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Abstract—The concept of relay transmission is applied to
land mobile satellite (LMS) communication, where a terrestrial
relay node facilitates communication from the satellite to the
mobile unit. A novel amplify-and-forward (AF) multiple-input–
multiple-output (MIMO) relay system is proposed where the
source, the relay, and the destination are all equipped with mul-
tiple antennas. The maximal ratio transmission (MRT)-selection
combining (SC) diversity technique is used for the first hop and
maximal ratio combining (MRC) is used for the second hop. We
analyze the outage probability, the average symbol error rate
(SER), and the ergodic capacity, for which accurate closed-form
approximations are derived by considering the generalized cor-
related source-to-relay channel and arbitrary-correlated relay-
to-destination channel. The system is also analyzed for an equally
correlated source-to-relay channel, which is the special case of
generalized correlation, by deriving exact closed-form expressions
for the outage probability and average SER and highly accurate
closed-form analytical approximation for the ergodic capacity.
From high SNR asymptotic analysis, we show that the system
achieves full diversity order. The impact of multiple antennas
and their correlation on the performance are assessed via several
examples.

Index Terms—Antenna correlation, cooperative communica-
tions, land mobile satellite (LMS), multiple-input-multiple-output
(MIMO), relay, shadowed Rician.

I. INTRODUCTION

FOURTH-GENERATION (4G) wireless networks offer
high data rates and high-quality service at any time and at

any place. To realize this aim, researchers have recently adapted
relaying and cooperation, which are already used terrestrial
communication techniques, to satellite communication via ter-
restrial relay nodes forming a hybrid satellite/terrestrial network
[1], [2]. An example is cooperative satellite communication
via terrestrial relay nodes in [2]. Relaying and cooperation via
terrestrial relay nodes (either infrastructure-based fixed relays
or mobiles) in land mobile satellite (LMS) communication
has several advantages. It makes satellite coverage possible in
indoor tunnel environments. In the LMS channel, shadowing
effects significantly attenuate the received signal [3]. Mitigating
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the signal attenuation in LMS channels is possible with cooper-
ative relaying.

The performance gain through the incorporation of multiple
antennas in a relay network has been established [4]–[8]. The
capacity improvement of the LMS link with multiple antennas
has been empirically [9] and analytically [10] demonstrated.
Hence, the adaptation of relay-assisted cooperation coupled
with multiple-input–multiple-output (MIMO) technology to
a hybrid satellite/terrestrial network becomes imperative for
achieving the ambitious throughput and coverage requirements
of 4G. When channel state information (CSI) is available,
maximal ratio transmission (MRT) [11] and maximal ratio com-
bining (MRC) [12], which are also known as the transmit and
receive beamforming, respectively, are frequently used antenna
diversity techniques, as they maximize SNR. However, the
use of MRC reception increases system hardware complexity,
cost, and power consumption compared with, e.g., selection
combining (SC), which uses the antenna with the highest SNR
for reception.

For terrestrial communication, the performance of the dual-
hop variable-gain amplify-and-forward (AF) MIMO relay net-
works has been widely investigated [4]–[7]. Their outage and
error performance with beamforming was shown in [4] over
independent Rayleigh fading and in [5] over independent
Nakagami-m fading. In [6], Louie et al. extended [4] to the case
of antenna correlation. The implementation in [7] considered
such a network with transmit antenna selection (TAS) at the
source and MRC at the destination and analyzed this network
over independent Rayleigh fading. However, in all these stud-
ies, the relay node was constrained to a single antenna and
a symmetric fading scenario was considered. A variable-gain
AF relay was considered in [8] with multiple receive antennas
implementing SC and a single transmit antenna, and the per-
formance was analyzed over two hops in symmetric Rayleigh
fading. Although the effect of the multiple receive antennas
at the relay and destination was analyzed by considering the
antenna correlation as well, the source was constrained to have
a single antenna.

In [13], Dhungana and Rajatheva proposed an AF MIMO
relay system that outperforms the configurations in [4]–[6] and
[8]. The authors exploited beamforming together with antenna
diversity at the relay. In this system, although the relay employs
multiple receive antennas, it uses SC reception. The knowledge
of the selected relay antenna is informed to the source via the
feedback channel. The source then performs transmit beam-
forming to the selected antenna of the relay. The received signal
at the relay is amplified (or decoded) and forwarded through
the single transmit antenna of the relay. The destination uses
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Fig. 1. Dual-hop system with hop-by-hop beamforming along with selection diversity.

MRC reception. Since [13] considered an LMS system with a
terrestrial relay node, the source-to-relay link was appropriately
modeled to experience shadowed Rician fading and the relay-
to-destination link to Rayleigh fading.

To the best of our knowledge, the proposed network setup
[13] under such an asymmetric fading scenario with such
channel models has never been addressed before. In this paper,
the same network setup is adopted with the same scenario and
channel models but, now, taking the antenna correlation into
account. In real radio environments, antennas tend to be corre-
lated due to insufficient spatial separation. The required phys-
ical separation is influenced by the surrounding environment.
A direct line-of-sight (LOS) wave arriving at the receiving
antenna array is found to be highly correlated among the array
elements, whereas multipath scattered waves arriving at the
receiving array tend to be uncorrelated at a distance of half the
wavelength [14]. In [13], the authors derived results for both AF
and decode-and-forward (DF). This paper extends the results
of [13] for AF relaying only. The DF results easily follow
and are omitted here for brevity. We first derive new closed-
form expressions for the cumulative distribution function (cdf)
of the output SNR of the MRT-SC system under generalized
and equally correlated shadowed Rician fading. For generalized
correlation of the source-to-relay channel, we next derive new
integral expressions for the outage probability, the average
symbol error rate (SER), and ergodic capacity of the pro-
posed AF system, which are evaluated using a Gauss–Laguerre
quadrature (GLQ) rule as in [8]. Under the special case of equal
correlation of the LOS components of the source-to-relay chan-
nel, the outage probability and average SER are derived in exact
closed form without the GLQ approximation. Under this special
case, a second-order approximation for the ergodic capacity is
derived along with a tight upper bound, and the asymptotic
SER and outage probability evaluations are also presented to
provide insights into the diversity order and array gain of the
system.

The remainder of this paper is organized as follows.
Section II presents the system and the channel model.
Section III provides a statistical characterization of the source-
to-relay channel. This characterization requires considerable
effort and, hence, deserves a separate section. Section IV ana-
lyzes the outage probability, average SER, and ergodic capacity.
The analytical and simulation results are given in Section V.
Section VI concludes the paper.

II. SYSTEM AND CHANNEL MODEL

We consider the downlink of an LMS-based dual-hop AF
MIMO relay network where communication between the satel-
lite and a land mobile terminal is assisted by a terrestrial relay
node R with the satellite acting as the source node S and the
mobile terminal as the destination node D. Since a relay node
is placed where mobile users lose their links with the satellite
due to heavy shadowing and, hence, relaying is necessary, the
S → D direct link is assumed to be unavailable. This situation
occurs when, for example, mobile users move to places such
as tunnels or vegetation areas, where the satellite link may
be completely disrupted [15]. This two-hop scenario with no
direct link between the satellite and the mobile unit is equally
attractive for serving low-cost user terminals with no satellite
transmission/reception capabilities.

