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Abstract—We introduce a family of sparse random linear
network codes with outer-code. Due to the bold role of the
incomplete gamma function in their design, we call these codes
“Gamma codes”. We show that Gamma codes outperform all the
existing linear-complexity network coding solutions in terms of
reception overhead, while keeping the encoding and decoding
complexity linear in the block length.

I. INTRODUCTION AND BACKGROUND

Network coding for multicast turned into a promising re-
search field soon after the basic concept of network coding was

introduced in [1]. The idea of linear network coding, where
the transmitted packets are formed as linear combinations of

information packets, was introduced in [2]. This idea was

further extended using an algebraic approach to find the
coefficients of the linear combination in [3]. Later, using

random coefficients, it was shown that random linear network

coding for multicast is sufficient to achieve zero reception
overhead1 with arbitrarily close to zero failure probability

when the code alphabet q is large enough [4], [5].
In brief, encoding of random linear network codes is done

by forming random linear combinations of data packets at

the source and every other node of the network. For block
length of K information packets, each containing d symbols,

the complexity of encoding is therefore of O(Kd) operations
in GF (q) per coded packet. Each receiver receives enough

linear combinations to form a full rank linear equation system,

and performs the decoding by solving it. The complexity of
decoding in this case is of order O(K2+Kd) per information

packet, which is impractical for applications with moderate to

large block length. We will refer to this coding scheme as
dense random linear network coding.

One of the most important steps in reducing the complexity
of network coding was the idea of fragmentation of data at

the source to distinct generations [6]. Restricting the random

linear combinations to be formed only within each generation,
the final linear equation system will be sparse and locally

solvable inside each generation. However, to resolve the
problem of rare blocks, and block reconciliation, a significant

number of control messages needed to be exchanged [7], [8].

Consequently, [9] proposed random scheduling for generations
to avoid control traffic. Also known as sparse random linear

network coding (SRLNC), this idea reduces the complexity

1In this work we define the reception overhead as the number of received
packets required for successful decoding divided by the number of information
packets, minus one.

of encoding per coded packet and the complexity of decoding

per information packet respectively to O(gd), and O(g2+gd),
where g is the number of packets in each generation. For small

d this complexity is feasible, making SRLNC an attractive
approach in practice. On the other hand, the reception overhead

in this scheme, affected by the curse of coupon collector
phenomena, will not vanish even for very large number of
information packets or alphabet size [10]. For sufficiently

large number of generations the reception overhead will grow

with K as O(log(K)), hence raising a trade-off between
complexity and reception overhead.

In independent attempts to reduce the logarithmically

growing reception overhead in the computationally efficient

SRLNC, [11] and [12] proposed overlapped generations (i.e.,
some generations share common packets), so that generations

could help each other to decode faster. In [10] a new over-
lapped SRLNC scheme, called the Random Annex code was
introduced and shown to outperform all the previous schemes.

Another idea for avoiding the logarithmically growing over-
head of SRLNC suggested in [9] is to use an outer-code.

In fact, [9] shows that using an outer-code can reduce the
overhead to a constant, independent of K . However, in [9],

the outer-code is considered as a separate block, which will

come to participate in the decoding after the recovery of a
1 − δ fraction of the generations, for some small predefined

δ. This outer-code is then responsible for the recovery of

the remaining δ fraction of the generations. This design also
ignores the received packets pertaining to the remaining δ
fraction of generations.

It is easy to show that receiving enough packets to recover a

1−δ fraction of the generations for some small δ, without the
help of outer-code raises a significant probability of receiving

more than g packets for some generations. This results in

linearly dependent packets and hence a significant reception
overhead which will not vanish even as the block length tends

to infinity.

A. Main Idea

Considering overlapped SRLNC, it is clear that the overlap
between different generations can be viewed as a simple

repetition outer-code. Not limiting ourselves to such a simple

outer-code, in this work we study the design of SRLNC with
outer-code in a more general way.

