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New Simple Approximations for Error Probability and Outage in Fading
Y. Dhungana and C. Tellambura, Fellow, IEEE

Abstract—A new class of approximations for the bit error rate
(BER), the symbol error rate (SER), and the outage of wireless
digital communication systems impaired by fading and noise is
derived. As compared to conventional high signal-to-noise ratio
(SNR) approximations [1], these new approximations are better
by an order of magnitude in the high SNR regime and retain their
accuracy for a wider range of SNRs. They require the first two
terms of the Taylor expansion of the channel probability density
function (PDF). The resulting approximations for two diversity
combiners, multiple-antenna eigenmode transmission and several
important modulation schemes are developed.

Index Terms—Error probability, outage probability, finite
signal-to-noise ratio (SNR), asymptotic SNR, fading.

I. INTRODUCTION

PERFORMANCE analysis of wireless systems with vari-
ous digital receiver techniques over fading channels in-

volves averaging the performance metric h(γ), where γ is the
instantaneous signal-to-noise ratio (SNR) and h(·) represent
measures such as outage, error rate, capacity and others. By
representing γ = βγ̄, where γ̄ is the unfaded link SNR or
the average SNR and β is a channel-dependent non-negative
random variable, the average is performed over the probability
density function (PDF) f(β) [1]. Exact closed-form solutions
may not always be possible or may be cumbersome and
may not provide direct insight into important parameters that
governs the system performance. Thus, simple approximations
to develop insight and suitable for applications such as cross-
layer optimal system design [2], is highly desirable. Several
high-SNR approximations and bounds may be found in [1],
[3]–[6].

Common h(γ) includes Q(
√
κγ̄β) to represent the error

probability of various modulation schemes, where Q(·) is the
Gaussian Q-function. Typically, such h(γ) decays exponen-
tially at high SNR, i.e., h(γ) = O(e−γ̄β) as γ̄ → ∞, then
the high-SNR performance is dominated by the behavior of
f(β) at β → 0+. Wang and Giannakis [1] exploited this fact
to suggest the approximation of f(β) by the first term of its
Taylor series expansion at β = 0, i.e., f(β) ≈ aβt as β → 0+.
In [1], the average error probability and outage probability
were quantified in terms of coding gain Gc (also known as
the SNR gain or combining gain) and diversity gain (diversity
order) Gd as

E[h(γ)] ≈ (Gcγ)
−Gd as γ → ∞, (1)

where Gc and Gd are expressed in terms of a and t. With this
approach, they unified the analysis of many communication
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systems over a wide spectrum of fading channels and hence,
this has been widely used in recent research ( [1] has been
cited over 400 times). However, eq. (1) is not accurate for
the low SNR regime. For example, in some cases, eq. (1) is
accurate only when the SNR exceeds 20 dB or more and error
rates below 10−7. However, current wireless systems operate
at 3-20 dB with error rates as high as 10−2 [7]. Thus, new
approximations more accurate than eq. (1) are desirable.

Although approximations and bounds for high to moderate
SNRs are available, they are not general. For example, error
probability bounds in [5] are applicable only to N -branch
diversity systems employing two-dimensional signaling con-
stellations. However, unified approach (e.g., [1]) accurate over
a wide range of SNRs is still lacking and this paper fills this
gap. The contributions are summarized as follows.

1) A unified analysis of digital communication systems
impaired by fading and noise is presented by deriving a
new class of approximations for the bit error rate (BER),
symbol error rate (SER), and outage probability.

2) It is demonstrated that our new approximations are not
only more accurate than the conventional approximation
eq. (1) in the high SNR regime, but also retain accuracy
for a wide range of SNRs.

3) The new approximations are computed by using only the
first two terms of the Taylor series of f(β) at β = 0. We
show how to extract these two terms from the moment
generating function (MGF).

II. PRELIMINARIES

The Taylor series expansion of the PDF of β is given as

f(β) = aβt + a1β
t+1 +O(βt+2) as β → 0+, (2)

where the real constants a, a1 and t are assumed known.
Since f(β) at β → 0+ determines the high-SNR performance,
we may simply replace f(β) with aβt + a1β

t+1, the first
two terms of the Taylor series. However, simply averaging
the performance measure h(βγ̄) over aβt + a1β

t+1 is not
interesting and amounts to a rather trivial extension of [1].
However, by noting that axt + a1x

t+1 = axtexa1/a as
x→ 0+, we propose the approximation

f(β) ≈ aβte−αβ (3)

as β → 0+, where α = −a1

a . Note that as we require eq. (3)
to agree with the actual PDF only for suitably small β, it may
not be a proper PDF. The intuition behind this approximation
is that it matches the two-terms Taylor expansion of f(β) as
β → 0+ exactly; moreover its exponential form facilitates
the derivation of handy closed-form solutions and offers
significant improvement in the SNR range and accuracy.
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A. Use of MGF to obtain our new class of approximations

Our new class of approximations requires the Taylor expan-
sion of f(β) at β = 0. This expansion is readily computed
if the explicit PDF is available. In many cases, however, it is
not readily available, but the MGF is. Thus, it is natural to
use the MGF to extract the required information.

