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Abstract—For the first time, the performance of pairwise
amplify-and-forward multi-way relay networks (MWRNs) is
studied. To this end, new end-to-end signal-to-noise ratio (e2e
SNR) expression at an arbitrary source is first derived in closed-
form, and thereby, an insightful statistical characterization is
developed. In this context, tight closed-form approximations are
derived for the cumulative distribution function, probability
density function and moment generating function of the e2e
SNR. Specifically, the conditional outage probability and the
average bit error rate conditioned on error-free back-propagated
successive interference cancellation are also derived in closed-
form. Moreover, valuable insights into practical MWRN system-
designing is obtained by deriving the fundamental diversity-
multiplexing trade-off by employing the high SNR outage prob-
ability approximation.

Index Terms—Relay networks, amplify-and-forward.

I. INTRODUCTION

TWO-WAY relay networks (TWRNs) are being studied
for next generation wireless networks with half-duplex

terminals as they are as twice spectral efficient as one-way
relay networks (OWRNs) [1], [2]. Multi-way relay networks
(MWRNs) are the natural generalization of TWRNs in which
more than two sources exchange their information bearing sig-
nals by using intermediate relays. While the achievable rates
have been quantified in [3], [4], a comprehensive performance
analysis of MWRNs is lacking right now. In this letter, the
performance of pairwise amplify-and-forward (AF) MWRNs
is studied.

Although multi-way communication channels have been
studied as early as 1970s, their practical significance has
only been fully exploited after the emergence of research in
modern cooperative relay networks. To this end, multi-way
communication channels have been exploited with the aid of
relays, and consequently, resulted a flurry of recent research in
the context of MWRNs [3]–[5]. To be more specific, in [3], the
achievable symmetric rate of MWRNs are studied for several
relay processing strategies. In [4], the capacity region of a
class of multi-way relay channels, where the channel inputs
and outputs take values over finite fields, is derived. Moreover,
in [5], a pairwise decode-and-forward1 (DF) transmission
strategy is proposed and studied for MWRNs. It is also
shown that this pairwise DF transmission strategy achieves
the common-rate capacity for binary MWRNs. Recently, in
[6], pairwise DF MWRNs based on deterministic broadcasting
with side information have been shown to be optimal in the
sense of sum-capacity. All the aforementioned transmission
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1This pairwise decode-and-forward transmission strategy is also known as

functional decode-and-forward (FDF).

strategies employ the DF protocol, and exploit inherent bene-
fits of physical layer network coding.

In this letter, the pairwise AF transmission is studied for
MWRNs2. Similar to [5], in our system set-up, M ≥ 2
sources exchange M independent symbols with the aid of a
relay in two consecutive multiple-access (MAC) and broadcast
(BC) phases each having M − 1 time-slots. Unlike [5], the
relay employs the AF protocol in the BC phase, and each
source decodes the symbols belonging to the remaining M−1
sources by employing back-propagated successive interference
cancellation (SIC).

In this work, we establish basic performance metrics of
pairwise AF MWRNs. To this end, tight closed-form ap-
proximations for the cumulative distribution function (CDF),
probability density function (PDF) and the moment generating
function (MGF) of the end-to-end signal-to-noise ratio (e2e
SNR) are derived. Moreover, the conditional outage probabil-
ity and the average bit error rate (BER) conditioned on error-
free back-propagated SIC are also derived in closed-form.
Useful insights are obtained by quantifying the achievable
diversity-multiplexing trade-off (DMT) by employing the high
SNR approximation of the outage probability.
Notations: Kν (z) is the Modified Bessel function of the
second kind of order ν [7, Eq. (8.407.1)]. 2F1(α, φ; γ; z) is
the Gauss Hypergeometric function [7, Eq. (9.14.1)]. Wν,μ(z)
is the Whittaker-W function [7, Eq. (9.222.1)]. U(μ, ν, z)
is the HypergeometricU function [8]. Γ(ν, z) is the upper
Incomplete Gamma function [7, Eq. (8.350.2)]. Q (z) denotes
the Gaussian Q-function [9, Eq. (26.2.3)].

