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Improved K-Best Sphere Detection for
Uncoded and Coded MIMO Systems
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Abstract—The conventional K-best sphere decoder (KSD)
keeps the best K nodes at each level of the search tree. In
addition to retaining the best K nodes, we also consider all the
nodes whose costs are within a certain margin of the cost of the
Kth best node. The resulting algorithm is called improved K-best
sphere decoder (IKSD). Three IKSD variants are considered in
this letter, which are fixed threshold, normalized threshold and
adaptive threshold IKSD. The proposed IKSD requires a smaller
K (indicating lower complexity) while still achieving a better and
near optimal performance compared to the conventional KSD.
These gains are confirmed by the simulation results. For example,
for the fixed threshold IKSD in a 4× 4 16-QAM multiple-input
multiple-output (MIMO) system, with K = 2, it achieves the
same performance as the conventional KSD (K = 16), yielding
about 80% complexity savings. For coded MIMO systems, the
IKSD is also extended as a list sphere decoder for joint iterative
detection and decoding.

Index Terms—MIMO, ML, sphere decoder, tree search, wire-
less communications.

I. INTRODUCTION

THE K-best sphere decoder (KSD) [1] for spatial mul-
tiplexing multiple-input multiple-output (MIMO) detec-

tion has received significant attention recently because of its
fixed throughput and parallel implementation. In contrast, the
conventional SD uses the depth-first tree search resulting in
non-constant throughput, which limits the decoding efficiency.
The KSD is also known as the M-algorithm or as beam search
in the Artificial Intelligence literature. Instead of a depth-first
tree traversal, the KSD performs a breadth-first search and
retains only K best nodes at each layer.

Although it has a fixed detection complexity, the KSD does
not guarantee the Maximum Likelihood (ML) performance
[1]. To do so, the KSD typically requires very large values
of K , which results in a higher complexity than that of
the conventional SD. Nevertheless, due to advantages of the
KSD, several variants have been proposed to further reduce
its complexity or/and improve its performance, e.g., [2]–[7].

Since the performance loss of KSD may be due to the
likelihood of early discarding the ML solution, in this letter,
we propose an improved KSD (IKSD) by replacing the strict
value K in the conventional KSD with a hypersphere radius
determined by the cost of Kth best node and a threshold Δ.
The IKSD achieves the quasi-ML performance with a much
lower complexity than the conventional KSD.
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Main Contributions:
1) An IKSD is proposed, which expands the fixed K nodes

at each layer in the conventional KSD to a slightly
bigger list, which includes all the nodes with a partial
cost of f equal to or less than the Kth node cost fK plus
a small value Δ (f ≤ fK+Δ). This Δ could be derived
by off-line computation. The likelihood of discarding the
ML solution is thus smaller than the conventional KSD.

2) Three specific IKSD are proposed in this letter with
different choices of the threshold Δ (fixed threshold,
normalized threshold and adaptive threshold IKSD). The
parameter Δ controls the extra number of nodes visited
by the IKSD. Furthermore, the closed-form expression
of Δ is obtained for the normalized threshold.

3) By leveraging the IKSD, the soft extension of the IKSD
for coded MIMO systems is also derived in this letter.
This method increases the possibility of the candidate
list including the ML point, and reduces the complexity
with close performance to the conventional soft KSD
detection [1].

The rest of this letter is organized as follows. Section II
presents the new IKSD, introduces three specific IKSD, and
discusses how to derive the threshold. The soft IKSD detection
in coded MIMO systems is also proposed in this Section. Sim-
ulation results and discussions for both the performance and
the complexity are given in Section III. Finally, conclusions
are drawn in Section IV.

II. IMPROVED K-BEST SPHERE DECODER

A. Improved K-best SD

The proposed IKSD consists of a search through a small
subset of the complete transmit constellation. The most im-
portant part of the algorithm is to determine the subset of the
complete transmit constellation that needs to be searched. The
IKSD is described in Algorithm 1.

When the initial sphere radius d is sufficiently large, the
algorithm achieves its maximal complexity. When it is smaller,
the complexity is reduced with the degradation in performance
due to the lost lattice points outside the radius. In our
simulation, we choose d2 = γmσ2

n [1], where m = 2N (N
is the number of transmit antennas), σ2

n is the noise variance,
and γ ≥ 1 is chosen to guarantee the lattice point can be
captured.

In this letter, only the standard QR matrix decomposition is
applied. The channel matrix ordering (e.g. [5]) is not included;
however, it can improve the performance of the proposed
IKSD.