Proposition 1. When the MGF Mβ(s) = E
[
e−sβ

]
can be

expanded in an absolutely convergent series for |s| > R of
the form Mβ(s) = c0

sτ + c1
sτ+1 + O

(
1

sτ+2

)
as s → ∞, then

t = τ − 1, a = c0
Γ(τ) and a1 = c1

Γ(τ+1) , where Γ(·) is the
Gamma function.

Proof: Through term by term inverse laplace transforma-
tion of the asymptotic series of the MGF, the series expansion
of the PDF can be expressed as f(β) = c0β

τ−1

Γ(τ) + c1β
τ

Γ(τ+1) +

O
(
βτ+1

)
as β → 0+ [8, Theorem 35.2].

Example 1: Consider an Nr branch maximal ratio combin-
ing (MRC) system over independent and identically distributed
(iid) Rayleigh fading. The MGF of the channel gain is
Mβ(s) = 1

(1+s)Nr , whose asymptotic expansion for s → ∞
can be obtained as Mβ(s) =

1
sNr

(
1− Nr

s

)
+O( 1

sNr+2 ), and
thus, a, a1 and t are readily obtained.

III. AVERAGE PROBABILITY OF ERROR

Here, we derive a new class of approximations for the BER
or SER of several modulation schemes. Since the Q-function
is a common representation of many BER or SER expressions,
our main result is the following proposition.

Proposition 2. For modulation formats with the conditional
error rate of the form Q(

√
κγβ), the average is given by

E

[
Q
(√

κγβ
)]

=
2ta

√
κγ Γ(t+ 3

2 )√
π(t+ 1)(2α+ κγ)t+

3
2

2F1

(
1, t+

3

2
, t+ 2,

2α

2α+ κγ

)
+O

(
γ−(t+3)

)
, (4)

where 2F1 (p, q; r; z) is the Gauss hypergeometric function
[9, Eq. 9.100].

Proof: By averaging Q(
√
κγβ) over eq. (3) with the help

of [9, Eq. 6.286.1], the first term of the right hand side of
eq. (4) is obtained. Since the error term of eq. (3) is O(βt+2),
by considering a small neighborhood of β = 0, we can show
that the approximation error is O

(
γ−(t+3)

)
.

Remarks:

1) Proposition 2 covers many coherent modulation
schemes. For example, it gives average BER of binary
phase shift keying (BPSK) (κ = 2) and coherently
detected binary frequency shift keying (FSK) with or-
thogonal signaling (κ = 1) or minimum correlation
(κ = 1.217), and average SER of M-ary PAM (κ =
6/(M2 − 1) with eq. (4) multiplied by a constant
2(M − 1)/M ).

2) If t is an integer, 2F1 (· · · ) in eq. (4) can be replaced
with a finite polynomial type expression (e.g., [10, Sec.
14.4] ). However, the former is valid for all real values
of t, which may be useful in cases such as Nakagami-
m fading with non-integer m, and is easy to compute.
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Fig. 1. BER of BPSK for Nr branch MRC with independent channel gains
βi ∼ G(1, i), i = 1, 2, . . . , Nr .

Moreover, since 2α/(2α + κγ) < 1, the series is
absolutely convergent.

3) Since 2F1 (p, q; r; z) = 1 as z → 0, eq. (4) clearly
indicates that the diversity order is Gd = 1 + t, and

the coding gain is Gc =
{

2ta
√
κΓ(t+ 3

2 )√
π(t+1)

}− 1
1+t

. These
values are exactly the same as found by [1].

4) The error term of eq. (4) is O(γ −(Gd+2)) – see Fig. 2.
5) Last but not least, for this method to work, a1 must be

negative. This is certainly true for many cases.
We next present two applications and generalizations of Propo-
sition 2.

A. Performance in Nr branch MRC in independent fading

Consider extending Example 1 to the more general case
with β =

∑
βi where βi, i = 1, . . . , Nr, are the independently

distributed channel gains of the Nr branches. Suppose for each
branch, we have the following information:

Mβi(s)
∣∣∣
s→∞

=
ci
sμi

+
di

sμi+1
+O(

1

sμi+2
), i = 1, . . . , Nr.