II. SYSTEM MODEL

We consider a pairwise AF MWRN consisting of M sources
(Sm) for m ∈ {1, · · · ,M}, and one relay node (R). Each
terminal is equipped with a single-antenna and operates in
half-duplex mode. All the channel amplitudes are assumed to
be independently distributed frequency-flat Rayleigh fading,
and are assumed to be remain constant over 2(M − 1) time-
slots [5]. The direct channel between Si and Sj for i �= j
is assumed to be unavailable due to heavy path-loss and
shadowing [5].

In this protocol, all M sources exchange their information-
bearing signals, xm, satisfying E[|xm|2] = 1 for m ∈
{1, · · · ,M}, each other in two consecutive MAC and BC
transmission phases each having M − 1 time-slots. In the ith
time-slot of the MAC phase, Si and Si+1 source pair, where
i ∈ {1, · · · ,M − 1}, transmits xi and xi+1 simultaneously
to R. Consequently, the superimposed-signal received at R in
the ith time-slot of MAC phase is given by

y
(i)
R =

√
Pihi,Rxi +

√
Pi+1hi+1,Rxi+1 + n

(i)
R , (1)

2It is worth noticing that all the benefits of AF relaying over DF relaying
in both OWRNs and TWRNs are applicable to MWRNs as well.
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where Pi is the transmit power at Si and hi,R ∼ CN (0, φi)

is the channel coefficient3 from Si to R. Moreover, n(i)
R ∼

CN (0, σ2
R) is additive white Gaussian noise (AWGN) at R.

The aforementioned MAC phase continues until the last source
pair, SM−1 and SM , completes their transmission. In this
context, R has now received M−1 pairwise transmissions.

During the BC phase, R broadcasts an amplified version
of the M − 1 superimposed-signals back to all M sources
sequentially in M − 1 consecutive time-slots. The received
signal at the mth source in the jth time-slot of the BC phase
is thus given by

y
(j)
Sm

= GjhR,iy
(i)
R + n(j)

m , for j∈{1, · · · ,M−1}, (2)

where Gj =
√PR/(Pi|hi,R|2 + Pi+1|hi+1,R|2 + σ2

R) is the
power normalizing factor designed to constraint the instan-
taneous power at R. In (2), hR,i is the channel coefficient
from R to Si, and is assumed to be equal to hi,R due to the
reciprocity of wireless channels [1], [4], [5]. Further, PR is
the transmit power at R and n

(j)
m ∼ CN (0, σ2

m) is the AWGN
at Sm for m ∈ {1, · · · ,M}.

After the BC phase, an arbitrary source, Sm has now
received M − 1 independent signals from which the signals
belonging to the remaining M − 1 sources can readily be
decoded by using back-propagated SIC.

The e2e SNR of the symbol belonging to Sn received at
Sm assuming no error propagations for m ∈ {1, · · · ,M},
n ∈ {1, · · · ,M} and m �= n is given by

γ
(n)
Sm

=

⎧⎨
⎩

γ̄R,mγ̄n,R|hm|2|hn|2
(γ̄R,m+γ̄m,R)|hm|2+γ̄n,R|hn|2+1 , n = m± 1

γ̄R,mγ̄n,R|hm|2|hn|2
γ̄R,m|hm|2+γ̄n,R|hn|2+γ̄n′,R|hn′ |2+1 , n �= m± 1,

(3)

where γ̄R,m=PR/σ
2
m, γ̄n,R=Pn/σ

2
R, and hm=hR,m=hm,R.

In (3), n′ = n− 1 if n > m and n′ = n+ 1 otherwise.

III. STATISTICAL CHARACTERIZATION OF THE E2E SNR

In this section, the CDF of the e2e SNR, γ(n)Sm
is first derived,

and then used to derive the PDF and MGF in closed-form.

