
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 9, SEPTEMBER 2012 2377

Transactions Letters

On Raptor Code Design for Inactivation Decoding
Kaveh Mahdaviani, Student Member, IEEE, Masoud Ardakani, Senior Member, IEEE,

and Chintha Tellambura, Fellow, IEEE

Abstract—Based on a new vision of the inactivation decoding
process, we set a new degree distribution design criterion for
the LT part of Raptor codes. Under an infinite block length
assumption, a family of degree distributions that satisfy the
new design criterion is analytically derived. The finite length
performance of this family is investigated by using computer
simulations and is shown to outperform the conventional design.

Index Terms—Finite length Raptor codes, inactivation decod-
ing, Soliton distribution.

I. INTRODUCTION

LUBY transform (LT) codes were originally introduced
as the first practical fountain codes in [1]. As such, LT

codes are designed to transmit a theoretically endless stream
of symbols until the receiver has enough symbols to decode
all the information bits. Raptor codes [2], an extension of
LT codes, employ an outer code to enable the receiver to
recover the whole information stream from any sufficiently
large subset of recovered intermediate symbols. This idea
significantly improves the performance of LT codes, as the
recovery of the last few percentages of the information bits,
which could be very slow, is now done by using the outer
code.

Raptor codes are able to asymptotically achieve the chan-
nel capacity on any binary erasure channel (BEC) with-
out any channel state information at the transmitter or the
receiver. This universal capacity-achieving property enables
optimal performance even in time-varying channels. Ac-
cordingly, these codes are the natural choice for broadcast-
ing/multicasting to a group of receivers with different and
even unknown channel qualities. As a result Raptor codes have
been adopted by the 3rd Generation Group Partnership Project
(3GPP) to be used in multimedia broadcast/multicast services
(MBMS) for forward error correction [3] and digital video
broadcast-handheld (DVB-H) [4]. The desirable properties of
Raptor codes have motivated many researchers to study their
performance and design for other channels [5], [6]. Decoder
design for Raptor codes has also been an active research area
[7]–[9].

In this work, we study the design of Raptor codes for the
BEC when inactivation decoding (ID) [9] is used. An ID

Paper approved by T. M. Duman, the Editor for Coding Theory and
Applications of the IEEE Communications Society. Manuscript received July
5, 2011; revised January 17 and April 18, 2012.

The authors are with the Dept. of Elec. and Comp. Eng., University of
Alberta (e-mail: {kmahdavi, ardakani, chintha}@ece.ualberta.ca).

Digital Object Identifier 10.1109/TCOMM.2012.072612.110143

decoder is essentially a maximum likelihood decoder with
controlled complexity, which can accomplish the decoding
with a smaller number of received symbols than any other
decoder requires. Hence, ID is incorporated in 3GPP as a
practical decoder [3]. Despite the rich literature on code design
for the conventional edge deletion decoding (e.g., [2], [10],
[11]), code design for ID has not yet received much attention.

In the remainder of this article, we first briefly review the
encoding and decoding of Raptor codes, focusing on ID. In
Section III, we introduce our code design, by proposing a new
design criterion, and then we use this criterion for an analytical
design. The numerical comparisons between the code used by
the 3GPP and our proposed code are presented in Section IV.

II. ENCODING AND DECODING OF RAPTOR CODES

Encoding of the Raptor codes is done in two separate steps.
In the first step, k information bits are coded to n = k/R
intermediate bits by using an outer code of rate R. In the
second step, the LT encoder first uses a probability distribution
to choose an integer m ∈ {1, · · · , D}, D ≤ n, and then
uniformly at random chooses m intermediate bits whose XOR
forms an output symbol for transmission. The probability
distribution of m is characterized by a generating polynomial
Ω(x) =

∑D
i=1 Ωix

i. Here, m = i occurs with probability Ωi.
Decoding is similarly performed in two separate steps. First

the LT code is decoded, and then the outer code is decoded in
the second step. Assuming that the outer code can recover the
whole information block from any subset of n(R+σ), σ > 0
recovered intermediate bits, we focus our discussion on the
LT decoder.

For LT decoding, a decoding graph [2] is formed based on
the set of received symbols. The decoding graph is a bipartite
graph with one vertex set corresponding to the set of all
intermediate bits, and the other set corresponding to the output
bits (output nodes). Initially, each output node is adjacent to
the group of intermediate nodes forming the corresponding
received bits.