The idea of using an outer-code for SRLNC has been
introduced previously in [9]. However, the design we propose
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in this work has major differences compared to [9] as follows;

i) Instead of waiting for the SRLNC to recover a large fraction

of generations, in our design the outer-code comes to play
as soon as the first generation is recovered. This results in a

joint decoding scheme instead of the separate decoding used

in [9]. ii) Unlike [9], the outer-code in a Gamma code does
not ignore the packets received in non-full rank generations.

Indeed, instead of using classic erasure correcting outer-codes
such as right regular LDPC codes [13], [14] used in [9],

we use a fixed-rate version of the Raptor code [15]. Our

selection is motivated by Raptor code’s natural capability to
start participation in recovering some erased bits even when

the fraction of known bits are much smaller than the code rate.

Furthermore, it is shown that the optimal rate for the outer-

code in Gamma codes is significantly lower than that of
the design proposed in [9], yet it results in a much smaller

reception overhead.

In Section IV we compare the performance of our proposed
design with the Random Annex code [10], as the best known

SRLNC with overlapping generations, as well as the SRLNC

with outer-code design of [9]. This comparison shows that
Gamma codes significantly reduce the reception overhead

compared to all the existing linear-complexity designs.

The rest of this paper is organized as follows. The next
section is devoted to describing the encoding and decoding

structure of the proposed code. We also discuss the network

model in the same section. In Section III, we provide a
discussion on the selection of parameters of the outer-code

used in the structure of Gamma codes. Finite length numerical

comparisons with the existing counterparts are provided in
Section IV, and finally Section V concludes the results.

II. NETWORK MODEL AND CODING SCHEME

A. Network Model

In this work, following the convention in [10], [11], we con-
sider the transmission of a file from a source to a destination

over a unicast link. Due to packet loss, random processing

times in the intermediate nodes, and also diverse routings in a
dynamic network structure, the link is supposed to introduce an

unknown erasure rate and a variable delay. As a result, using
random linear network coding at the intermediate nodes, a

receiver would receive a random subset of linear combinations

of the transmitted packets. A specific coding scheme can be
used to set constraints on the combinations such as limiting

the combinations to be formed inside each generation [6], or to

establish more dependencies among the received packets using
either outer-codes [9], or overlapping generations [10]–[12].

B. Encoding

The process of encoding at the source in Gamma codes

consists of two steps. For a K-packet long file, the first step

is to use a linear outer-code of rate R to encode the message
into N “outer-coded” packets. The source then partitions the

N outer-coded packets into n = �N
g
� generations, where �x�

is the smallest integer larger or equal to x. For convenience,
we assume that N is a multiple of g.

Check nodes

Outer-coded
nodes

Received
nodes

Fig. 1. The decoding graph for a Gamma code with check nodes, outer-coded
nodes, and received nodes corresponding to outer-code’s check equations,
outer-coded packets, and received packets respectively. Each group of outer-
coded nodes separated in the figure by a dashed box represents a generation.

The second step consists of iteratively forming output
packets to be transmitted through the network. For each

output packet, at the source we first select a generation
j ∈ {1, · · · , n}, uniformly at random with replacement. We

also select an element α ∈ (GF (q))g uniformly at random.

Consequently we form the output packet as the linear combi-
nation of the g outer-coded packets of the selected generation

j with coefficient vector α. Along with each output packet,

the index of the selected generation and the coefficient vector
α are also transmitted with the packet.

Coding at the intermediate nodes follows the convention of

SRLNC as in [9]–[11]. Thus, the complexity of encoding per
output packet at the source, and at any intermediate node is

O(gd + d̄(1 − R)/R), and O(gd), respectively, where d̄ is

the average degree of outer-code’s check nodes. This constant
complexity per output packet translates to an overall linear

complexity of encoding in terms of the block length K .