A. The CDF of the e2e SNR

The e2e SNR for n = m± 1 case has already appeared in
the context of AF TWRNs, and consequently, its exact CDF
has already been derived in closed-form in [2].

On the contrary, to the best of our knowledge, the CDF of
γ
(n)
Sm

for n �= m± 1 case has not yet been derived in the open
literature, and this derivation is one of the main contribution of
this work. In this context, the exact CDF of γ(n)Sm

for n �= m±1
case can be derived as (see Appendix I for the proof)

F
γ
(n)
Sm

(w)=1− 1

αβ

∫ ∞

0

∫ ∞

0

F̄X

(
w

αβt
[μ (t+ηw)+αβ (νλ+c)]

)

× fY

(
t+ ηw

αβ

)
fZ(λ) dtdλ, (4)

where X = |hm|2, Y = |hn|2, and Z = |hn′ |2. In (4), α =
γ̄R,m, β = γ̄n,R, η = γ̄R,m, μ = γ̄n,R, ν = γ̄n′,R, and c = 1.
Moreover, F̄X(x) is the complementary CDF (CCDF) of X .

3Here, φi accounts for the path-loss effect and is modeled as φi ∝
(dSi,R)−ζi , where dSi,R is the distance between Si and R, and ζi is the
path-loss exponent.

By first noting that X , Y and Z are independent exponen-
tially distributed, and then by substituting the corresponding
CDFs and PDFs into (4), F

γ
(n)
Sm

(w) can be further simplified

as (see Appendix I for the proof)

F
γ
(n)
Sm

(w) = 1− e
− w

αβ

(
μ
φx

+ η
φy

)

αβ
√
φxφy

∫ ∞

0

J (λ)e−λdλ, (5)

where the function J (λ) is given by

J (λ) =
√
μηw2 + αβw (νφzλ+ c)

×K1

(
2

αβ

√
μηw2 + αβw (νφzλ+ c)

φxφy

)
. (6)

In (5) and (6), φx = φm, φy = φn, and φz = φn′ . The
exact closed-form evaluation of (5) appears mathematically
intractable. Interestingly, the integral of (5) is in the form of
Gauss-Laguerre quadrature (GLQ) [9, Eq. (25.4.45)], and thus
can readily be evaluated as

F
γ
(n)
Sm

(w) = 1− e
− w

αβ

(
μ
φx

+ η
φy

)

αβ
√
φxφy

Tg∑
t=1

ΔtJ (λt) +RTg , (7)

In (7), λt|Tg

t=1 and Δt|Tg

t=1 are the abscissas and weights of the
GLQ, respectively [9, Eq. (25.4.45)]. Specifically, λt is the tth
root of the Laguerre polynomial Ln(x) [9, Chap. 22], and the
corresponding tth weight is given by Δt =

( t!)2xt

(t+1)2[Lt+1(xt)]2
.

Both λt and Δt can be efficiently computed by using the
classical algorithm proposed in [10]. In particular, Tg is the
number of terms used in the GLQ summation, and RTg is the
residue term, which readily diminishes as Tg approaches as
small as 20 [10].

Next, in order to obtain valuable insights into practical
AF MWRN designs, a computationally efficient and simple
approximation of F

γ
(n)
Sm

(w) is also derived in closed-form as

follows (see Appendix II for the proof):

F
γ
(n)
Sm

(w) ≈ 1− Ωwe−w(Ψ−Ω/2)Γ(−1,Ωw) , (8)

where Ω = νφz

αβφxφy
and Ψ =

μφy+ηφx−νφz/2
αβφxφy

.

Remarks III.1: The PDF and MGF of γ(n)Sm
for the case n =

m± 1 and the corresponding performance metrics have been
extensively studied in the open literature [2]. Henceforth only
the results related to n �= m± 1 are provided in the sequel.