For the tree search process, the conventional KSD sorts all
the child nodes based on their partial costs, and selects the K

2162-2337/12$31.00 © 2012 IEEE

ctlabadmin
2012



HAN et al.: IMPROVED K-BEST SPHERE DETECTION FOR UNCODED AND CODED MIMO SYSTEMS 473

Algorithm 1: The IKSD Algorithm

Input : Δ, K , z, H, d
Output: ŝ

1 Initial the sphere radius d and the partial cost
fbest = 0, and take the root s0 (level k = m) as the
start node. ;

2 for p← 1 to length(fbest) do
3 Expand the pth node, generate all its successors

∀s ∈ Ω, and calculate the partial costs:
ft = fbest + fk,t, where fk,t = (zk,p − rk,ks)

2;
4 end
5 Sort all the components of f in an ascending order;
6 if The number of the elements is less than K then
7 Keep all the candidates with f ≤ d2 to obtain T ;
8 else
9 Only keep the elements whose cost indexes

satisfy f ≤ fK +Δ in T ;
10 end
11 Replace the fbest to be the adjusted f ;
12 if k �= 1 then Calculate zt = zt −R:,kst (∀st ∈ T ),

k = k − 1 and go to step 2;
13 else Return the first element in T as the estimated ŝ;

best paths. In the proposed IKSD, instead of choosing exactly
K nodes, we keep the additional nodes whose costs are close
to the cost of the Kth node, fK . For example, at the ith level
(where i = 1, 2, . . . ,m, m = 2N ), supposing that the nodes
are also sorted, if the cost difference between the Kth node
and the (K+ r)th node (r = 1, 2 . . .) is less than Δ, all K+ r
nodes are retained.

B. Threshold Rules

The choice of Δ is the main challenge of the IKSD, If Δ is
too large, then more nodes are visited and the complexity in-
creases; while if Δ is too small, the performance improvement
is limited compared to the conventional KSD. Depending on
the parameterization of Δ, a flexible performance-complexity
trade-off could be achieved. Based on different choices of the
threshold Δ, three types of IKSD are proposed next.

1) Fixed Threshold IKSD: Intuitively, Δ could be a pre-
defined constant, resulting in the fixed threshold IKSD. This
choice is motivated by the fact that it is important to prune
less aggressively in the early stage. A fixed Δ can perfectly
serve this purpose. The value of Δ can be determined off-line
through calculation, e.g., by the analysis in the Section II-C.
For example, the proper value for the 4× 4 16-QAM MIMO
system with noise variance σ2

n, Δ could be set to be 0.25σ2
n,

which is obtained by both theoretical and numerical analysis.
2) Normalized Threshold IKSD: The threshold could be

defined to be dependent on the cost of the Kth node at each
level. From the theoretical analysis in the Section II-C, we
will see that this will correspond to reducing the probability
of pruning the true solution by a constant ratio compared to
the KSD. Thus, the threshold could be given as

Δ = τfK . (1)

This is called normalized threshold IKSD, which adaptively
updates Δ in the searching process. The closed-form of Δ and
τ will be derived in the Section II-C.

3) Adaptive Threshold IKSD: If the signal-to-noise ratio
(SNR) is known or could be estimated, SNR-dependent Δ
may be defined as

Δ =
σ2
n

ln ρ+ 1
, (2)

where σ2
n is the noise variance and ρ is the SNR in the MIMO

system. With this adaptive threshold IKSD, Δ decreases with
increasing SNR. The motivation of this threshold choice lies
in the fact that the cumulative costs are larger in the low
SNR region while they are smaller in the high SNR region.
Therefore, a large Δ should be chosen in the former case
while a small value for the latter case.

Other choices of the threshold may be possible. However,
all the proposed threshold rules reduce the probability of early
dropping the ML solution when traversing the search tree,
resulting in performance gains compared to the conventional
KSD with the same value of K . Furthermore, the proposed
IKSD with K outperforms the KSD with a larger K , while
the former also obtains lower complexity than the latter, which
will be shown in Section III.

C. Theoretical Analysis

Since the elements n1, . . . , nm in the noise vector n are val-
ues from independent identical distributed Gaussian,

∑m
i=k n

2
i

becomes the chi-square random variable with m−k+1 degrees

of freedom. Because ft =
∑m

i=k

(
zi −

∑m
j=i ri,jsj

)2

=∑m
i=k n

2
i , the probability of the new cost of nodes greater

than the Kth node cost is

PK = Pr(ft > fK) = 1−Pr(ft ≤ fK) = 1−F (fK ;m−k+1),
(3)

where F (fK ;m − k + 1) = γ(m−k+1
2 , fK

2 )Γ(m−k+1
2 ) is the

cumulative distribution function (CDF) of ft, and γ(k, x) and
Γ(k) are incomplete Gamma function and Gamma function,
respectively.