The source and the destination are equipped with Ns and
Nd antennas, respectively, with the source implementing MRT
(also known as transmit beamforming), while the destination
implementing MRC (also known as receive beamforming) with
the help of the CSI available at these nodes (see Fig. 1). Half-
duplex transmission is assumed and, hence, cooperation takes
place over two time slots. During the first time slot, the source
transmits to the relay. The relay then forwards the amplified
version of the source signal to the destination in the second
time slot. The relay uses Nr antennas with SC for reception
and only one antenna for transmission. Although TAS can be
used at the transmitting end of the relay, it requires additional
CSI feedback, increasing the system overhead and complexity.
This particular receive/transmit strategy at the relay is de-
signed to provide a tradeoff between the performance and the
complexity/costs/power. The system privileges the satellite link
with multiple antennas at both ends for a diversity gain as the
link is more vulnerable to fading, while at the same time tries to
keep the system cost/complexity as low as possible. If the relay
uses two different sets of antennas for satellite and terrestrial
links, respectively, optimized for their link-specific purposes,
then having a single transmit antenna at the relay makes such
relay implementation cost-effective.

A. Source-to-Relay Channel Model

The S → R channel matrix HSR = [h1SR
,h2SR

, . . . ,
hNrSR

]T =[g1SR
,g2SR

, . . . ,gNsSR
]∈C

Nr×Ns , where hkSR
=

[hk,1SR
, . . . , hk,NsSR

]T ∈ C
Ns×1, k ∈ 1, 2, . . . , Nr represents
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the channel vector from the source to the kth antenna of
the relay and glSR

= [h1,lSR
, . . . , hNr,lSR

]T ∈ C
Nr×1, l ∈

1, 2, . . . , Ns represents the channel vector from the lth an-
tenna of the source to the relay and is assumed to experience
correlated shadowed Rician fading. We follow the shadowed
Rician model proposed in [16] where a random shadowing
LOS component is modeled by Nakagami-m distribution with
m describing the severity of shadowing. Unlike the traditional
Nakagami-m, where m varies over the range of 0.5 ≤ m <
∞, in the shadowed Rician model of [16], m is allowed to
vary over the range 0 ≤ m < ∞. The spatial correlation at the
receive antennas of the relay is considered with the uncorrelated
transmit antennas at the satellite by assuming the link to be
correlated only at the more constrained end. With a further
assumption that the decorrelation distance for the scattered
component is shorter than that for the LOS component, only the
LOS component is considered to be correlated with the spatially
white scattered component.

The shadowed Rician faded S → R channel with the receive-
side correlated LOS component and the spatially white
scattered component can be modeled as HSR = H̄SR +
HwSR

, where the entries of the LOS component H̄SR =
[h̄1SR

, h̄2SR
, . . . , h̄NrSR

]T = [ḡ1SR
, ḡ2SR

, . . . , ḡNsSR
] =

[zk,l]k=1,...,Nr;l=1,...,Ns
are Nakagami-m random variables

(RVs) such that the elements of the vector h̄kSR
, where k ∈

1, 2, . . . , Nr, are uncorrelated, whereas those of ḡlSR
, where

l ∈ 1, 2, . . . , Ns, are correlated with a common correlation ma-
trix; the entries of the scattered component HwSR

= [hw1SR
,

hw2SR
, . . . ,hwNrSR

]T are independent complex Gaussian RVs
with zero mean and unit variance. Analysis of the proposed
relay network with an arbitrary correlation model for the LOS
component becomes intractable. Hence, the correlation model
proposed in [17] and [18] is used in this paper. Using an
approach similar to that in [17] and [18], we can express
the entries of H̄SR = [zk,l]k=1,...,Nr;l=1,...,Ns

(for a posi-
tive integer m) with mNsNr number of zero-mean complex
Gaussian RVs

(Gkl)n=

√
Ω

m

(√
1 − ρk(Xkl)n +

√
ρk(X0l)n

)
+ j

√
Ω

m

(√
1 − ρk(Ykl)n +

√
ρk(Y0l)n

)
k=1, 2, . . . , Nr, l=1, 2, . . . , Ns, n=1, 2, . . . ,m (1)

where j=
√
−1, 0≤ρk<1, and (Xkl)n, (Ykl)n(k=0,1, . . . , Nr;

l=1, 2, . . . , Ns;n=1, 2, . . . ,m) are independent Gaussian
RVs with zero mean and variance 1/2. For any k, u∈
{0, 1, . . . , Nr}; l, v∈{1, 2, . . . , Ns}; n, q∈{1, 2, . . . ,m},
E[(Xkl)n(Yuv)q]= 0,E[(Xkl)n(Xuv)q]= E[(Ykl)n(Yuv)q] =
(1/2)δ(k − u)δ(l − v)δ(n− q), where δ(.) is the Kronecker
delta function. The cross-correlation coefficient between any
(Gkl)n and (Guv)q can be calculated as

ρ(kl)n,(uv)q =
E
[
(Gkl)n(Guv)

∗
q

]
− E [(Gkl)n]E

[
(Guv)

∗
q

]√
E

[
|(Gkl)n|2

]
E

[
|(Guv)q|2

]
=

{√
ρkρu (k �= u, l = v, and n = q)

0 (l �= v or n �= q).
(2)

Let

R2
k,l =

m∑
n=1

|(Gkl)n|2 . (3)

R2
k,l(k = 1, 2, . . . , Nr; l = 1, 2, . . . , Ns) is the sum of 2m

independent Gaussian RVs with chi-square distribution
χ2m(0, 1/2), where the notation follows from [17] and [18].1

Rk,l, therefore, represents the Nakagami-m RV with mean
square value E[R2

k,l] = Ω. By using (2), one can show
that the cross-correlation between R2

k,l and R2
u,l (k �= u) is

ρR2
k,l

,R2
u,l

= ρkρu, whereas the cross-correlation between R2
k,l

and R2
k,v (l �= v) is ρR2

k,l
,R2

k,v
= 0. The cross-correlation be-

tween Rk,l and Ru,v can be calculated as [19]

ρRk,l,Ru,v
= ϕ(m, 1)

{
2F1

(
−1

2
,−1

2
;m; ρR2

k,l
,R2

u,v

)
− 1

}
(4)

where ϕ(m, 1) = Γ2(m+ 1/2)/(Γ(m)Γ(m+ 1)− Γ2(m+
1/2)) and 2F1(., .; .; .) is the Gaussian hypergeometric function
[20, pp. 556]. By assigning zk,l = Rk,l (k = 1, 2, . . . , Nr; l =
1, 2, . . . , Ns), the entries of the receive-side-correlated LOS
component matrix H̄SR of the S → R channel can be
successfully modeled.

