentially with the number of transmit antennas and with
the order of the signal constellation. As an alternative, the SD
has been developed to attain the ML performance with a low
complexity, especially for the high signal noise ratio (SNR)
region. The Fincke-Pohst (FP) SD and the more efficient
Schnorr-Euchner (SE) SD [5] are alternatives, which achieve
ML performance with a reduced complexity, especially for the
high SNR region. Nevertheless, the SD faces two challenges
over its complexity: (i) which is high in the low SNR region,
and (ii) which varies with the SNR. To address these chal-
lenges, many SD variants have been developed [6]–[9]. Two

proposed SDs [8], [9] obtain fixed complexity, and are also
capable of supporting soft outputs in the LSD.
An SNR-adaptive SD (SSD) was proposed previously for

the MIMO detection to achieve a low and roughly fixed level
of complexity over the whole SNR region, with a near-ML
performance [10]. The benefits of the SSD in uncoded MIMO
systems have been demonstrated. Moreover, this SSD also can
be extended to support the soft detection for coded MIMO
systems. In this paper, the soft extension of the SSD for
coded MIMO systems is developed with a list SSD (LSSD),
which generates a list of candidates and further reduces the
complexity of iterative detection at a negligible performance
loss. The proposed LSSD generates the candidate list for
iterative detection and decoding with a significantly reduced
complexity compared to the original LSD, while achieving a
similar performance.
The rest of this paper is organized as follows. Section II

of the paper describes the iterative detection and decoding
MIMO system model. Section III addresses the principle of
the soft MIMO detection. The LSSD and the complexity
measurement are discussed in Section IV. Simulation results
for both performance and complexity are drawn in Section V,
followed by the conclusions in Section VI.

II. SYSTEM MODEL

We consider a coded spatial multiplexing MIMO system
(Fig. 1). Information bits b as a frame of Mb are encoded by
the ECC module, whose output c goes through an interleaver
Π. The ECC can be convolutional code or turbo code in par-
ticular with code rate R, thus the length of the coded sequence
c is Mc = Mb/R. The interleaver here ensures the statistical
independence. The interleaved bits x are then modulated to the
channel symbols s and transmitted. Mx and Ms are the frame
length of x and s, respectively, where Mx = Ms log2(|Q|).
Therefore, for a N × N MIMO channel, a frame of Ms

symbols requires the transmission of Mch = Ms/N blocks
of data, corresponding to Mch different channel realizations.
For simplicity, the modulator is not depicted in Fig. 1.
The MIMO channel is a Rayleigh fading channel matrix

H with independent identically distributed (i.i.d.) elements
h̃ij ∼ CN (0, 1), a complex Gaussian variable with zero mean
and unit variance 1. As usual, the channel matrix is assumed
to be perfectly known by the receiver. The received signal
vector after the MIMO channel can be written as y = Hs+ n,
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Fig. 1. The system model of iterative detection and decoding

where the transmitted symbol vector s = (s1, s2, . . . , sN )T

consists of N symbols from a constellation Q (a complex
constellation such as 16-QAM). y = (y1, y2, . . . , yN)T , and yi
is the signal received at the ith antenna (i = 1, 2, . . . , N ). n =
(n1, n2, . . . , nN )T is the vector of i.i.d. additive white Gaus-
sian noise (AWGN) where ni ∼ CN (0, σ2) (i = 1, 2, . . . , N ).
At the receiver, several iterations of soft information ex-

change [1] occur between the ECC decoder and MIMO
detector. The MIMO detector in this case generates soft a
posteriori informationLD1 by processing the received signal y
and the a priori information LA1 from the ECC decoder. This
reliability information is expressed by a posteriori probability
(APP) in the form of log-likelihood ratios (LLR). For example,
The LLR of bit xk(k = 1, 2, . . . ,Mx) is defined as

L(xk) = ln
Pr[xk = +1]

Pr[xk = −1]
. (1)

Note that the amplitude levels −1 and +1 represent binary 0
and 1, respectively.
For the first iteration, the LA1 is initialized to be 0, and

the extrinsic information LE1 = LD1 − LA1 generated by
the MIMO detector is deinterleaved by Π−1 to serve as the
a priori information for the ECC decoder. The ECC decoder
then generates the extrinsic information for the next iteration.
This process continues until a stopping criterion is met, such
as a predefined iteration number or a performance bound. In
the final iteration, the ECC decoder obtains the a posteriori
information LD2,b on the uncoded bits b, which is sent to the
slicer that outputs the final bit estimates b̂.