Various decoding solutions can be used. Gaussian elimi-
nation, although optimal, is typically too complex. A modi-
fied version of the belief propagation algorithm, called edge
deletion decoding (EDD) [1], is an efficient alternative when
an appropriate design of Ω(x) is performed. EDD requires
a small overhead in the number of received symbols for
successful decoding [12]. This algorithm uses degree-one
output nodes in the decoding graph to deduce the value
of their neighbouring intermediate nodes, and then removes

0090-6778/12$31.00 c© 2012 IEEE

ctlabadmin
2012

2378 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 9, SEPTEMBER 2012

the recovered intermediate nodes to achieve new degree-one
output nodes iteratively.

Inactivation Decoding

For moderate block lengths (1024 to 8192 bits), which are
of interest in applications supported by the 3GPP standard, a
modified version of EDD, called inactivation decoding (ID),
was introduced in [9]. The main difference between ID and
EDD occurs when the set of degree one output nodes, called
the ripple, becomes empty. In this case, the EDD stops until
the ripple is refilled by receiving more symbols from the
channel. ID, however, instead of waiting for more symbols,
selects some unrecovered intermediate nodes in the remaining
decoding graph and temporarily excludes them from the graph.
This process is called inactivation. By inactivating some of
the intermediate nodes, their edges will also be excluded
temporarily, reducing the degree of some of the remaining
output nodes. Thus, the decoder extracts some reduced degree-
one output nodes, whose values can be found in terms of
the inactivated bits. The decoder can now recover more
intermediate bits (albeit, in terms of the inactivated bits) until
the ripple is empty again, and another inactivation can be
performed. Finally, the decoder uses Gaussian elimination for
the inactivated bits and finishes the decoding by using a back
filling process, which evaluates all the intermediate bits which
have been recovered in terms of the inactivated bits.

In order to solve the subsystem of linear equations formed
by the inactivated bits, this subsystem should be full rank. The
subsystem has a high probability of being full rank because it
is dense. However, if it is not full rank, the receiver receives
more symbols to obtain more equations and remove the
rank deficiency. This process results in a very small average
reception overhead, which has been shown to be less than one
percent in practice [8], [13].

For selecting a node to be inactivated, many different strate-
gies can be used [9]. One trivial choice is to randomly select an
unrecovered intermediate node connected to a reduced degree-
two output node. We will refer to this strategy as “Random
ID”. Another strategy, introduced in [9], is to inactivate one of
the nodes in the maximum connected component of G, where
G is the degree-two induced subgraph [14] of the remaining
decoding graph (see Fig. 1). Inactivating any of the bits in
a connected component of G causes the immediate recovery
of all the other bits in that component. Hence, the second
strategy, which we refer to as “Max-Component ID,” performs
better than Random ID. Since G is subject to change during
the decoding process, the search for the largest connected
component must be repeated during each inactivation step.
Thus, Max-Component ID is considerably more complex than
Random ID.

Degree distribution design for ID is considered in [14],
where Max-Component ID is assumed, and the design cri-
terion is to statistically guarantee the existence of a giant
connected component in G at each inactivation step. Having a
giant connected component guarantees the recovery of a large
portion of nodes at each inactivation step.

Accordingly, [14] introduced a procedure that takes an Ω(x)
and determines on average for how many inactivations a giant

b1

b2

b2

b3

b3

b4

b4

b5

b5

b6

b6

c1

c2

c2

c3

c3

c4

c4

c5

c5 c6 c7

(a)

(b)

Fig. 1. (a) The decoding graph with output nodes c1 to c7 and intermediate
bits b1 to b6. The ripple is initiated with c1, which recovers b1 and then
becomes empty. (b) The reduced degree-two induced subgraph G based on the
remaining effective decoding graph. In G, every reduced degree-two output
node will represent an edge. Here, G contains two connected components.
The maximum component contains four nodes. Max-Component ID may,
for example, choose b4 as a node in the maximum component of G for
inactivation. This choice will refill the ripple with c3 and c5, which, in turn,
recover b3 and b5 in terms of b4.

component will almost surely be present in G. The design
problem is then to find a generating polynomial Ω(x), which
will guarantee the existence of a giant connected component
until the desired portion of the intermediate bits is recovered.
This design criterion, in addition to a mixture of optimization
methods, has been used to design a degree distribution which
the 3GPP has adopted [3].