B. Relay-to-Destination Channel Model

The R → D SIMO channel is assumed to be an arbitrary
correlated Rayleigh fading channel. Hence, the channel vector
hRD ∈ C

Nd×1 can be represented as

hRD = [h1RD
, . . . , hNdRD

]T = D
1
2hwRD

(5)

where D = E[hRDh∗
RD] is the Nd ×Nd destination correla-

tion matrix. The entries of hwRD
are independent complex

Gaussian RVs with zero mean and unit variance.

C. End-to-End SNR

If the R → S feedback channel is perfect and the CSI is
ideally available, the source beamforms to the selected antenna
of the relay. If the kth antenna of the relay is selected at time t,
the received signal yRk

is given by

yRk
=

√
P1

ε
hH
kSR

wtks+ nRk
(6)

where s is the useful transmit signal with E[|s|2] = 1 and nRk

is the zero-mean complex Gaussian noise with a variance σ2
1 .

(.)H denotes the conjugate transpose and P1 is the transmitted
power at the source. The normalization factor ε ensures that
E[‖hkSR

‖2]/ε = Ns, where ‖.‖ denotes the Euclidean norm
of a vector. The transmit weight vector wtk ∈ C

Ns×1 is chosen
according to the principle of MRT [11] as wtk =

1χn(s, σ2) denotes a noncentral chi-square distribution with n degrees
of freedom, noncentrality parameter s2, and the common variance of the
corresponding Gaussian components σ2. χn(0, σ2) denotes a central chi-
square distribution.
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hkSR
/‖hkSR

‖. The output SNR at the kth antenna of the
relay is then given by

γkSR
=

γ̄1
ε

· ‖hkSR
‖2 (7)

where γ̄1 = P1/σ
2
1 is the average SNR per receive antenna of

the relay. In SC, the branch with the largest instantaneous SNR
is selected as the output of the combiner. If K denotes the index
of the selected branch, then K = argk max γkSR

. The received
signal at the selected branch is then multiplied by the gain G
and forwarded to the destination. The received signal vector at
the destination yD ∈ C

Nd×1 thus can be written as

yD = hRDG

(√
P1

ε
‖hKSR

‖s+ nRK

)
+ nD (8)

where nD ∈ C
Nd×1 is a zero-mean complex Gaussian noise

vector with covariance matrix σ2
2INd

, where INd
is the Nd ×

Nd identity matrix. Let us denote the instantaneous SNR of the
first hop, i.e., γKSR

, by γ1 (i.e., γ1 = γKSR
). The variable gain

G can be chosen as [4], [21]

G2 =
P2

(γ1 + τ)σ2
1

(9)

where τ = 1 for the channel-noise-assisted AF (CNA-AF) re-
lays and τ = 0 for the channel-assisted AF (CA-AF) relays [4].
P2 is the power transmitted at the relay.

The received signal at the destination is multiplied by
the receive weight vector wH

r ∈ C
1×Nd chosen according

to the principle of MRC [12] as wH
r = hH

RD/‖hRD‖, thus
resulting in

ỹD = wH
r yD =

√
P1

ε
G‖hRD‖‖hKSR

‖s

+ G‖hRD‖nRK
+

hH
RD

‖hRD‖nD. (10)

If we denote γ2 = γ̄2‖hRD‖2, which is the instantaneous
SNR of the second hop, where γ̄2 = P2/σ

2
2 , then the end-to-

end SNR γeq, after some mathematical manipulations, can be
expressed as

γeq =
γ1γ2

γ1 + γ2 + τ
. (11)

III. STATISTICAL CHARACTERIZATION OF THE OUTPUT

SNR OF THE S → R CHANNEL

The statistical characterization of the S → R channel out-
put SNR is shown here by deriving the exact closed-form
expression for the cdf, which will subsequently be used in the
perfomance analysis of the proposed dual-hop AF MIMO relay
system in the following. In the shadowed Rician channel model,
m = 0 corresponds to the complete obstruction of the LOS,
reducing the channel to a Rayleigh channel. The m ≥ 1 and
m = 0 cases are separately addressed.

A. m ≥ 1

When m ≥ 1, we derive the exact closed-form expression for
the cdf of the output SNR of the S → R channel, i.e., Fγ1

(y),
by considering the generalized case of unequal values of ρk. In
the following, we refer to this case as generalized correlation.
When ρk(k = 1, 2, . . . , Nr) are all equal to ρ, the LOS compo-
nents of the S → R channel become equally correlated at the
receive side. We refer to this special case as equal correlation.
For this special case, the result of generalized correlation is
further simplified and a new closed-form expression for Fγ1

(y)
is derived.

Theorem 1: The cdf of γ1 for a generalized correlation is
given by

Fγ1
(y) =

∞∫
0

1
Γ(mNs)

tmNs−1e−t
Nr∏
k=1

×
[

1 −
(

m

m+ (1− ρk)Ω

)mNs

e−
y
η e

− ρkΩ

m+(1−ρk)Ω
t

×
M∑
i=0

i∑
q=0

1
q!(i− q)!

(
y

η

)q

(ckθkt)
i−qμiqk

]
dt

(12)

where

ck =
ρkm

(1 − ρk)(m+ (1 − ρk)Ω)
, θk =

(1 − ρk)Ω

m+ (1 − ρk)Ω
.

(13)

μiqk =
1

2πj

∮
φ

zq+Ns(m−1)

(1 − z)(z − θk)mNs+i−q
dz (14)

is a contour integral that can be evaluated by using a residue
theorem as

μiqk = lim
z→θk

1
(mNs+i−q−1)!

dmNs+i−q−1

dzmNs+i−q−1

(
zq+Ns(m−1)

(1−z)

)

=

mNs+i−q−1∑
g=0

(
q +Ns(m− 1)

g

)
θ
q+Ns(m−1)−g
k

(1−θk)mNs+i−q−g
.

(15)

Proof: See Appendix A. �
Corollary 1: For equal correlation, the cdf of γ1 can be

expressed as

Fγ1
(y) = 1 −

Nr∑
p=1

(
Nr

p

)
(−1)p+1

pM∑
i=0

i∑
q=0

βiqp
(cθ)i−q

ηq
yqe−p y

η

×Γ(mNs + i− q)

Γ(mNs)

(
1 + (1 − ρ) Ω

m

)i−q−mNs(p−1)(
1 + (1 − ρ) Ω

m + pρ Ω
m

)mNs+i−q
(16)
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where

c =
ρm

(1 − ρ)(m+ (1 − ρ)Ω)
, θ =

(1 − ρ)Ω

m+ (1 − ρ)Ω
. (17)

The coefficients βiqp are recursively computed by

βiqp =
i∑

u=i−M

q∑
l=q−i+u

βul(p−1)

μ(i−u)(q−l)

(q − l)!(i− u− q + l)!