C. Decoding

The decoding process starts as soon as the receiver receives

enough packets from one of the generations to form a full rank

linear equation system for that generation. We refer to such a
generation as a “full rank generation”. This generation is then

decoded by Gaussian elimination. At this point, an iterative

decoding scheme starts which operates on the decoding graph
of the code shown in Fig. 1.

Each iteration in this process consists of two steps. At the

first step each node corresponding to a recently recovered

outer-coded packet from the recently recovered generation(s)
will be removed from the decoding graph. Removing these

nodes reduces the degree of the outer-code check nodes. Any
check node reduced to degree one recovers a new outer-coded

packet. This step is equivalent to one iteration of the edge
deletion decoding [16] on the outer-code.

In the second step, the newly recovered outer-coded packets
of step one are removed from the linear equation systems of

non-recovered generations. Since the coefficient vectors of the

output equations are dense, the reduced equation systems will
preserve their rank with high probability, especially for large

enough alphabet size q. Since the unknowns are reduced and

the rank is preserved, there is a possibility that new generations
can be recovered through Gaussian elimination.
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These two steps will be repeated until either all input

packets are recovered, or the decoder is stuck and no new

packet could be recovered. In the latter case, we receive
more packets from the network to be able to resume the

decoding. The complexity of the decoding per information

packet is hence O(g2+gd+ d̄(1−R)/R). Again, this constant
complexity per information packet translates to an overall

decoding complexity linear in terms of the block length K .

III. OUTER-CODE DETAILS

As mentioned before, the idea of using an outer-code to

reduce the overhead of SRLNC was first suggested in [9].

However, the design proposed in [9] is based on recovering
a 1 − δ fraction of generations without the help of the outer-

code where a good choice for δ is usually very small as shown
in our simulation results. Moreover, this design refuses to

use the information transmission capacity of received packets

pertaining to the non-full rank generations in the remaining δ
fraction. The selection of δ is based on the desired overhead

where a smaller desired overhead requires a smaller δ [9]. In

addition, the selection of the outer-code in [9] is based on
the assumption that the outer-code will come to play its role

after the recovery of 1− δ fraction of generations. As a result
the conventional erasure correcting codes such as right-regular

LDPC codes [13], [14] are selected. These codes are very

good for accomplishing the decoding when 1 − δ fraction of
the block is recovered, but they have a very poor contribution

before that point. Consequently, joint decoding of the outer-

code and SRLNC is not likely to improve the performance of
the solution proposed in [9]. This fact is further investigated

in our simulation results.

Obviously recovering a close-to-one fraction of generations

without the help of the outer-code requires receiving at least
g packets in each of 1− δ fraction of generations. As packets

are assumed to be received independently and uniformly

at random, this causes a significant number of generations
receiving much more than g packets. Since any generation has

at most g independent packets, then we will have many linearly
dependent received packets, to which we refer as “excess
packets”. This results in a significant overhead. Indeed we

remark without proof that in order to recover a 1− δ fraction
of generations with SRLNC without the help of the outer-code,

the overhead will converge to

(g − 1)!− Γ−1
g (δ)

g!δ
− 1

as the number of generations n tends to infinity. In the above,

Γ−1
a (y) denotes the inverse of the incomplete Gamma function

Γ(a, x) with respect to x, where

Γ(a, x) = (a− 1)!
a−1∑
i=0

e−xxi

i!

for any integer a > 0, and real number x.

In this section we propose a different approach to the outer-

code design. The main goal in this approach is to keep the

number of excess received packets as low as possible, and
simultaneously, use almost all the non-excess received packets

in non-full rank generations as opposed to ignoring them in

the decoding.

A. Outer-Code Rate Selection

According to the above discussion, to avoid the reception
overhead it is crucial to keep the probability of receiving

linearly dependent packets close enough to zero. Moreover
selecting the code alphabet size q large enough, it can be

shown that any randomly selected set of m received packets

pertaining to a single generation will be linearly independent
with probability arbitrarily close to one as long as m ≤ g [10].