III. DEGREE DISTRIBUTION DESIGN

In this section, a new design criterion is proposed from
which a more efficient Ω(x) for ID is designed. The basic
difference between our design and that of [14] is that [14]
aims to increase the portion of bits that are guaranteed to
be recovered after each inactivation, whereas our design aims
to increase the average portion of recovered bits after each
inactivation. Notice that the actual number of recovered bits
is usually more than the guaranteed portion. Thus, it appears
reasonable to aim at increasing the average recovery.

From the discussion in Section II, it is obvious that for
a fixed decoder structure and with a constant performance
for the outer code, all the properties of a Raptor code are
characterized by the generating polynomial Ω(x). Similar to
the case of design for the EDD, an infinite block length as-
sumption is made for the analytical design of Ω(x). However,
the performance of the finite length case is evaluated through
simulations.

For a Raptor code under EDD, the main performance
measure is the overhead. Under ID, however, the overhead
may not be as meaningful because ID performs an inactivation

MAHDAVIANI et al.: ON RAPTOR CODE DESIGN FOR INACTIVATION DECODING 2379

instead of receiving extra symbols. As a result, a good measure
of performance appears to be the number of required inactiva-
tions [8], [13], which directly affects the decoding complexity.
Therefore, our design goal is to reduce the number of required
inactivations.

A. Evolution of Ω(x) During ID

In ID, after each inactivation, the remaining degree distri-
bution changes. As a result, to study the average performance
analytically, we need the remaining degree distribution, based
on the original Ω(x) and the portion of the recovered interme-
diate bits δ. Denoting the new degree distribution as Ωδ(x), we
have Ω0(x) = Ω(x), and Ω1(x) = 1. Also, since the selection
of the intermediate bits in the encoding is uniformly random,
recovering a δ portion of intermediate bits is equivalent to
deleting a randomly chosen δ portion of intermediate nodes
in the decoding graph. Hence, we can assume that a random
δ portion of the edges of the decoding graph is also deleted.
Therefore, a randomly chosen output node of initial degree j
will be of degree i = 1, · · · , j with probability

(
j
i

)
(1−δ)iδj−i.

Then, the average degree distribution of the output symbols
in the remaining graph will be

Ωδ(x) =

D∑
i=1

Ωδ,ix
i =

D∑
i=1

⎛
⎝D−i∑

j=0

Ωi+j

(
i+ j

j

)
(1− δ)iδj

⎞
⎠ xi

= Ω((1− δ)x+ δ).

As a result,

Ωδ,i =

D−i∑
j=0

Ωi+j

(
i+ j

j

)
(1− δ)iδj . (1)

B. A New Design Criterion

The new design is based on a new insight into the ID
process. As mentioned in Section II, ID starts with an EDD
phase and works until the ripple is empty. At this point,
inactivation is performed, and another phase of EDD is started.
Thus, one can think of ID as a series of EDDs, each applied
to a portion of the unrecovered bits. According to this view,
we need a degree distribution that will perform well under
a series of EDDs despite the recovery of any portion of bits.
Designing such a distribution is a challenging task because the
degree distribution for each EDD step may be different. Thus,
the performance may differ in each step. A degree distribution
which remains close to optimal in all EDD steps is, therefore,
desired. Accordingly, we first investigate another effect of
recovering a δ portion of the intermediate bits on the degree
distribution of the output nodes.

An intermediate bit bi is recovered when the degree of an
output node ci′ , connected to bi, is reduced to one. In fact,
the last edge of ci′ connects it to bi. After recovering bi, the
output node ci′ can no longer be effective in the decoding
process. Now, assume that the receiver has originally received
(1+ε)k symbols for a very small ε > 0 (in practice ε < 0.01).
Therefore, after recovering a δ portion of intermediate bits, a
δ portion of the output nodes will not be effective for the rest
of the decoding process (see Fig. 2). In other words, decoding
continues by performing EDD on the remaining decoding

b1 b2 b� b�+1 bk−2 bk−1 bk

c1 c2 c� c�+1 c�+2 ck′−2 ck′−1 ck′

Fig. 2. The decoding graph at some intermediate step of decoding. The
receiver started the decoding after receiving k′ = (1 + ε)k output symbols,
where ε is a very small positive number. Up to this point, a δ = �

k
of the

intermediate bits have been recovered. The left part shows the non-effective
part of the decoding graph at this moment, which could not participate in the
decoding of the remaining bits. The right part is still effective and contains
(1−δ)k intermediate bits and approximately (1−δ)k′ output nodes as well.

subgraph containing (1 − δ) portion of output nodes and the
unrecovered intermediate nodes.