In order to reduce the probability of discarding the ML
solution, we can decrease the probability in (3) by a predefined
ratio λ (0 < λ < 1), which is given as

PΔ = Pr(ft > fK +Δ) = λPK . (4)

Where λ could be set to be a number close to 1 in order to
constrain the incremental complexity, such as λ = 0.9.

Therefore, the probability of ft ≤ fK + Δ is 1 − λPK .
Thus, Δ can be defined as

Δ = F−1(1− λPK ;m− k + 1)− fK . (5)

For the fixed threshold IKSD, Δ could be predefined to
be a deterministic value according to the above equation. By
calculating the values of Δ, we found an interesting result.
For example in a 4 × 4 MIMO system, when λ = 0.9, Δ
is always between 0.2 to 0.3 for all 1, . . . ,m degrees of
freedom, calculated by Eq. (5). Thus, it is appropriate to
choose Δ = 0.25 for a 4 × 4 MIMO system. Similarly, a
proper fixed threshold could also be derived by this simple
off-line calculation for other MIMO systems.
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For the normalized threshold IKSD, based on (1) and (5),
τ is shown as

τ =
F−1(1− λPK ;m− k + 1)− fK

fK
. (6)

When SNR is sufficiently high, PK can be approximated to
be

lim
σ2
n→0

PK = lim
σ2
n→0

1− F (fK ;m− k + 1). (7)

When x → 0, the probability density function of the chi-
squared distribution is

f(x; k) =
1

2
k
2 Γ(k2 )

x
k
2−1 exp(−x/2) ≈ 1

2
k
2 Γ(k2 )

x
k
2−1. (8)

Then, the CDF F (x; k) is

F (x; k) =

∫ x

0

1

2k/2Γ(k2 )
xk/2−1dx =

xk/2

(k/2)2k/2Γ(k2 )
(9)

and F−1(P ; k) =
(

k
22

k
2 Γ(k2 )P

) 2
k

. Therefore, in the high
SNR region, (6) could be derived by the closed-form in (10).

D. Soft Extension of the IKSD

For coded MIMO systems, the conventional KSD supports
soft outputs [1], where the best K nodes left at last iteration
form the candidate list used by the iterative detection and
decoding. However, the conventional KSD in coded MIMO
systems results in an increasing complexity in order to achieve
the near optimal performance by a sufficient large K . There-
fore, we propose the list IKSD by extending the proposed
IKSD as a list sphere decoder for coded MIMO systems.

The list IKSD generates a list L of NI candidates when
searching the tree. This list includes NI = K+NΔ estimates,
and the size of the list satisfies 1 ≤ NI < 2Nc·N , where Nc =
log2 (|Q|) is the number of bits per modulated symbol and NΔ

is the number of extra nodes visited by the list IKSD compared
to the list KSD. The coded spatial multiplexing MIMO system
model and the detail of the MIMO detector and the channel
decoder are referred to [8].

III. SIMULATION RESULTS AND DISCUSSIONS

A. MIMO detection

In this section, the performance and complexity of the IKSD
(Algorithm 1) are assessed. Both the symbol error rate (SER)
and the average number of nodes (complexity) visited by the
new IKSD are compared with those of the conventional KSD
[1]. Although the three versions of the IKSD outperform the
conventional KSD, in this letter, only the fixed threshold IKSD
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Fig. 1. Comparison of the IKSD and KSD for an uncoded 4 × 4 MIMO
16-QAM system.

and the normalized threshold IKSD are shown due to the space
limitation. The ML curve is from the conventional SD. In
order to compare with the KSD fairly, the initial radius for
both the proposed IKSD and KSD is chosen to be the same
(γ = 10). Furthermore, in order to highlight the advantage
of the proposed IKSD, the channel detection ordering is not
included for all the algorithms.

Fig. 1 (the left axis) firstly shows the impact of the SER
performance of the proposed IKSD. An uncoded 4×4 MIMO
system with 16-QAM is simulated over a flat Rayleigh fading
channel (σ2

n = 1). Note that the performance of the IKSD by
the fixed threshold (K = 2,Δ = 0.25) is so close to the ML
curve; while the conventional KSD needs to set K = 16 for
achieving the similar SER. Furthermore, the fixed threshold
IKSD outperforms the normalized threshold (K = 2, λ = 0.9).