The following discussion provides the background needed for

selecting the appropriate rate for the outer-code. Assuming that
we have stopped the packet reception process at some arbitrary

time, we refer to the total number of received packets divided
by the number of generations n, as the “normalized” number

of received packets.

We refer to the average normalized number of received

coded packets required for having the first full rank generation

with high probability, as the latency of the first full rank
generation and denote it by L1.

Theorem 1: The latency of the first full rank generation is

L1 = Γ−1
g ((g − 1)!(1−

1

n
)) (1)

For the proof please refer to the appendix.

Moreover, it can be shown that the variance of this latency

tends to zero as n → ∞ [17], [18]. For large enough q,
it is obvious that before receiving enough packets to form

the first full rank generation we will have no excess packets.

However, as soon as a fraction x0 > 0 of the generations are
full rank, any new received packet will be an excess packet

with probability x0. As a result of Theorem 1, we have the
following corollary.

Corollary 1: For large enough number of generations n, the
maximum number of packets that the receiver can receive to

keep the number of excess packets arbitrarily close to zero is

M = nΓ−1
g ((g − 1)!(1−

1

n
)). (2)

Moreover, we can always choose a large enough alphabet size

q in order to guarantee the linear independence of all of the

received packets with high probability.

As a result, to keep the average number of excess packets

at the minimum, and gain the highest transmission rate at
the same time, the receiver needs stop receiving packets after

receiving M packets defined by (2). Hence, the best selection
for the outer-code rate is given by

R =
Γ−1
g ((g − 1)!(1 − 1

n
))

g
. (3)

B. Outer-Code Generating Polynomial

According to the structure of our proposed decoder de-
scribed in section II-C, the decoder is not able to decode

any packet before receiving enough packets to form the first

full rank generation. Hence, setting the outer-code rate based
on (3), in order to keep the number of excess packets at
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the minimum, we need an appropriate outer-code to be able

to accomplish the decoding when the normalized number of

received packets is not much larger than

max

{
Γ−1
g ((g − 1)!(1−

1

n
)), r1

}
,

where, r1 denotes the normalized number of received packets

required for forming the first full rank generation. Obviously

r1 is a random variable with mean Γ−1(g, (g − 1)!(1 − 1
n
)),

according to Theorem 1. However, the average number of

recovered packets when the packet reception stops and the
outer-code comes to play its role in the decoding process

is concentrated around g as described before. Therefore,

conventional fixed rate linear erasure correcting codes such
as right regular LDPC codes [13], [14] with rate R are not

appropriate choices for our outer-code, since they are known

to have poor recovery before having an R fraction of the
codeword recovered. However, if the outer-code is capable

to recover some more packets at this point, using the linear
equations corresponding to the received packets from the non-

full rank generations, the decoding process will recover more

packets iteratively.

Here, before describing the structure of the proposed outer-

code for Gamma codes, we briefly review the problems in

the structure of the outer-codes already used in the similar
solutions. This brief discussion also defines some of the

properties of the appropriate outer-code’s structure.

The main problem with right regular LDPC outer-codes is

indeed in their right regular nature. The degree of all the check

equations in these codes is typically large (six or more) for
moderate to high rates. In this scenario, at the beginning of the

decoding process when the fraction of known packets is very

small it is impossible for the decoder to reduce the outer-code
check equations to degree-one and use them to recover new

packets. This makes the decoding stuck at the beginning.

A naive solution is to force all the check nodes to be

of degree two to maximize the participation of the outer

code. This is similar to SRLNC with overlap, where all the
check equations of the equivalent repetition outer-code are of

degree two. Although this provides a good contribution in the

decoding process at the beginning, these outer-codes fail to
be as useful when eventually the fraction of recovered packets

will grow. The reason for this fact in brief is that the low
average degree of check nodes translate into low connectivity

of the decoding graph. Hence, starting the decoding does not

guarantee the spreading of recovery process to all the segments
of the graph, and with high probability some segments will

remain unrecoverable. Therefore, successful decoding again

needs enough overhead to ensure the reception of some packets
among the neighbours of almost every check node. This

anyway causes a significant overhead due to the latency of
receiving some rare packets.