Now, recall that Ωδ,j represents the fraction of reduced-
degree j, j ≥ 2 output nodes after recovering a δ portion
of intermediate nodes. Accordingly, starting with a close-to-
optimal Ω(x), if for any 0 < δ < 1, Ω(x) satisfies

∀j ≥ 2, Ωδ,j = (1− δ)Ωj (2)

then the close-to-optimal performance for the next EDD step
is preserved. This way, the code recovers a large portion of
bits in each EDD step. Thus, we use (2) as a design criterion.

C. The Proposed Code Design

According to (1),

Ωδ,i =
(1 − δ)i

i!

D−i∑
j=0

Ωi+j(i+ j)!δj

j!
.

Now, let us define

fδ,i �
D−i∑
j=0

Ωi+j(i+ j)!(δ)j

j!
. (3)

Then we obtain Ωδ,i = (1−δ)i

i! fδ,i. In addition, according to
(2), for all i ≥ 2 it is desired to have Ωδ,i = (1 − δ)Ωi.
Thus, we can formulate part of the design criterion as fδ,i =
i!(1− δ)−(i−1)Ωi, or equivalently,

∀i ≥ 2,

D−i∑
j=0

Ωi+j(i + j)!δj

j!
= i!(1− δ)−(i−1)Ωi

= i(i− 1)Ωi

∞∑
j=0

(i+ j − 2)!δj

j!
. (4)

In (4), the summation on the right-hand side is derived by
evaluating the Taylor series expansion of the function (i −
2)!x−(i−1) centred at x0 = 1 for x = 1 − δ. Assuming the
maximum degree D could be infinite, equation (4) suggests
the following solution:

Ω(x) =

∞∑
i=2

1

i(i− 1)
xi. (5)

2380 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 9, SEPTEMBER 2012

Surprisingly, this solution is the well known ideal Soliton
distribution [1]. This, however, is an infinite degree distribu-
tion which cannot be used in a practical setup. With a finite
allowed maximum degree D, (5) must be modified. In the
next subsection, we provide a finite approximation of (5) that
remains close to optimal throughout the decoding process by
satisfying (2) with a good approximation.

D. Finite Maximum Degree Design

Recall that for the outer code to finish the decoding suc-
cessfully, the LT code requires a recovery rate greater than
R + σ. Also, for a finite maximum degree design, to satisfy
(2) and motivated by (5), we seek an Ω(x) approximately in
the form of

Ω(x) =

D∑
i=2

c

i(i− 1)
xi.

As was first mentioned in [15], the hypergraph collapse
process studied in [16] is identical to the EDD process. Now,
let r be a positive real number less than or equal to the smallest
positive root of (1 + ε)Ω′(x) + ln(1 − x) = 0. Then, as
k → ∞, under EDD, rk intermediate bits are recoverable
with a high probability from any set of (1 + ε)k received bits
[16]. Similar results were also obtained in [2], based on the
And-Or tree analysis [17]. This result was used in [11] to
study the performance of EDD for recovery of a less-than-
one portion of the message bits as needed in Raptor codes.
The average recoverable portion of bits for a given degree
distribution, therefore, is equal to the smallest positive root of
(1 + ε)Ω′(x) + ln(1− x) = 0.

Thus, to achieve a recovery rate of R+σ, we need Ω′(x) >
− ln(1−x)

(1+ε) for all x ∈ (0, R + σ). By using the Taylor series

expansion − ln(1− x) =
∑∞

i=1
xi

i , a necessary condition for
all x ∈ (0, R+ σ) can be derived as

Ω(x) =

∫ x

0

Ω′(t)dt ≥
∫ x

0

− ln(1− t)

(1 + ε)
dt

=
x(1 − ln(1− x)) + ln(1− x)

(1 + ε)

=

∞∑
i=2

xi

(1 + ε)i(i− 1)
.