III. SOFT MIMO DETECTOR

For simplicity, we assume that we are working on a block
of bits x with NB = N log2(|Q|), where NB is the number
of bits in one block. The optimal detector obtains the exact
APP for each bit xk (k = 1, 2, . . . , NB)

LD1(xk|y) = ln
Pr[xk = +1|y]

Pr[xk = −1|y]

= LA1(xk) + LE1(xk|y). (2)

Here, the Bayes’ theorem and independence of the bits xk

due to the interleaver are used to obtain the a priori LLRs
LA1(xk) and the extrinsic LLRs LE1(xk|y). From [1], the
extrinsic information can be denoted by

LE1(xk|y) = ln

∑
x∈Xk,+1

p(y|x) · exp( 12x
T
[k]LA1[k])∑

x∈Xk,−1

p(y|x) · exp( 12x
T
[k]LA1[k])

, (3)

where Xk,+1 and Xk,−1 denote the sets of bit vectors
x = (x1, x2, . . . , xNB

)T having xk = +1 and xk =
−1, respectively. x[k] represents the subvector of x by
omitting the kth bits xk; LA1[k] denotes the subvector of
LA1 = (LA1(x1), LA1(x2), . . . , LA1(xNB

))T by omitting the
LA1(xk).
By applying (3) and the Max-log approximation, the extrin-

sic information becomes

LE1(xk|y) ≈
1

2
max

x∈Xk,+1

{
−

1

σ2/2
‖y −Hs‖2 + xT

[k]LA1[k]

}

−
1

2
max

x∈Xk,−1

{
−

1

σ2/2
‖y−Hs‖2 + xT

[k]LA1[k]

}
.

(4)

In spite of these simplifications, the computing of
LE1(xk|y) has an exponential complexity O(|Q|N ), and is
prohibitively complex for the systems with a large number of
antennas and with high-order modulations. The main task here
is to find the candidate list in (4). The LSD [1] is proposed
to quickly find the candidate list by using the SD. Therefore,
in this paper, the new LSSD further reduces this complexity.

IV. LIST SNR-ADAPTIVE SPHERE DECODER

The LSSD is a soft extension of the SSD [10] that efficiently
reduces the complexity. The SSD focuses on finding the near-
ML estimate, while the LSSD is used to obtain the set of
candidates around the ML estimate that can be exploited to
calculate the soft extrinsic information of (4) for the iterative
detection and decoding. Next, the basic idea of the SSD is
briefly discussed and then extended to be the LSSD.

A. SNR-adaptive Sphere Decoder
Compared with the conventional SDs (FP and SE), the SSD

[10] further reduces the complexity and obtains a roughly fixed
complexity at a negligible performance loss.
The traditional SDs prune only the nodes but do not lie

in the ML path. This type of pruning is called admissible
pruning. However, admissible pruning achieves only a small
reduction in the complexity, especially in the low SNR region.
Therefore, to achieve substantial complexity savings, more



than admissible pruning is required. The SSD is to scale the
search radius of the hypersphere base on the SNR, which is
defined as

d2SSD =
ρ

ρ+ C0
× d2, (5)

where dSSD is the radius in the SSD, ρ is the SNR of the
MIMO system, d is the radius of the hypersphere, and C0 is a
predefined constant to guarantee that more nodes are pruned
in the low SNR region and fewer points are pruned in the high
SNR region. As a result of

lim
ρ→∞

ρ

ρ+ C0
= 1, (6)

the performance of the SSD reverts to that of the original SD
when the SNR is sufficiently high.

B. List Extension of the SSD
In this section, the soft extension of the SSD in coded

MIMO systems is obtained. The LSSD generates a list L
of NL candidates by searching the tree by a rule. This list
includes the ML estimate, but the size of the list satisfies
1 ≤ NL < 2Nc·N , where Nc = log2 (|Q|) is the number
of bits per modulated symbol.
The extrinsic information in (4) can be rewritten as Eq. (7),

where L∩Xk,+1 and L∩Xk,−1 represent the subset of vectors
L having xk = +1 and xk = −1, respectively.
In order to attain the candidate list, the LSSD is needed

to constraint the hypersphere. By factorizing channel matrix
(H = QR) and preprocessing the received signal appropri-
ately, the ML detection rule for the equivalent real system
may be given as

ŝ = argmin
s∈Φ

||z−Rs||2, (8)

where Φ is the set of all points which satisfy ||z−Rs||2 ≤
d2LSSD, dLSSD is the radius of the hypersphere.
Steps to find the candidates list using the new LSSD can

be shown as following:
1) Initialize the radius dLSSD = ∞ to guarantee at least

one point in the candidate list is found, and set the num-
ber of candidates NL. Moreover, let k = m (m = 2N
for real matrix) and p = 1;

2) Generate all the children denoted by the set T in the
k-th level of the search tree which satisfy⎛

⎝zk −
m∑

j=k

rk,jsj

⎞
⎠

2

≤ d2k, (9)

where d2k = d2LSSD−
m∑

i=k+1

(
zi −

m∑
j=i

ri,jsj

)2

and k ∈

{m,m− 1, . . . , 1};

3) Sort the components in T according to the ascending
order of the branch cost ci in this level, where

ci =

⎛
⎝zi − ri,isi −

m∑
j=i+1

ri,jsj

⎞
⎠

2

(10)

and si ∈ T , i ∈ {1, 2, . . . , N
′

}. N
′

is the number of
elements in T ;