The design of LT codes [16], and Raptor codes [15] however

is based on a carefully selected distribution for the degree
of output nodes (equivalent to the check equations), which

guarantees a good coverage all over the codeword and simul-

taneously provides a high probability of reduction to degree
one at any intermediate stage during the decoding. Although

these codes are originally designed for rateless coding in the

binary erasure channels, but the desirable properties inherent

in their design can be used for the design of outer-codes in our
proposed setting. Inspired by the above discussion we will use

a low density generator matrix (LDGM) code [19], with check

degree distribution similar to the output degree distribution of
Raptor codes, as the outer-code in the Gamma codes.

Raptor codes are essentially a concatenation of a high rate

linear erasure correcting code such as right regular LDPC
codes, and an LT code with a truncated output degree dis-

tribution, where this concatenation allows for keeping the
complexity linear along with the desired properties of rateless

codes mentioned above. Thus, we also use a concatenation

of a high rate right regular LDPC code of rate R1, and an
LDGM code of rate R2, with a check degree distribution

based on a truncated Soliton distribution. This concatenation

results in an outer-code with rate R = R1R2 which inherits
the behaviour of Raptor codes in providing high probabil-

ity of reducing check equations to degree one all through
the decoding process, and accomplishing the decoding with

linear complexity. The LDGM check degree distribution can

be characterized by a generating polynomial P (x). More

specifically, P (x) =
∑D

i=2 pix
i where pi is the probability

that a randomly selected check equation covers i outer-coded

packets. Obviously the minimum degree of P (x) is two, since

any check equation should encounter at least two outer-coded
packets, and

∑D
i=2 pi = 1. Moreover, packets contributing in

each check equation are considered to be distributed uniformly

at random among all the outer-coded packets.

The selected generating polynomial for the LDGM part in

Gamma codes is then based on a selected rate R2 as follows,

P (x) =

D∗∑
i=2

1

i(i− 1)
xi +

1

D∗
x(D∗+1), (4)

where the rate of this code is selected to be

R2 =
Γ−1
g ((g − 1)!(1− 1

n
))

gR1
, (5)

and D∗ is chosen according to the following,

D∗ =

⌈
1

1−R2

⌉
. (6)

This generating polynomial was originally introduced in
[20], and has already been used in Raptor code design [21]. In

the next section we provide simulation results for a practical
setting to compare the performance of the proposed Gamma

codes and other existing solutions.

IV. EXAMPLE CODES AND FINITE LENGTH EVALUATION

In this section we compare the performance of the pro-
posed Gamma codes with two best existing linear-complexity

network codes, namely the Random Annex code which outper-

forms all the other existing SRLNC with overlapping genera-
tion [10], and the SRLNC with LDPC outer-codes proposed

in [9]. In order to keep the comparison closer to a practical

setting, we use bounded block lengths and binary alphabet for
simulations. It is remarked that large alphabet size and block
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Fig. 2. The average overhead as a function of the outer-code rate in SRLNC
with LDPC with n = 67, g = 25, q = 2.

length improve the performance in all of these codes, but our

comparison trend will not be affected in general. The main
measure of performance as widely accepted in the literature

is the average overhead required for successful decoding.

As mentioned earlier, the average overhead is defined as
Ō = E {(Nr −K)/K}, where Nr and K denote the total

number of received packets required for successful decoding,
and the total number of information packets, respectively.

We set the number of generations, and the generation size

to be n = 67, g = 25, respectively. Therefore, we will have

a total encoded block length N = 1675. For this setting, it
is shown in [10] that the optimal annex size is 10, and hence

the optimal number of information packets to be transmitted

is K = 1000, leading to the outer-code rate R = 0.5970.