× I[0,(p−1)M ](u)I[0,u](l) (18)

where βiq1 = μiq/(q!(i− q)!), I[f,h](o) is the indicator func-
tion defined by

I[f,h](o) =
{
1 f ≤ o ≤ h
0 otherwise

and

μiq =
1

2πj

∮
φ

zq+Ns(m−1)

(1 − z)(z − θ)mNs+i−q
dz

=

mNs+i−q−1∑
g=0

(
q+Ns(m−1)

g

)
θq+Ns(m−1)−g

(1−θ)mNs+i−q−g
.

(19)

Proof: When ρk(k = 1, 2, . . . , Nr) = ρ, (12) reduces to

Fγ1
(y) =

∞∫
0

1
Γ(mNs)

tmNs−1e−t

×
[

1 −
(

m

m+ (1− ρ)Ω

)mNs

e−
y
η e−

ρΩ
m+(1−ρ)Ω

t

×
M∑
i=0

i∑
q=0

1
q!(i− q)!

(
y

η

)q

(cθt)i−qμiq

]Nr

dt

(20)

where c and θ are defined in (17) and μiq in (19). The desired
expression (16) is obtained by applying the binomial theorem
and then using the expansion[

M∑
i=0

i∑
q=0

μiq

q!(i− q)!

(
y

η

)q

(cθt)i−q

]p

=

pM∑
i=0

i∑
q=0

βiqp

(
y

η

)q

(cθt)i−q (21)

with βiqp computed according to (18) and, finally, using
[22, eq. (3.351.3)]. �

Note that the expression (16) encounters 00 for the uncor-
related scenario. If we use 00 = 1, the desired result for the
uncorrelated case can be obtained. Expression (16) can be
efficiently evaluated for ρ = 0 by using MATLAB since it has
implemented 00 = 1.

B. m = 0

Theorem 2: For m = 0, the cdf of γ1 is given by

Fγ1
(y) = 1 −

Nr∑
p=1

(
Nr

p

)
(−1)p+1

p(Ns−1)∑
i=0

βip

ηi
yie−p y

η (22)

with βip computed as

βip =

i∑
u=i−Ns+1

βi(p−1)

(i− u)!
I[0,(p−1)(Ns−1)](u) (23)

where βi1 = 1/i!.
Proof: Since the LOS component is absent, by using (52)

the cdf of γ1 can be written as

Fγ1
(y) =

[
1 −QNs

(
0,

√
2y
η

)]Nr

. (24)

By using contour integral representation for the Marcum-Q
function and applying the binomial theorem, we get

Fγ1
(y) = 1 −

Nr∑
p=1

(
Nr

p

)
(−1)p+1e−p y

η μp (25)

where μ = 1/(2πj)
∫
φ e

(y/η)z/(zNs(1 − z))dz is the contour
integral, which is again evaluated by using the residue theorem
as

μ = lim
z→0

1
(Ns − 1)!

dNs−1

dzNs−1

(
e

y
η z

1 − z

)
=

Ns−1∑
i=0

1
i!

(
y

η

)i

.

(26)

The theorem is finally proved after applying the expansion[
Ns−1∑
i=0

1
i!

(
y

η

)i
]p

=

p(Ns−1)∑
i=0

βip

(
y

η

)i

(27)

where βip is defined in (23). �
The statistics derived here for the S → R channel, which

is a correlated shadowed Rician fading MIMO LMS channel,
can be also useful for the performance analysis of single-hop
MIMO LMS communication. The MRT-SC is a very interesting
diversity technique for LMS communication due to its low-
hardware-complexity and cost-effective qualities, although it
has suboptimal performance compared with the MIMO-MRC
diversity analyzed in [10]. To our knowledge, this diversity
technique for LMS communication has not been analyzed
earlier. With the help of the cdf of the SNR thus derived,
important performance measures such as outage probability,
SER, and ergodic capacity for MRT-SC LMS MIMO channel
can be easily derived.

IV. PERFORMANCE ANALYSIS

Using the statistics of γ1 derived in Section III, we present
a comprehensive performance analysis of the proposed AF
MIMO relay network under both generalized correlation and
the special case of equal correlation models of the first hop
when m ≥ 1. The performance measures include the outage
probability, SER, and ergodic capacity. Due to similarity of (22)
and (16), the results for the m = 0 case follow similarly to those
of the equal correlation case and, hence, can easily be derived.
For the sake of brevity, results for the m = 0 case are omitted
in this paper.
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A. Generalized Correlation of the LOS Components of the
S → R Channel

1) Outage Probability: Outage probability is a crucial per-
formance measure defined as the probability of failing to
achieve a predefined threshold SNR, γth. It is obtained by
evaluating the cdf of γeq at γth as

Pout = Pr(γeq < γth) = Fγeq
(γth). (28)

Theorem 3: An accurate closed-form approximation for the
cdf of γeq in (11) for the generalized correlation of the LOS
components of the first hop can be obtained as

Fγeq
(y)≈ 1 − 1

Δ(D)

Nd∑
r=1

φNd−1
r C(Nd, r)e

− y
γ̄2φr

×
[

1 − 1
Γ(mNs)

N∑
p=1

N∑
l=1

ωpϑl

Nr∏
k=1

×
{

1 −
(

m

m+ (1 − ρk)Ω

)mNs

× e
− ρkΩ

m+(1−ρk)Ω
tpe

− y(ζlγ̄2φr+y+τ)

ζlγ̄2φrη

×
M∑
i=0

i∑
q=0

1
q!(i−q)!

(
y(ζlγ̄2φr+y+τ)

ζlγ̄2φrη

)q

× (ckθktp)
i−qμiqk

}]
(29)

where φ1 > φ2 > · · · > φNd
are the eigenvalues of D.

C(Nd, r) is the (Nd, r) cofactor of the Vandermonde matrix,
Vuv = φu−1

v . Δ(D) is the determinant of Vuv . tp, ζl(p = 1, . . . ,
N ; l = 1, . . . , N) and ωp, ϑl(p = 1, . . . , N ; l = 1, . . . , N) are
the abscissas and weights, respectively, of GLQ. tp(p =
1, . . . , N) are the roots of the generalized Laguerre polynomial,
LmNs−1
N (t), with the corresponding weights ωp(p = 1, . . . , N)

given by [23, eq. (1)]

ωp =
Γ(N +mNs)tp

N !(N + 1)2
[
LmNs−1
N+1 (tp)

]2 (30)

which can be easily computed by using Mathematica. Similarly,
ζl(l = 1, . . . , N) are the roots of the Laguerre polynomial
LN (ζ) with the corresponding weights ϑl(l = 1, . . . , N) given
by [20, p. 890]

ϑl =
ζl

(N + 1)2 [LN+1(ζl)]
2 . (31)

Proof: The proof is given in Appendix B. �
The outage probability of CNA-AF for the given correlation

structure is obtained by substituting y=γth and τ=1 into (29)
and that for CA-AF by substituting y=γth and τ=0 into (29).