We also provide a complexity comparison between the
IKSD and the KSD in the right axis. The complexity of
the proposed fixed threshold IKSD is lower than that of the
KSD when achieving the quasi-ML performance. For example,
the conventional KSD (K = 16) searches about 4 × 102

nodes, while the fixed threshold IKSD only needs 80 nodes
visited on average – an 80% complexity saving. Moreover, for
K = 2, with 30% increase in complexity, the fixed threshold
IKSD provides 7 dB gain (at an SER of 10−2) over the
KSD. Note that as expected the complexity curves for the
conventional KSD are flat as a function of SNR; similarly, the
fixed threshold IKSD has a virtually flat complexity curve. To
quantify such flatness, a complexity variability index has been
introduced in [9]. This index is 7 × 10−3, affirming that the
fixed threshold IKSD has a virtually constant complexity.

τ =
F−1

[
1− λ

(
1− (fK)(m−k+1)/2

((m−k+1)/2)2(m−k+1)/2Γ((m−k+1)/2)

)
;m− k + 1

]
− fK

fK

=

[
(m−k+1)

2 2(m−k+1)/2Γ((m− k + 1)/2)
(
1− λ

(
1− (fK)(m−k+1)/2

((m−k+1)/2)2(m−k+1)/2Γ((m−k+1)/2)

))] 2
k − fK

fK
. (10)
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Fig. 2. Comparison of different SD algorithms for an uncoded 8×8 MIMO
16-QAM system.

In order to show the advantages of the proposed IKSD, the
comparison with other algorithms (FSD [5], EP K-best [4],
AFE-FCSD [7], and simplified FSD [6]) is shown in Fig. 2.
Achieving the near-optimal SER performance, the complexity
of our proposed IKSD is only 23%, 27% and 59.5% of
that of the FSD, EP K-best and simplified FSD, respectively.
Although the AFE-FCSD obtains lower complexity than the
proposed IKSD when SNR ≥ 18 dB, the latter gains 1.5 dB
than the former at an SER of 10−4. Above all, the proposed
IKSD achieves the best trade-off between performance and
complexity among all these algorithms.

B. Detection for Coded MIMO systems

We next assess the advantages of the IKSD in a 4×4 coded
MIMO system. The performance measured by the bit error
rate (BER), and the complexity of generating the candidate
list are investigated. The systematic recursive convolutional
code with rate R = 1/2 is exploited to encode the transmitted
bits sequence with the frame length 8192, where the feed-
forward and feedback-generating polynomials are G1(D) =
1+D2 and G2(D) = 1+D+D2 with memory length 2 [8],
respectively. A random interleaver is exploited here.

In order to show the effects of K , the performance and
complexity for different K are investigated in Fig. 3. By
increasing K , more nodes are visited in the searching process,
resulting in an increasing complexity of the iterative detection
and decoding. However, the BER performance improves when
K is larger. As shown in the left axis, by using 4 maximum
iterations, the proposed list IKSD with K = 256 achieves the
performance of the conventional KSD with K = 512.

As shown in the right axis of Fig. 3, when K decreases,
the complexity degrades more. For example, the average
number of nodes visited is around 4.5 × 103 with K = 256,
approximately 2.4× 103 with K = 128 and about 1.4 × 103

with K = 64, respectively. However, the conventional list
KSD visits about 7.5×103 nodes with K = 512. Considering
the performance and the complexity, the proposed list IKSD
gains 40% complexity savings with the same performance.
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Fig. 3. Comparison of the IKSD and conventional KSD for a coded 4× 4
MIMO 16-QAM system.

IV. CONCLUSIONS

This letter proposed an improved K-best sphere decoder
(IKSD), which achieves the quasi-ML performance at a re-
duced and roughly fixed complexity. Unlike the conventional
KSD which retains a fixed number of K nodes per level, our
main idea expands this number to all the nodes whose cost is
less than fK + Δ. The conventional KSD is thus a special
case when Δ = 0. The motivation of keeping additional
nodes is to reduce the likelihood of the conventional KSD to
discard the ML solution early. For coded MIMO systems, a
soft extension of the IKSD was developed as the list IKSD. It
uses the IKSD to generate the candidate list for joint iterative
detection and decoding, resulting in complexity savings over
the conventional list KSD.
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