B. The PDF of the e2e SNR

The PDF of γ(n)Sm
for n �= m ± 1 can be approximately

derived by differentiating (8) as

f
γ
(n)
Sm

(w)≈Ω ((Ψ− Ω/2)w − 1) e−w(Ψ−Ω/2)Γ(−1,Ωw)

+
1

w
e−w(Ψ+Ω/2). (9)

C. The MGF of the e2e SNR

The MGF is an useful statistical metric, which can be
employed to yield unified analysis. Thus, the MGF of γ(n)Sm

for
n �= m ± 1 can be approximately derived by substituting (9)
into MΛ(x) =

∫∞
0

e−sfΛ(x) dx and evaluating the resulting
integral by using [7, Eq. (6.455.1)] as

M
γ
(n)
Sm

(s)≈ 1− s

2Ψ+ Ω
2F1

(
1, 1; 3;

2s+ 2Ψ− Ω

2s+ 2Ψ+ Ω

)
. (10)
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IV. PERFORMANCE ANALYSIS

In this section, the basic performance metrics of pairwise
AF MWRNs are derived. To this end, the outage probability
and average BER are derived by using the statistical charac-
terization of e2e SNR presented in Section III.

A. Outage probability

The conditional outage probability of decoding the symbol
sent by Sn at Sm conditioned on error-free back-propagated
SIC can be readily derived by employing either (7) or (8) as:

P
out,S(n)

m
= Pr

(
γ
(n)
Sm

≤ γth

)
= F

γ
(n)
Sm

(γth) , (11)

where γth is the preset SNR threshold, which is determined to
satisfy the minimum service-rate constraint; γth = 2Rth − 1,
where Rth is the target rate.

The high SNR outage probability approximation provides
useful insights into valuable system design parameters such as
the achievable diversity order and DMT. By first substituting
the Maclaurin series expansions of exponential and upper
incomplete gamma functions into (8), and then evaluating the
resulting first order expansion at γth, the outage probability
approximation at high SNRs is derived as

P∞
out,S(n)

m
≈
[
Ψ′ +

Ω′

2
− Ω′γ − Ω′ ln

(
Ω′γth
γ̄n,R

)](
γth
γ̄n,R

)
, (12)

where Ω′ = k1φz

φxφy
, Ψ′ =

k1φy+k2φx−k1k2φz/2
k2φxφy

, k1 =
γ̄n,R

γ̄R,m
,

and k2 =
γ̄nR

γ̄n′,R
. In (12), γ is the Euler-Mascheroni constant

and given by γ=−ψ(1)=0.577215665... [7, Eq. (8.367.1)].
Now, one can argue that P∞

out,Sm
in (12) is proportional to

(γ̄n,R)
−1 at high SNRs, and hence, the achievable diversity

order is quantified to be unity.
The overall outage probability at Sm is defined as

P overall
out,Sm

= Pr

(
min

n∈{1,···M}∩n�=m
γ
(n)
Sm

≤ γth

)
. (13)

Finally, the overall outage probability of the whole system
is defined as

P overall
out = Pr

(
min

m∈{1,···M}

[
min

n∈{1,···M}∩n�=m
γ
(n)
Sm

]
≤ γth

)
. (14)

Unfortunately, the exact analysis of P overall
out,Sm

or P overall
out in

(14) appears mathematically intractable due to the statistical
dependence of γ(n)Sm

for n ∈ {1, · · ·M} ∩ n �= m, and hence,
we leave it as an open problem. However, the overall diversity
order of the whole system can be intuitively determined to be
unity, as each of data stream of any particular source is no
larger than unity and taking the minimum in (14) would not
increase the achievable diversity gains.