Since the MGF of β is the product of the MGF’s of the
summands, we find

Mβ(s)
∣∣∣
s→∞

=

∏
i ci

s
∑

μi
+

∑
j dj

∏
i�=j ci

s1+
∑

μi
+O

(
1

s2+
∑

μi+2

)
,

i = 1, . . . , Nr.

Thus, a, a1 and t are immediately found via Proposition 1.
Fig. 1. shows the BER of MRC with BPSK over indepen-

dently faded Nr branches with Gamma distributed channel
gains, i.e. βi ∼ G(ki, θi), i = 1, 2, . . . , Nr, where the
parameters of Gamma distribution are chosen to be ki = 1
and θi = i. Clearly, for each branch, ci = 1

i , μi = 1 and
di = − 1

i2 and a, a1, and t are readily obtained. The exact
result, the new approximation, eq. (4) and conventional one,
eq. (1) are compared. Note that while the conventional one is
accurate only at high SNR, say above 10 dB, eq. (4) works for
medium-to-high SNRs and even at very low SNRs, -10 dB.

However, to further ascertain the relative accuracy levels
of the new approximation eq. (4) and the conventional one
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Fig. 2. Accuracy of new and conventional approximations for Nr branch
MRC in independent fading with βi ∼ G(1, i), i = 1, 2.

eq. (1), we present Fig. 2, where the absolute errors of both of
these approximations, i.e., the absolute value of the difference
(exact−approximate) are plotted in log-log scale. The slope
lines are also drawn to indicate the orders of the errors and
hence verify that as γ → ∞, the error term of eq. (1) has a
negative slope of Gd + 1, whereas that of eq. (4) is Gd + 2.
This advantage translate into the improved accuracy of the
new approximation over eq. (1) in the whole SNR range.

B. Performance in Nr branch SC in iid Rayleigh fading

In selection combining (SC), the branch with the strongest
SNR is selected. For Nr branch SC in iid Rayleigh fading,
the PDF of β can be written as

f(β) = Nre
−β(1− e−β)Nr−1, β ≥ 0. (5)

We need the first two non-zero terms of the Taylor expansion
of f(β). By differentiating f(β), we obtain

φ(l) =
∂lf(β)

∂βl

∣∣∣
β=0

= Nr

Nr−1∑
k=0

(
Nr − 1

k

)
(−1)k+l(k + 1)l,

(6)
where l = 0, 1, . . . We find that φ(l) = 0 for l < Nr − 1, thus
t = Nr − 1. Then, a = φ(Nr−1)

(Nr−1)! and a1 = φ(Nr)
Nr!

. Proposition
2 can now readily be applied.

The average BER of the system with BPSK is plotted
against γ in Fig. 3. For each value of Nr, exact result,
conventional approximation eq. (1) and new approximation
eq. (4) are compared. For Nr = 1, eq. (4) coincides with the
exact result. For larger values of Nr, it is highly accurate from
high to medium range while being fairly accurate at low SNR
values. Its improved accuracy over eq. (1) is again evident.

C. Generalization to other modulation schemes

Proposition 2 covers only coherent modulation formats
whose conditional error rates lend to a Q-function represen-
tation. However, this representation does not hold for nonco-
herent and differential modulations. Two examples of these
modulations are considered below by deriving new closed-
form approximations. The error term O

(
1

γt+3

)
is not shown

for brevity.
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Fig. 3. BER of BPSK for Nr branch SC with iid Rayleigh fading.

1) M-ary differential phase shift keying (MDPSK): For
MDPSK, averaging conditional SER expression [11, Eq. (19)]
over f(β) = aβte−αβ as β → 0+, the SER can be obtained
as

Ps(γ) =
aΓ(t+ 1)

παt+1
IV

(
0, π − π

M
, cos

π

M
,
γ

α
sin2

π

M
, t+ 1

)
,

(7)
where IV (θl, θu, r, p, q) is the integral of the form∫ θu
θl

[(1 + r cos θ)/(1 + p+ c cos θ)]
q
dθ with closed-form so-

lution available in [11, Eq. (11)].
2) Noncoherent correlated binary signaling: The average

BER of noncoherently detected equal energy, equiprobable
binary signals can be obtained as follows by averaging [11,
Eq. (21)] over f(β) = aβte−αβ as β → 0+

Pb(γ) =
aΓ(t+ 1)

2παt+1
IV

(
0, π,

−2uv

u2 + v2
,
(u2 − v2)2γ

2α(u2 + v2)
, t+ 1

)
,

(8)

where u =
√
(1−

√
1− ρ2)/2, v =

√
(1 +

√
1− ρ2)/2,

and 0 ≤ ρ ≤ 1 is the absolute value of correlation coefficient.
ρ = 0 corresponds to orthogonal binary FSK.