For the SRLNC with LDPC outer-code, we have performed

a search to find the optimal outer-code rate. The result shown

in Fig. 2 reveals that the optimal outer-code rate for this block
length and generation size is R = 0.9, which corresponds to

K = 1508.

In the case of Gamma code, from (3) we have the outer-code
rate R = 0.6161, which corresponds to K = 1032, however

to find the best combination of two components of the outer-

code rate, R1, R2, we have performed another search. The
results presented in table I shows that while the difference in

the average overhead is not vary significant, the best selection

for R1 (for the high rate LDPC code) is 0.9701.

Setting R1 = 0.9701, values of P (x), R2, D∗ will be
derived from (4) to (6). Fig. 3 represents the probability of

failure in decoding as a function of the reception overhead.
Simulations are done for 10000 runs for each code. As can be

TABLE I
AVERAGE OVERHEAD FOR GAMMA CODES,

n = 67, g = 25, R = 0.6161, q = 2.

R1
66

67

65

67

64

67

63

67

62

67

Ō 0.2764 0.2737 0.2884 0.2899 0.2878
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Fig. 3. The decoding failure probability as a function of the reception
overhead for three different linear complexity network codes with n =

67, g = 25, q = 2.

inferred easily from the figure, Gamma code outperforms the
other linear complexity network codes. The average overhead

required for successful decoding of the three codes under study

are provided in table II. This signifies the importance of a
careful outer-code design for SRLNC.

V. CONCLUSION

In this work, we introduced a new family of linear-

complexity network codes based on the idea of sparse random

linear network coding with outer-code. Key to our design was
a joint decoder for which we devised a proper combination of

an outer-code and a basic SRLNC. It was shown through sim-

ulations that the proposed codes outperform the best existing
linear-complexity network coding solutions both in terms of

the average overhead and the probability of decoding failure.

APPENDIX

PROOF OF THEOREM 1

Let Br be a random variable equal to the number of received
coded packets pertaining to a randomly selected generation,

when the normalized number of received coded packets is r.

For any randomly selected received coded packet we assume
the probability that it belongs to a certain generation has

uniform distribution on the set of all the generations. Hence,

it is obvious that Br has a binomial probability distribution as

P (Br = i) =

(
rn

i

)(
1

n

)i (
n− 1

n

)rn−i

, i = 0, 1, . . . , rn.

TABLE II
AVERAGE OVERHEAD FOR DIFFERENT LINEAR COMPLEXITY NETWORK

CODES, n = 67, g = 25, q = 2.

Code SRLNC with LDPC Random Annex code Gamma code

Ō 0.5164 0.3944 0.2737
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It is easy to see that

P (Br = i) �
e−rri

i!
,

where the error in the approximation vanishes as n goes to
infinity. Indeed the approximation is very tight even for values

of n as small as a few tens, and hence by a slight abuse

of notations we will use this approximation instead of the
exact value for finite number of generations n. However, this

notation is exact for the asymptotic case. In addition, take
Ar,i, 0 ≤ r, i = 1, · · · , n, as the event that we have received

at least g coded packets from the ith generation when the

normalized number of received coded packets is r. Therefore
the following expression describes the latency of the first full

rank generation.

L1 = inf

{
r | E

{
n∑

i=1

IAr,i
(ω)

}
≥ 1

}

where IA is the indicator function of the event A, i.e.

IA(ω) =

{
1, if ω ∈ A

0, if ω /∈ A
,

Now, using the linearity of the expected value we have

L1 = inf

{
r |

n∑
i=1

E{IAr,i
(ω)} ≥ 1

}

= inf

{
r | Pr [Br ≥ g] ≥

1

n

}

= inf

{
r | Pr [Br ≤ g − 1] ≤ 1−

1

n

}

= inf

{
r |

g−1∑
i=0

erri

i!
≤ 1−

1

n

}

= Γ−1
g ((g − 1)!(1−

1

n
))
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