4) From i = 1 to N
′

, let ŝk = si.
a) If k = 1, ci < d2k and p ≤ NL (the candidate list

is not full), we add this new point to the list as the
pth point Candp = ŝ, and let the radius be

d2Candp
= ‖z−Rŝ‖2 (11)

and p = p+ 1;
b) Otherwise, when the list grows full (p > NL),

we compare the radius of this new point ŝ with
maximum value in dCand, replace the point with
the biggest radius if the new point has smaller
radius, and also set the maximum radius as the
radius of ŝ. Meantime, the dLSSD is updated to be

d2LSSD =
ρ

ρ+ C0
max(d2cand); (12)

5) If k > 1, let k = k − 1 and go back to 2).
The LSSD significantly reduces the complexity of generat-

ing the candidate list L. First, the radius is updated whenever a
better point than the worst point in the list is found. Second, the
candidate list of the LSSD does not need to be generated for
every iteration. Once computed, it is stored in the memory and
used by every iteration. Therefore, for every iteration, the only
information needed to be updated is the a priori information
from the channel decoder.
Similar to the MIMO detector, the a posteriori information

of the channel decoder can also be decomposed into the a
priori information and extrinsic information for the iterative
detection and decoding. Therefore, the details of channel
decoder are not shown in this paper.

C. Complexity Measurement
An exact complexity analysis of the LSSD algorithm ap-

pears intractable. This paper evaluates the computational com-
plexity of generating the candidate list by resorting to the
simulation. Therefore, we use the expected average number of
nodes visited at all levels of the search tree as the complexity,
which is given by

C(m,σ2, d2) =
m∑

k=1

ϕk, (13)

where ϕk is the number of nodes visited at kth level within
the hypersphere of radius d.

LE1(xk|y) ≈
1

2
max

x∈L∩Xk,+1

{
−

1

σ2/2
‖y −Hs‖2 + xT

[k]LA1[k]

}
−

1

2
max

x∈L∩Xk,−1

{
−

1

σ2/2
‖y −Hs‖2 + xT

[k]LA1[k]

}
. (7)
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Fig. 2. Performance comparison for different C0 in a 4× 4 16-QAM coded
MIMO system with a maximum of 4 iterations.

V. SIMULATION RESULTS

In this section, we shall assess the advantages of the LSSD
for a coded MIMO system. The performance measured by
the bit error rate (BER) and the complexity measured by the
number of nodes visited for a 4× 4 coded MIMO system are
shown here. The LSSD is compared to the original LSD with
different values of parameter C0. The systematic recursive
convolutional code with rate R = 1/2 is exploited to encode
the transmitted bits sequence b with the frame length 8192,
where the feed-forward and feedback-generating polynomials
are G1(D) = 1+D2 and G2(D) = 1+D+D2 with memory
length 2 [1]. A random interleaver is exploited here.
In order to choose the best C0, the performance and

complexity comparison of the LSSD for different values of
C0 are shown. It is easy to find a proper value for C0 to attain
a nice trade-off between the performance and the complexity.
From Fig. 2 the performance is similar for differentC0 without
iterations. But for 4 iterations, the performance gets closer
to that of the conventional LSD when C0 decreases, such
as C0 = 1, 2. To maintain the performance, a smaller value
should be chosen for C0.
The average number of nodes visited is shown in Fig. 3.

The new LSSD obtains a significantly reduced complexity
compared to the original LSD. For example, the complexity
of the LSSD with C0 = 2 is around 50% of the complexity
of the LSD when SNR = 8dB. The complexity for the LSSD
with different values of C0 is also investigated in Fig. 3. As
C0 increases, the complexity decreases more. For example,
the average visited nodes are about 2×103 by the LSSD with
C0 = 4, around 2.5 × 103 with C0 = 2 and approximate
3× 103 with C0 = 1, respectively. Therefore, considering the
performance and the complexity, C0 = 2 should be chosen
for a 4 × 4 16-QAM coded MIMO system. Similarly, an
appropriate value for other MIMO systems can also be found
after several trials.
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Fig. 3. Complexity comparison for different C0 in a 4× 4 16-QAM coded
MIMO system a maximum of 4 iterations.

VI. CONCLUSIONS

For coded MIMO systems, this paper introduced a list SNR-
adaptive sphere decoder (LSSD), as a soft extension of the
previously proposed SSD. The LSSD uses the SNR-dependent
idea in generating the candidate list, and achieves a very
close performance to the conventional LSD with a significantly
reduced complexity. By iterative detection and decoding, the
LSSD further improves the complexity of detection schemes
in coded MIMO systems at a negligible performance loss. The
simulation results indicate that our proposed LSSD achieves
nearly equivalent performance to the conventional LSD with
much lower complexity than the latter.
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