2) Average SER: We consider the modulation formats with
conditional SER expression of the form

Ps = aEγ

[
Q(
√
2bγ)

]
(32)

where Q(.) is the Gaussian-Q function, and a and b are
modulation-specific constants. For example, a = 1 and b = 1
for binary phase-shift keying (BPSK); a=1 and b=0.5 for
coherently detected orthogonal binary frequency-shift keying
(BFSK); and a=2(M−1)/M and b = 3/(M2 − 1) for M-ary
pulse amplitude modulation (PAM). Approximate SER for
M-ary PSK can also be found with a = 2 and b = sin2(π/M).

Theorem 4: An accurate closed-form approximation for the
average SER of the AF (CNA-AF and CA-AF) MIMO relay
under the generalized correlation structure of the first hop can
be expressed as

Ps ≈
a

2
− a

√
b

2Δ(D)

Nd∑
r=1

φNd−1
r C(Nd, r)

√
Υr

×
[

1 − 1√
πΓ(mNs)

N∑
p=1

N∑
l=1

N∑
s=1

ωpϑl�s

Nr∏
k=1

×
{

1 −
(

m

m+ (1 − ρk)Ω

)mNs

e
− ρkΩ

m+(1−ρk)Ω
tp

× e
− xsΥr(ζlγ̄2φr+xsΥr+τ)

ζlγ̄2φrη

M∑
i=0

i∑
q=0

1
q!(i− q)!

×
(
xsΥr(ζlγ̄2φr + xsΥr + τ)

ζlγ̄2φrη

)q

× (ckθktp)
i−qμiqk

}]
(33)

where Υr = γ̄2φr/(1 + bγ̄2φr). ωp, ϑl, tp, and ζl are defined
in Theorem 3. xs (s = 1, . . . , N) are the roots of the gener-
alized Laguerre polynomial L−1/2

N (x), with the corresponding
weights �s(s = 1, . . . , N) given by

�s =
Γ(N + 1

2 )xs

N !(N + 1)2
[
L
−1/2
N+1(xs)

]2 . (34)

Proof: With γ replaced by γeq, (32) can be expressed
as [24]

Ps =
a

2

√
b

π

∞∫
0

e−by

√
y
Fγeq

(y) dy. (35)

Expression (33) can then be derived by substituting (65)
into (35) and again solving the triple integral of the form∫∞
0 xβ2e−x

∫∞
0 e−ζ

∫∞
0 tβ1e−tf(t, ζ, x)dtdζdx by using the

GLQ rule. �
3) Ergodic Capacity: The capacity of a communication

channel characterizes the maximum amount of error-free in-
formation that can be transmitted over that channel in a given
time over a given bandwidth. The ergodic capacity is obtained
by averaging the mutual information between the source and
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the destination. The ergodic capacity of a dual-hop AF MIMO
relay can be written as

C =
1
2
E [log2(1 + γeq)]

=
1

2(ln 2)

∞∫
0

ln(1 + y)fγeq
(y) dy (36)

=
1

2(ln 2)

∞∫
0

1
1 + y

(
1 − Fγeq

(y)
)
dy. (37)

Theorem 5: By considering the generalized correlation
model for the first hop, an accurate closed-form approximation
for the ergodic capacity is given by

C ≈ 1
2(ln 2)Δ(D)

Nd∑
r=1

φNd−1
r C(Nd, r)

×
[
− e

1
γ̄2φr Ei

(
− 1
γ̄2φr

)
− 1

Γ(mNs)

×
N∑

p=1

N∑
l=1

N∑
s=1

ωpϑlυs
1

(�s +
1

γ̄2φr
)

Nr∏
k=1

×
{

1 −
(

m

m+ (1 − ρk)Ω

)mNs

e
− ρkΩ

m+(1−ρk)Ω
tp

× e
− �s(ζlγ̄2φr+�sγ̄2φr+τ)

ζlη

M∑
i=0

i∑
q=0

1
q!(i− q)!

×
(
�s(ζlγ̄2φr + �sγ̄2φr + τ)

ζlη

)q

× (ckθktp)
i−qμiqk

}]
(38)

where Ei(.) is the exponential integral function [22, Sec. (8.2)].
ωp, ϑl, tp, and ζl are defined in Theorem 3. �s(s = 1, . . . , N)
are the roots of the Laguerre polynomial LN (�) with the
corresponding weights υs(s = 1, . . . , N) given by

υs =
�s

(N + 1)2[LN+1(�s)]2
. (39)

Proof: The theorem is proved by substituting (65) into
(37) and then following the same approach as we did in
Theorem 4 and further using [22, eq. (3.352.4)]. �

B. Equal Correlation of the LOS Component of the
S → R Channel

When the LOS components of the S → R channel are
equally correlated, the performance metrics that we derived for
generalized correlation by using GLQ approximation are now
obtained in exact closed form without any approximation and,
hence, can be accurately and efficiently computed.

1) Outage Probability:
Theorem 6: The exact closed-form expression for the cdf

of γeq for the equal correlation of the LOS components of the
first hop is given by

Fγeq
(y)=1 − 2

Δ(D)

Nr∑
p=1

(
Nr

p

)
(−1)p+1

pM∑
i=0

i∑
q=0

βiqp(cθ)
i−q

×Γ(mNs+i−q)

Γ(mNs)

(
1+(1 − ρ) Ω

m

)i−q−mNs(p−1)(
1+(1−ρ) Ω

m+pρ Ω
m

)mNs+i−q

×
Nd∑
r=1

C(Nd, r)

q∑
s=0

(
q

s

)
φ

2Nd−s−3

2
r

p
s−1
2 η

2q−s+1
2 γ̄

s+1
2

2

y
2q−s+1

2

×(y+τ)
s+1
2 e

−y
(

p
η+ 1

γ̄2φr

)
Ks−1

(
2

√
p(τy+y2)

ηγ̄2φr

)

(40)

where Kv(x) is the modified Bessel function of the second kind
of order v [22, Sec. 8.407].

Proof: By substituting (16) and (64) into (63) and then
solving the resultant integral by applying the binomial theorem
and using [22, eq. (3.471.9)], (40) is obtained. �

The outage probability is obtained by evaluating (40) at
y = γth.

2) Average SER: By using the equal correlation model for
the LOS components of the first hop, we evaluate the average
SER of the system, taking τ = 0 (CA-AF) for the mathematical
tractability, which is also a tight upper bound for that of
CNA-AF [4], [21].