B. Average BER

The conditional average BER of decoding the symbol be-
longing to Sn at Sm conditioned on error-free back-propagated
SIC can be derived by averaging the instantaneous BER,

P
(n)
e,Sm

= aQ
(√

bγ
(n)
Sm

)
, over the PDF of γ(n)Sm

as follows:

P̄
(n)
e,Sm

≈ a

2
− a

3

√
b

b+2Ψ+Ω
2F1

(
1,

1

2
;
5

2
;
b+ 2Ψ− Ω

b+ 2Ψ+ Ω

)
, (15)

where a and b are modulation dependent constants.
The instantaneous block error rate (BLER) at Sm, which

is the probability of having at least one error at the detected
symbols sent by the remaining M − 1 sources, can be derived
assuming errors are independent at each step of SIC as
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Fig. 1. The outage probability of a pairwise AF four-way relay network
with γth = 5.00 dB.

PB,Sm =1−
M−1∏
n=1

(
1−P (n)

e,Sm

)
=

M−1∑
j=1

P
(n)
e,Sm

j−1∏
n=1

(
1−P (n)

e,Sm

)
.(16)

However, the average BLER can not be expressed as P̄B,Sm =∑M−1
j=1 P̄

(n)
e,Sm

∏j−1
n=1

(
1−P̄ (n)

e,Sm

)
because of the statistical de-

pendence of γ(n)Sm
for n ∈ {1, · · · ,M}. Again, we leave the

derivation of the average BLER as an open problem.

C. Diversity-multiplexing trade-off

In this pairwise AF MWRN, M independent symbols are
exchanged in 2(M − 1) time-slots among M participating
sources. In this context, the overall DMT of the whole system
can be derived by employing the results in Section IV-A as

d(r) = (1− 2(M − 1)r/M) . (17)

It is worth noticing that the maximum achievable multiplexing
gain is given by r = M

2(M−1) . Interestingly, r is maxi-

mized when M = 2, i.e., rmax = limM→2
MNR

2(M−1) = 1.
Counterintuitively, as M becomes large, r approaches 1/2,
i.e., rmin = limM→∞ M

2(M−1) = 1
2 , which can readily

be achieved by AF OWRNs. This result leads us to one
important insight into practical implementation of MWRNs
with pairwise transmissions; i.e., the multiplexing gain of AF
MWRNs gradually reduces to 1/2 as the number of sources
increases, and consequently, the asymptotic multiplexing gain
approaches that of AF OWRNs.

V. NUMERICAL RESULTS

In Fig. 1, both conditional and overall outage probability
curves of S1 for a pairwise AF four-way relay network are
plotted. The analytical curves for n = m ± 1 are plotted by
using the outage probability analysis of [2]. Fig. 1 clearly
reveals that the outage probability corresponding to the case
n = m ± 1 is considerably lower4 than that of the case
n �= m ± 1. In particular, our outage approximation (11) is
notably tight to the exact curves in almost entire SNR regime.
In addition, the overall outage probability at S1 is plotted by
using Monte-Carlo simulations.

4This behavior is evident from the high SNR outage approximation (12)
as it contains γ̄−1

n,Rlog
(
γ̄−1
n,R

)
term.
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Fig. 2. The average BER of a pairwise AF four-way relay network.

In Fig. 2, the conditional average BER of binary phase shift
keying and the average BLER are plotted for a pairwise AF
four-way relay network by letting a = 1 and b = 2 in (15). The
analytical BER curve of n = m±1 case is plotted by using the
BER lower bound of [2]. Again, Fig. 2 clearly reveals that the
BER of n = m±1 case is lower than that of n �= m±1 case.
Specifically, our BER approximation (15) is considerably tight
to the exact BER curves in entire SNR regime. However, Fig.
2 clearly shows that both n = m ± 1 and n �= m ± 1 cases
achieve the same diversity order of one.

VI. CONCLUSION

The performance of pairwise AF MWRNs was studied. To
this end, tight approximations for the CDF, PDF, and MGF
of e2e SNR were derived in closed-form. In particular, the
conditional outage probability and the average bit error rate
conditioned on error-free back-propagated SIC were derived
in closed-form. The fundamental DMT was also quantified by
using the high SNR approximation of the outage probability.
Our analysis reveals that the pairwise AF MWRNs achieves
the maximum multiplexing gain whenever the number of
participating sources are limited to two.