Among all the terms of the form ωi(x) � xi

i(i−1) , the

term ωj(x) has the maximum derivative in the interval Ij �
(j−1

j , j
j+1). Also, ∀i > j ≥ � ≥ 2, d

dxωj(x) >
d
dxωi(x) for

any x ∈ I�. Therefore, to have

∀x ∈ (0, R+ σ) Ω(x) >
1

(1 + ε)

∞∑
i=2

ωi(x) (6)

for a given ε, it is enough to set

Ω(x) =

m∑
i=2

c

i(i− 1)
xi +

(
1− c(m− 1)

m

)
xm+1, (7)

where m is an integer such that m ≥ m∗ and m∗−1
m∗ ≤ (R +

σ) ≤ m∗
m∗+1 , and c ≥ 1

1+ε . Clearly, choosing a larger m results
in a better approximation to (5).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Inactivations / Block Length

C
D

F
 o

f t
he

 #
 o

f I
na

ct
iv

at
io

ns

� = 1024

New Design, Max−Comp ID
3GPP, Max−Comp ID
New Design, Random ID
3GPP, Random ID

Fig. 3. CDF of the normalized number of inactivations required for successful
decoding, � = 1024.

Using (6) and (7), we obtain

∀x ∈ (0, (R+ σ)),

c ≥ x(1− ln(1− x)) + ln(1− x)− xm+1(1 + ε)

(1 + ε)(
∑m

i=2
xi

i(i−1) − (m−1)
m xm+1)

. (8)

The right-hand side of (8) is a strictly increasing function of
x. Thus, we can finish the design by choosing c equal to the
value of the right-hand side evaluated at x = R+ σ.

In order for the decoding to start and recover a portion of
intermediate bits before the first inactivation, we provide a
very small positive Ω1, as do the existing approach.

Setting m = m∗ provides the lowest computational com-
plexity since doing so obtains the smallest average degree of
the distribution. However, setting m = m∗ also reduces the
probability of covering a randomly selected intermediate bit in
an output symbol and therefore slightly increases the reception
overhead. This slight increase is a side-effect of a decreasing
outer code rate in the 3GPP for a smaller block length. At
� = 1024, the outer code rate is reduced to R = 0.9381, and
setting m = m∗ = 16 makes the average degree of our Ω(x)
slightly smaller than that of the 3GPP. Moreover, the proba-
bility of leaving an intermediate bit uncovered (not involved
in any of the equations corresponding to the received bits) is
approximately e−Ω′(1)(1+ε) [18], where Ω′(1) represents the
average degree. Therefore, for successful decoding, a slightly
higher overhead will be needed. As reported in Table I, this
increase is around 0.33% for � = 1024 and only 0.04% for
� = 8192.

The choice of the outer code rate R in the 3GPP is based on
the performance of the adopted Ω(x). Appropriate outer code
selection for our proposed Ω(x) can be considered. Among
other solutions for this slight increase in the overhead, one
can either allow m to be larger than m∗ or add a term of
higher order to prevent the loss of coverage. In Section IV,
we will compare our design numerically with that of the 3GPP.

MAHDAVIANI et al.: ON RAPTOR CODE DESIGN FOR INACTIVATION DECODING 2381

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of Inactivations / Block Length

C
D

F
 o

f t
he

 #
 o

f I
na

ct
iv

at
io

ns
� = 8192

New Design, Max−Comp ID
3GPP, Max−Comp ID
New Design, Random ID
3GPP, Random ID

Fig. 4. CDF of the normalized number of inactivations required for successful
decoding, � = 8192.

IV. NUMERICAL RESULTS

In order to verify the performance of our proposed codes,
we compare the performance of the degree distribution
adopted in 3GPP with the proposed degree distribution intro-
duced in (7), where m is chosen to be equal to m∗. In each
case, similar to [8], [13], [14] we assume that the receiver
receives enough overhead to form a full rank equation system
in terms of the intermediate variables. As ID is a version of
ML decoding, having a full rank equation system is sufficient
for successful decoding. Hence, the decoding success rate is
always one.

Figures 3 and 4 depict the average performance of both
degree distributions for different block lengths �, and the
different strategies used for selecting a node for inactivation.
As discussed in Section III, the basis of our comparison is
the number of required inactivations. Thus, Figures 3 and
4 provide the cumulative distribution function (CDF) for
a normalized number of inactivations (i.e., the number of
inactivated nodes required for successful decoding divided
by the block length). Figure 3 compares the performance of
our proposed degree distribution with that of the 3GPP codes
under two different selection strategies for a block length of
� = 1024. Figure 4 repeats the same comparison for � = 8192.
In both figures, the rate of the outer code is chosen according
to 3GPP guidelines. This rate for � = 8192 is equal to
R = 0.9834 and for � = 1024 is R = 0.9381. As Figures
3 and 4 reveal, for all cases, the performance of our proposed
degree distribution is superior to the degree distribution of the
3GPP.