Theorem 7: The average SER of the CA-AF system when
the LOS components of the S → R channel are equally corre-
lated at the receive side is given by

Ps =
a

2
− a

√
b

Δ(D)

Nr∑
p=1

(
Nr

p

)
(−1)p+1

×
pM∑
i=0

i∑
q=0

βiqp(cθ)
i−q Γ(mNs + i− q)

Γ(mNs)

×
(
1 + (1 − ρ) Ω

m

)i−q−mNs(p−1)(
1 + (1 − ρ) Ω

m + pρ Ω
m

)mNs+i−q

×
Nd∑
r=1

C(Nd, r)

q∑
s=0

(
q

s

)
φ

2Nd−s−3

2
r

p
s−1
2 η

2q−s+1
2 γ̄

s+1
2

2

×
Γ
(
q + s+ 1

2

)
Γ
(
q − s+ 5

2

)
Γ(q + 2)

(2B)s−1

(b+A+B)q+s+ 1
2

× 2F1

(
q + s+

1
2
, s− 1

2
; q + 2;

b+A−B

b+A+B

)
(41)

where A = p/η + 1/(γ̄2φr) and B = 2
√

p/(ηγ̄2φr).
Proof: The theorem can be proved by substituting Fγeq

(y)
in (40) with τ = 0 into (35) and solving the resultant integral by
using [22, eq. (6.621.3)]. �
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3) Asymptotic Evaluations of the Average SER and Outage
Probability: To provide further insights into the parameters
governing the system performance, we present high SNR ap-
proximations for the average SER and the outage probability
of CA-AF since CA-AF relay provides a tight upper bound
for the CNA-AF relay at high SNR [21]. By using the results
from [25], at high SNR, the average SER of CA-AF can be
approximated as

Ps ≈ (Gaη)
−Gd (42)

where Gd is the diversity gain. The array gain Ga is given by

Ga = 2b

(
a2Gd−1ΛΓ(Gd + 1/2)√

πGd

)− 1
Gd

(43)

where

Λ =
1

(Gd − 1)!
∂Gd−1

∂xGd−1
fX(0)

=
1

(Gd − 1)
!
∂Gd

∂xGd
FX(0), X =

γeq
η

.

In [4] and [6], where a single antenna relay is employed, the
diversity order is given by the minimum number of antennas at
S and D. However, we have multiple receive antennas at the
relay with SC. By using the fact that MRT-SC can achieve a
full diversity order [26], the diversity order of the proposed AF
relay network, i.e., Gd, is given by

Gd = min(NsNr, Nd) (44)

which is the maximum possible diversity order. To obtain Λ,
we first substitute y = xη into (40). After expressing the Bessel
function by its series expansion about x = 0, we then find its
Gdth order derivative with respect to x and, finally, evaluate it
at x = 0. Λ is then given by

Λ =
1

Δ(D)

Nr∑
p=1

(
Nr

p

) pM∑
i=0

i∑
q=0

βiqp(cθ)
i−q

× Γ(mNs + i− q)

Γ(mNs)(Gd − 1)!

(
1 + (1 − ρ) Ω

m

)i−q−mNs(p−1)(
1 + (1 − ρ) Ω

m + pρ Ω
m

)mNs+i−q

×
Nd∑
r=1

C(Nd, r)

q∑
s=0

(
q

s

) |s−1|−1∑
l=0

(|s− 1| − l − 1)!
l!

× φ
2Nd−s+|s−1|−2l−3

2
r

p
s+|s−1|−2l−1

2 κ
s−|s−1|+2l+1

2

Gd∑
h=0

(
Gd

h

)
(−1)p+l+h

×
(
p+

1
κφr

)h Gd−h∏
o=1

(q + 2l + 2 − |s− 1| − o)

× δ(q + 2l + 1 − |s− 1| −Gd + h) (45)

where κ = γ̄2/η and δ(.) is the Kronecker delta function.
As we successfully derived the first term of the Taylor

series expansion of the probability density function (pdf)
fX(x) of X = γeq/η at x = 0 for CA-AF system fX(x) ≈
ΛxGd−1 +O(xGd−1) as x → 0, by using the definition of out-

age probability (28), the asymptotic outage probability can be
expressed as

Pout = FX(γth/η) ≈
Λ

Gd

(
γth
η

)Gd

. (46)

4) Ergodic Capacity: To find the exact ergodic capacity
of the dual-hop AF MIMO relay under the equal correlation
structure of the first hop by substituting (40) into (37), one
needs to solve the integral of the form

∫∞
0 yu(y + τ)v(y +

1)−1e−αyKβ(ζ
√
τy + y2)dy. The integral seems very difficult

to be solved. In (36), if we use the second-order Taylor se-
ries approximation of ln(1 + y) about the mean value of γeq,
E(γeq), we can obtain the approximated closed-form solution
for C as [27]

C ≈ 1
2(ln 2)

[
ln (1 + E[γeq])−

E
[
γ2
eq

]
− (E[γeq])

2

2 (1 + E[γeq])2

]
. (47)

Theorem 8: The nth moment of γeq with τ = 0 is given by

E[γn
eq]=

2
√
πn

Δ(D)

Nr∑
p=1

(
Nr

p

)
(−1)p+1

pM∑
i=0

i∑
q=0

βiqp(cθ)
i−q

×Γ(mNs+i−q)

Γ(mNs)

(
1+(1−ρ) Ω

m

)i−q−mNs(p−1)(
1+(1−ρ) Ω

m+pρ Ω
m

)mNs+i−q

×
Nd∑
r=1

C(Nd, r)

q∑
s=0

(
q

s

)
φ

2Nd−s−3

2
r

p
s−1
2 η

2q−s+1
2 γ̄

s+1
2

2

×Γ(q+n+s)Γ(q+n−s+2)

Γ(q+n+ 3
2 )

(2B)s−1

(A+B)q+n+s

× 2F1

(
q+n+s, s− 1

2
; q+n+

3
2
;
A−B

A+B

)
(48)

where A and B are defined in Theorem 7.
Proof: The nth moment of γeq can be written as

E
[
γn
eq

]
=

∞∫
0

nyn−1
(
1 − Fγeq

(y)
)
dy. (49)

Expression (48) results after substituting (40) into (49) with
τ = 0 and following the same approach that we used in
Theorem 7. �

The second-order approximated ergodic capacity of the dual-
hop CA-AF MIMO system can now be obtained by substituting
the first- and second-order moments computed by using (48)
into (47).

V. NUMERICAL RESULTS

Here, we validate our analytical results through Monte Carlo
simulations and assess the impact of antenna correlation on the
performance of the proposed AF MIMO relay system by pro-
viding several illustrative examples. Our analytical expressions
involve infinite series representation effectively truncated by M
number of terms. We set M to be 10 in the following numerical
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Fig. 2. Outage probability of CNA-AF with m = 2, η = 10 dB, γ̄2 = 5 dB,
and Ω = 0.2 for antenna configurations (3,3,2) with a generalized correlation
model and (4,4,4) with an equal correlation model.

examples. In computing the GLQ approximation, we choose
N to be 30. For generalized correlated S → R channel, we
denote the ρk (k = 1, 2, . . . , Nr) values used in the following
numerical computations by the vector ρ̄ = [ρ1, ρ2, . . . , ρNr

].
The correlation of the equally correlated S → R channel is
parameterized by ρ. Although any arbitrary correlation model
is valid for the second hop, for our numerical results, we
construct a correlation matrix D by using the practical channel
model of [28] as in [6], [8], and [24], with the (u, v)th entry of
D given by

Du,v = e−j2π(v−u)dcos(Θ)e−
1
2 (2π(v−u)dsin(Θ)Σ)2 (50)

where d is the relative antenna spacing between the adjacent
antennas (measured in number of wavelengths) of the uniform
linear antenna array at the destination, and Θ and Σ are the
mean angle of arrival (AoA) and the destination angle spread,
respectively. The actual AoA is given by Θ = Θ+ Θ̂, where
Θ̂ is a Gaussian RV with zero mean and variance Σ2.