APPENDIX I : PROOF OF F
γ
(n)
Sm

(w)

In this appendix, the proof of the CDF of γ(n)Sm
for n �= m± 1

is sketched. To this end, γ(n)Sm
in (3) is rewritten as

γ
(n)
Sm

=
αβXY

ηX + μY + νZ + c
, (18)

where α, β, η, μ, and ν are the average transmit SNRs, and are
already defined in (4). In addition,X = |hm|2, Y = |hn|2, and
Z = |hn′ |2 are independently distributed exponential random
variables with means φx, φy , and φz , respectively. Thus, the
CDF of γ(n)Sm

can be derived as

F
γ
(n)
Sm

(w) = Pr

(
αβXY

ηX + μY + νZ + c
≤ w

)

=

∫ ∞

0

∫ ∞

0

Pr (x[αβθ−ηw]≤w[μθ+νλ+c])fY (θ)fZ(λ) dθdλ

=

∫ ∞

0

[
FY

(
ηw

αβ

)
+

∫ ∞

ηw
αβ

FX

(
w(μθ+νλ+c)

αβθ − ηw

)
fY(θ) dθ

]
fZ(λ) dλ

= FY

(
ηw

αβ

)
+

1

αβ

∫ ∞

0

∫ ∞

0

FX

(
w (μ(t+ ηw)+αβ(νλ + c))

αβt

)

× fY

(
t+ ηw

αβ

)
fZ(λ) dt dλ. (19)

The last equality of (19) is obtained by changing the dummy
variable as θ = t+ηw

αβ . Next, by substituting FX(x) = 1 −
F̄X(x) into (19), the desired integral expression of F

γ
(n)
Sm

(w)

can readily be derived as in (4).
Now, by substituting F̄X(x) = e−

x
φx , fY (y) = 1

φy
e
− y

φy ,

and fZ(z) =
1
φz

e−
z
φz into (4), and after some mathematical

manipulations, F
γ
(n)
Sm

(w) can be written as

F
γ
(n)
Sm

(w) = 1−
∫ ∞

0

e
− w

αβ

(
μ
φx

+ η
φy

+ λ
φz

)

αβφyφz
I(λ) dλ, (20)

where the function I(λ) is defined as

I(λ) =
∫ ∞

0

e
−
(

t
αβφy

+μηw2+αβw(νλ+c)
αβφxt

)
dt. (21)

Next, by first evaluating I(λ) in closed-form by using [7,
Eq. (3.471.9)], and then changing the dummy variable λ →
φzλ, the desired single integral expression for F

γ
(n)
Sm

(w) can

be derived as given in (5).

APPENDIX II : PROOF OF APPROXIMATION OF F
γ
(n)
Sm

(w)

The exact closed-form evaluation of F
γ
(n)
Sm

(w) in (5) appears

mathematically intractable. However, in order to evaluate (5)
in closed-form, J (λ) can be tightly approximated as

J(λ)≈ J ′(λ) =
√
αβwνφzλ K1

(
2

αβ

√
αβwνφzλ

φxφy

)
. (22)

By substituting (22) into (5), and evaluating the resulting
integral by using [7, Eq. (6.631.3)], a tight approximation of
F
γ
(n)
Sm

(w) can be derived as

F
γ
(n)
Sm

(w) ≈ 1− e−Ψw W−1, 12
(Ωw) , (23)

where Ψ and Ω are already defined in (8). By substituting the
identities Wa,b(z) = za+1/2e−z/2U(a−b+1/2, 2a+1, z) [11]
and U(k, k, z) = ezΓ(1− k, z) [12] successively into (23), the
desired result can be obtained as in (8).
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