Table V shows the average performance measures for our
simulations, which are again based on m = m∗. In this
table, d̄ = Ω′(1) is the average degree of the distributions, ε̄
represents the average reception overhead. Also, ĪMax−Comp,
and ĪRand denote the average normalized number of inac-
tivations when the selection of nodes for inactivation has
been performed based on using the Max-Component ID and
Random ID strategies, respectively. Table V indicates that our
codes significantly reduced the number of inactivations at the
cost of a slightly higher overhead.

TABLE I
AVERAGE PERFORMANCE MEASURES FOR THE 3GPP CODE AND THE

PROPOSED DESIGN WITH m = m∗ .

Code � d̄ = Ω′(1) ε̄ ĪMax−Comp ĪRand

3GPP
1024 4.6184 0.38% 4.49% 9.40%

8192 4.6184 0.44% 1.54% 4.03%

New Design
1024 3.9739 0.66% 3.20% 7.04%

8192 5.0854 0.48% 1.13% 2.59%

V. CONCLUSION

A new criterion for the design of degree distributions for
inactivation decoding was presented. Based on this criterion,
a family of degree distributions was found analytically. The
suggested family was modified for the practical case of
finite maximum degree. The simulation results confirmed the
superiority of the proposed codes over existing designs.

REFERENCES

[1] M. Luby, “LT codes,” in Proc. 2002 IEEE Symp. on Foundations
Comput. Science, pp. 271–280.

[2] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, June 2006.

[3] “Technical specification group services and system aspects; multimedia
broadcast/multicast services (MBMS); protocols and codecs (release 6),”
3GPP, Tech. Rep. 3GPP TS 26.346 V6.3.0, 2005.

[4] ETSI, “DVB BlueBook A101 digital video broadcasting (DVB); IP
datacast over DVB-H: content delivery protocols,” Tech. Rep. TS 102
472 V1.2.1, Dec. 2006.

[5] Z. Chen, J. Castura, and Y. Mao, “On the design of Raptor codes for
binary-input Gaussian channels,” IEEE Trans. Commun., vol. 57, no. 11,
pp. 3269–3277, Nov. 2009.

[6] O. Etesami and A. Shokrollahi, “Raptor codes on binary memoryless
symmetric channels,” IEEE Trans. Inf. Theory, vol. 52, no. 5, pp. 2033–
2051, May 2006.

[7] A. AbdulHussein, A. Oka, and L. Lampe, “Decoding with early ter-
mination for Raptor codes,” IEEE Commun. Lett., vol. 12, no. 6, pp.
444–446, June 2008.

[8] S. Kim, S. Lee, and S.-Y. Chung, “An efficient algorithm for ML
decoding of Raptor codes over the binary erasure channel,” IEEE
Commun. Lett., vol. 12, no. 8, pp. 578–580, Aug. 2008.

[9] A. Shokrollahi, S. Lassen, and R. Karp, “Systems and processes for
decoding chain reaction codes through inactivation,” United States
Patent Serial Number 6856263, Feb. 2005.

[10] P. Pakzad and A. Shokrollahi, “Design principles for Raptor codes,” in
Proc. 2006 IEEE Inf. Theory Workshop, pp. 165–169.

[11] S. Sanghavi, “Intermediate performance of rateless codes,” in Proc. 2007
IEEE Inf. Theory Workshop, pp. 478–482.

[12] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 569–584, Feb. 2001.

[13] A. Shokrollahi and M. Luby, “Raptor codes,” ser. Foundations Trends
Commun. Inf. Theory, vol. 6, no. 3–4, pp. 213–322, 2009.

[14] A. Shokrollahi, “Fountain codes,” 2nd Tutorial, 2009 IEEE International
Symp. on Inf. Theory.

[15] E. Maneva and A. Shokrollahi, “New model for rigorous analysis of
LT-codes,” in Proc. 2006 IEEE International Symp. on Inf. Theory, pp.
2677–2679.

[16] R. W. R. Darling and J. R. Norris, “Structure of large random hyper-
graphs,” Annals Applied Probability, vol. 15, no. 1A, pp. 125–152, Feb.
2005.

[17] M. Luby, M. Mitzenmacher, and M. A. Shokrollahi, “Analysis of random
processes via and-or tree evaluation,” in Proc. 1998 ACM-SIAM Symp.
Discrete Algorithms, pp. 364-373.

[18] D. J. C. Mackay, “Fountain codes,” IEE Commun., vol. 152, pp. 1062–
1068, 2005.