Fig. 2 shows the outage probability versus threshold SNR γth
plots of the CNA-AF system in different correlation scenarios
for both the generalized correlation and the equal correlation
models. The analytical plots are from (29) for generalized
correlation and from (40) for equal correlation with τ = 1
and y = γth. These plots clearly agree with the Monte Carlo
simulations. The detrimental effect of correlation at low SNR
thresholds and the beneficial effect at high SNR thresholds are
clearly evident. Such behavior was also observed in [6].

Fig. 3 exhibits the outage probability performance of the
CA-AF system against average SNR for a given threshold SNR
γth = 1 in different correlation scenarios by using the equal
correlation model. The analytical curves are plotted by using
(40) with τ = 0 and y = γth, and they clearly agree with the
Monte Carlo simulations. Two different antenna configurations
have been shown to illustrate that the correlation does not allow

Fig. 3. Outage probability of CA-AF with m = 2, Ω = 0.2, γth = 1, and
γ̄2 = η for antenna configuration (Ns, Nr, Nd) using the equal correlation
model.

Fig. 4. Average SER of CNA-AF with m = 3, Ω = 0.2, and γ̄2 = 1/4η using
BPSK modulation and a generalized correlation model.

the system to fully exploit the benefits of multiple antennas. The
high SNR analytical curves are from (46). These asymptotic
curves, as they converge with the exact outage probability
curves in the high SNR regime, verify that the system achieves
maximum diversity order possible.

Fig. 4 assesses the impact of spatial correlation on the
average SER of the CNA-AF system for the generalized cor-
related S → R link by using BPSK modulation, for which the
analytical plots are from (33) with a = 1 and b = 1. Of the
two antenna configurations shown, both of which were plotted
by taking L = 30, the analytical and Monte Carlo simulation
plots match better for those with fewer antennas. The result can
be otherwise improved by increasing the value of L. The SER
performance improves by employing more antennas at the ter-
minals. However, the resulting performance gain significantly
degrades if antennas are highly correlated.

Fig. 5 shows the average SER of the CA-AF system for an
equally correlated S → R link with BPSK and 4PAM in dif-
ferent correlation scenarios reflecting the detrimental effect of
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Fig. 5. Average SER of CA-AF with m = 3, Ω = 0.2, and γ̄2 = η for
antenna configuration (Ns, Nr, Nd) using BPSK and 4PAM, and equal cor-
relation model.

Fig. 6. Ergodic capacity of CNA-AF with m = 3, Ω = 0.2, and γ̄2 = 1/4η
using a generalized correlation model.

correlation. The average SERs of the system in a low correlation
scenario are plotted for two different antenna configurations
for both BPSK and 4PAM to depict the benefits of employing
multiple antennas when they are less correlated. The analytical
curves are obtained from (41) with a = 1 and b = 1 for BPSK,
and a = 1.5 and b = 0.5 for 4PAM, which perfectly match the
Monte Carlo simulations. The high SNR analytical curves are
plotted by using (42). The clear convergence of these curves
with the exact SER in the high SNR regime again verifies that
the system achieves the maximum possible diversity order.

Fig. 6 shows the ergodic capacity of the CNA-AF system
for generalized correlation. The analytical plots are from (38)
with τ = 1, clearly matching the Monte Carlo simulations.

Fig. 7. Ergodic capacity of CA-AF with m = 3, Ω = 0.2, and γ̄2 = 1/4η for
antenna configuration (Ns, Nr, Nd) using an equal correlation model.

Higher correlation resulting in loss of capacity, and capacity
improvement by increasing the number of selection diversity
antennas at the relay, are visible in the figure.

Fig. 7 shows the ergodic capacity of the CA-AF system
for the equal correlation case. The second-order approximated
ergodic capacity expression of (47) is seen to be highly accurate
in the SNR regime of interest with a negligible difference
between the analytical and simulation plots. The simple upper
bound of the capacity obtained from Jensen’s inequality as
C ≤ 1/2 log2(1 + E[γeq]) is also plotted in the figure and is
fairly tight in the SNR regime of interest. The capacity gain
from multiple antennas and the loss from their correlation are
also depicted in the figure.

VI. CONCLUSION

We have investigated the performance of a new AF MIMO
relay system for LMS communication in the scenario of cor-
related antennas in terms of the outage probability, average
SER, and ergodic capacity, for which easily computable closed-
form expressions were derived. The validity and accuracy of
the expressions were verified through Monte Carlo simulations.
The system was found to perform better with a larger number
of antennas at all three terminals. The outage performance may
improve or degrade with correlation depending upon the SNR
threshold. However, correlation was always found to have a
detrimental effect on the SER and capacity performance. It was
shown that the system achieves maximum possible diversity
order.

APPENDIX A
PROOF OF THEOREM 1

Since hkSR
= h̄kSR

+ hwkSR
, given h̄kSR

, ‖hkSR
‖2(k =

1, 2, . . . , Nr) values are independent with noncentral chi-
square distribution χ2Ns

(Rk, 1/2), where R2
k = ‖h̄kSR

‖2 =
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∑Ns

l=1 |zk,lSR
|2 =

∑Ns

l=1

∑m
n=1 |(Gkl)n|2. The conditional cdf

of ‖hkSR
‖2 is hence given by [29, eq. (2-1-124)]

F ‖hkSR
‖2|Rk

(y| rk) =Pr
(
‖hkSR

‖2 ≤ y| rk
)

= 1 −QNs

(√
2rk,

√
2y
)

(51)

where QN (., .) denotes the generalized Marcum-Q function
of order N [29, eq. (2-1-122)]. The conditional cdf of γ1 =
γKSR

= η‖hKSR
‖2, where K = argk max γkSR

and η = γ̄1/ε,
can then be obtained as

Fγ1|(R1,...,RNr )
(y| r1, . . . , rNr

)

= Pr

(
‖h1SR

‖2 ≤ y

η
, . . . ‖hNrSR

‖2 ≤ y

η
|r1, . . . , rNr

)

=

Nr∏
k=1

[
1 −QNs

(
√

2rk,

√
2y
η

)]
. (52)

The unconditional cdf of γ1 can be obtained by averaging (52)
over the joint distribution of R1, . . . , RNr

, i.e.,

Fγ1
(y) =

∞∫
0

. . .