IV. OUTAGE PROBABILITY

Outage probability, an important quality-of-service measure
for fading channel communication, is the probability that the
instantaneous SNR falls below a predefined threshold γT .

Proposition 3. As per the approximation eq. (3), f(β) ≈
aβte−αβ as β → 0+, the outage Pr[γβ ≤ γT ] is

Pout(γT , γ) =
a

αt+1
γ(t+ 1, αγT /γ) +O

(
1

γt+3

)
, (9)

where γ(a, x) is the incomplete Gamma function [9, Eq.
8.350.1].

Proof: immediately follows from the definition of
γ(a, x).

Conventionally, analogous to eq. (1), high-SNR outage is
approximated as Pout(γT , γ) ≈ (Ocγ)

−Od [1] where Od,
and Oc are outage diversity and coding gain. Note that since
γ(n, x) = xn/n as x → 0, eq. (9) indicates that Od = t + 1

and Oc =
1
γT

(
a

t+1

)− 1
t+1

, which is consistent with [1].
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Fig. 4. Outage probability of Nr branch SC over iid Rayleigh fading.

The outage probability, eq. (9), of Nr branch SC in iid
Rayleigh fading is plotted against γ/γT in Fig. 4, along with
the exact value and the conventional approximation. As with
the BER case, the latter is accurate only at high SNR values.
However, with eq. (9), the accuracy holds from high SNRs to
medium SNRs (even low SNRs in some cases). For example,
with Nr = 4, eq. (9) is accurate from 0 dB and above; whereas
the conventional approximation, from 15 dB and above.

V. OTHER APPLICATIONS

Our new approximations facilitate rapid analysis of error
and outage performance of wireless systems. In addition to
the two classical diversity combining examples, we next show
a multiple input multiple output (MIMO) example.

Example 2: In MIMO, if the transmission is only along
the strongest eigenmode so that the receiver output SNR is
maximized, this is known as beamforming. The distribution
of this eigenmode is given in [12, Eq. (9)]. The extraction of
a, a1 and t is illustrated next.

Consider a H ∈ C Nr×Nt MIMO channel whose columns
are independent zero mean complex Gaussian random vectors.
Let n = max (Nt, Nr) and m = min (Nt, Nr). The cumula-
tive distribution function (CDF) of the instantaneous SNR for
the strongest eigenmode is given by [12]

FΛ(x) = K−1
m,n|Ψ(x)| = K−1

m,n

∑
∀σ sgn(σ )

∏m
i=1 ψσ(i) ,i(x),

where Km,n =
∏m

k=1 Γ(n−k+1)Γ(m−k+1) and |·| denotes
the determinant. The second equality is obtained by applying
Leibniz formula for the determinant of m×m matrix Ψ(x) =
[ψi,j(x)]m×m where ψi,j(x) = γ(n−m+ i + j − 1, x) and
γ(·, ·) is the incomplete gamma function. The summation is
over all permutations σ of {1 . . . ,m} and sgn(·) is +1 or −1
depending on whether the permutation σ is even or odd. Since
γ(a, z) ≈ za

(
1
a − z

(a+1)

)
as z → 0+, we find

FΛ(x) = K−1
m,nx

mn
∑
∀σ

sgn(σ )

(
m∏
i=1

1

(u − 1 + σ(i) + i)
−

x
m∑

k=1

1

(u+ σ(k) + k)

m∏
i=1
i�=k

1

(u− 1 + σ(i) + i)

⎞
⎠+O(xmn+2),

where u = n − m. We thus obtain t = mn − 1 and a and
a1 (details omitted for brevity). Having derived the required
parameters, the error and outage performance can be instantly
obtained using our derived results.

VI. CONCLUSION

New simple approximations for the average error probabil-
ity and the outage of wireless systems impaired by fading and
noise were derived. Illustrative examples of MRC, SC and
MIMO beamforming were presented. The advantages of the
new approximations are two fold:

1) They are much more accurate: on a log-log scale,
the approximation error decays at a rate of (Gd + 2)
compared to that of (Gd + 1) for eq. (1)).

2) They are accurate over a wide range of SNRs.

The price for these advantages is that these approximations
require the first two terms of the Taylor expansion of f(β)
at β = 0, whereas the conventional approximation requires
only the first term. For a large class of problems, when the
explicit PDF is unavailable, those two terms can be extracted
from the MGF (Proposition 1). With the potential to facilitate
rapid performance analysis of a myriad of wireless systems,
the new approximations may be used in many applications
hitherto severed by eq. (1).
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