∞∫
0

Fγ1|(R1,...,RNr )
(y| r1, . . . , rNr

)

×f(R1,...,RNr )
(r1, . . . , rNr

) dr1 . . . drNr
. (53)

To obtain f(R1,...,RNr )
(r1, . . . , rNr

), let Xk = R2
k. Given

(X0l)n and (Y0l)n (l = 1, 2, . . . , Ns, n = 1, 2, . . . ,m),
Xk (k = 1, 2, . . . , Nr) values are independent with
distribution χ2mNs

(Sk, λ
2
k), where λ2

k = (1 − ρk)Ω/(2m),
S2
k = ρk(Ω/m)T and T =

∑Ns

l=1

∑m
n=1{(X0l)

2
n + (Y0l)

2
n}.

The conditional pdf of Xk can be written as [29, eq. (2-1-118)]

fXk |T (xk| t) =
1

2λ2
k

(
xk

ρk
Ω
m t

)
(mNs−1)

2 exp

{
−
(ρk

Ω
m t+ xk)

2λ2
k

}

×ImNs−1

⎛
⎝
√

xkρk
Ω
m t

λ2
k

⎞
⎠ (54)

where Iα(.) is the αth-order modified Bessel function of the
first kind [22, section (8.406)]. By using variable transforma-
tion, the conditional pdf of Rk can be obtained as

fRk |T (rk| t) =
rmNs

k

λ2
k

(√
ρk

Ω
m t
)mNs−1

exp

{
−
(
ρk

Ω
m t+ r2k

)
2λ2

k

}

× ImNs−1

⎛
⎝rk

√
ρk

Ω
m t

λ2
k

⎞
⎠ . (55)

In (55), T ∼ χ2mNs
(0, 1/2). Therefore, f(R1,...,RNr )

(r1, . . . , rNr
) can finally be obtained as

f(R1,...,RNr )
(r1, . . . , rNr

)

=

∞∫
0

f(R1,...,RNr )|T (r1, . . . , rNr
|t )fT (t) dt

=

∞∫
0

tmNs−1e−t

Γ(mNs)

Nr∏
k=1

rmNs

k

λ2
k

(√
ρk

Ω
m t
)mNs−1

× exp

{
−
(
ρk

Ω
m t+ r2k

)
2λ2

k

}
ImNs−1

⎛
⎝rk

√
ρk

Ω
m t

λ2
k

⎞
⎠ dt.

(56)

By substituting (52) and (56) into (53), we obtain

Fγ1
(y) =

∞∫
0

tmNs−1e−t

Γ(mNs)

Nr∏
k=1

Ik(t)dt (57)

where

Ik(t) =

∞∫
0

{
1 −QNs

(
√

2rk,

√
2y
η

)}

×
rmNs

k exp

{
− (ρk

Ω
m t+r2

k)
2λ2

k

}
λ2
k

(√
ρk

Ω
m t
)mNs−1

× ImNs−1

⎛
⎝rk

√
ρk

Ω
m t

λ2
k

⎞
⎠ drk (58)

which can be expressed as in (59) by using QN (α, β) =
exp(−β2 / 2) /(2πj)

∮
φ exp((α

2 / 2)(1/z − 1) + (β2/2)z)/

(zN (1− z))dz, which is the contour integral representation
for the generalized Marcum-Q function given in [30], where
φ is a circular contour of radius r that encloses the origin
(0 < r < 1) as follows:

Ik(t)=1 − e−
y
η e

− ρkΩ/m

2λ2
k

t 1
2πj

∮
φ

e
y
η z

zNs(1 − z)

×
∞∫
0

rmNs

k e
−r2

k

(
1

2λ2
k

− 1
z+1

)
λ2
k

(√
ρk

Ω
m t
)mNs−1

ImNs−1

⎛
⎝rk

√
ρk

Ω
m t

λ2
k

⎞
⎠ drk

︸ ︷︷ ︸
I

dz

(59)

where we changed the order of integration. By substituing
1/(2λ2

k)− 1/z + 1 = 1/(2σ2) and
√
ρk(Ω/m)/λ2

k = s/σ2,
the last integral I in (59) can be solved as

I =
σ2smNs−1e

s2

2σ2

λ2
k

(√
ρk

Ω
m t
)mNs−1

∞∫
0

rmNs

k

σ2smNs−1
e−

s2+r2
k

2σ2

× ImNs−1

(rks
σ2

)
drk

=
zmNs

(1 + 2λ2
k)

mNs (z − θk)mNs

exp

(
cktz

z − θk

)
(60)
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where ck and θk are as defined in (13). Substituting (60) into
(59) and further simplifying, we obtain

Ik(t)= 1− e−
y
η e

− ρkΩ

(1+2λ2
k)m

t

(1 + 2λ2
k)

mNs

1
2πj

∮
φ

eyηze
ckθkt

(z−θk) zNs(m−1)

(1 − z)(z − θk)mNs
dz.

(61)

If λ2
k = (1 − ρk)Ω/(2m) is substituted back into (61) and Ik(t)

is further simplified by applying the Taylor series expansion
of exp((y/η)z + ckθkt/(z − θk)) followed by the binomial
expansion, we obtain

Ik(t) = 1 −
(

m

m+ (1 − ρk)Ω

)mNs

e−
y
η e

− ρkΩ

m+(1−ρk)Ω
t

×
M∑
i=0

i∑
q=0

1
q!(i− q)!

(
y

η

)q

(ckθkt)
i−qμiqk (62)

where the infinite series is accurately truncated by M number
of terms and μiqk is as defined in (14). The desired result in (12)
is finally obtained by substituting (62) into (57).

APPENDIX B
PROOF OF THEOREM 3

The cdf of γeq, i.e., Fγeq
(y), can be expressed as [4]

Fγeq
(y)=1−

∞∫
0

(
1−Fγ1

(
y(w + y + τ)

w

))
fγ2

(w + y) dw.

(63)

By manipulating [31], the pdf of γ2, i.e., fγ2
(y), can be ob-

tained as

fγ2
(y) =

1
γ̄2Δ(D)

Nd∑
r=1

φNd−2
r e−

y
γ̄2φr C(Nd, r). (64)

Now, by substituting (12) and (64) in (63), we obtain

Fγeq
(y) = 1 − 1

Δ(D)

Nd∑
r=1

φNd−1
r C(Nd, r)e

− y
γ̄2φr

×
[

1 − 1
Γ(mNs)

∞∫
0

e−ζ

∞∫
0

tmNs−1e−t

×
Nr∏
k=1

{
1 −
(

m

m+ (1 − ρk)Ω

)mNs

× e−
y(ζγ̄2φr+y+τ)

ζγ̄2φrη e
− ρkΩ

m+(1−ρk)Ω
t

×
M∑
i=0

i∑
q=0

1
q!(i− q)!

×
(
y(ζγ̄2φr + y + τ)

ζγ̄2φrη

)q

× (ckθkt)
i−qμiqk

}
dt dζ

]
. (65)

For unequal correlation coefficients ρk, the closed-form
expression for the above double integral is unavailable.
However, since the double integral is in the form of∫∞
0 e−ζ

∫∞
0 tβe−tf(t, ζ)dtdζ, this expression can be accurately

approximated as in (29) by using the GLQ rule.
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