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Abstract—This paper considers the analytical performance of
primary users (PUs) subject to interference due to secondary
users (SU) in an underlay cognitive radio system over Rayleigh
fading. In particular, we focus on a more general spatial config-
uration where the interfered PU, not only located at the center
of the cell, is having a protective region which is free of SUs
and the SUs are distributed over a finite area in contrast to the
commonly used infinite area assumption. We first characterize
the statistical properties of the aggregate interference at the PU
due to SUs, by deriving new exact closed form expressions for
the moment generating function, cumulants, first, second and
third moments and first order expansions of the cumulative
distribution functions corresponding to propagation scenarios
with path loss factors, two and four. We then investigate the
PU performance by presenting new analytical expressions for
the outage probability, amount of fading as well as the diversity
order and coding gain. Our results indicate that the PU can
achieve the full diversity gain given a non-zero protective region
around the PU.

Index Terms—Aggregate interference, amount of fading (AoF),
coding gain, cognitive radio (CR), cumulants, diversity order,
moment generating function (MGF), outage probability.

I. INTRODUCTION

IN recent years, cognitive radio (CR) technology [1], [2] has
become a popular candidate to overcome the increasing

scarcity of the radio spectrum, by allowing the secondary
users (SUs) to opportunistically sense and utilize the available
spectrum. Two main approaches are envisioned in CR devel-
opments with the so-called underlay and overlay systems [3].
The more conservative approach of the overlay system is at
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a cost of lower efficiency in terms of SUs throughput. Thus,
although more challenging, it is sensible to put more effort on
the underlay research to foster the CR appealing paradigm.

The characterization of the interference on the target users
in different network configurations is crucial for the design
of efficient interference management techniques [3]. Although
being a well researched topic, the CR development has brought
it again into the focus of researchers. Specifically, the analysis
of the aggregate interference at the PU due to the SUs has
been of great recent interest (e.g., [4]–[9]). The aggregate
interference in a Poisson field of interferers was first stud-
ied in [10]. The interference was shown to follow a stable
distribution with infinite variance. That work has then been
extended to handle more practical issues such as: various type
of channel fading (e.g., [6], [7], [11]), probability distribution
approximations (e.g., [4], [12], [13]), interferers using power
control (e.g., [5], [12]), or sensing capabilities (e.g., [4],
[8], [14]). The outage probability of the interfered nodes in
different channel environments have also been investigated in
e.g., [6], [7], [15]. The general approach which has hitherto
been used to characterize the interference is, first to evaluate
its characteristic function (CF) (see e.g., [14]), and then to
apply the inverse Fourier transform to compute the probability
distribution function (PDF). However, in many scenarios, the
CF may only be expressed in an integral form. The alternative
way, in practice is to numerically evaluate the Fourier inverse
integral or use approximation methods.

Undeniably, the aforementioned works and references
therein highly contribute to the development of a very general
and unified framework for the interference characterization as
envisioned in e.g., [14]. Yet, a significant amount of research
is still required. In particular, this work aims to contribute
in tackling three of those main issues. First, the analytical
complexity of the expressions, in many earlier works, do not
provide much insights into the statistical behavior of the ag-
gregate interference in terms of the environmental and spatial
physical parameters; Second, the interfered user can also expe-
rience a non-symmetric interference pattern; Third, and most
importantly, instead of the commonly assumed unbounded
area interferers, mainly due to mathematical tractability, we
analyze the more realistic finite case. The second and the
latter combined allows various practical applications as further
described in the system model.

Only few works have attempted to investigate the finite
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case. In [16], the moment generating function (MGF) of
the interference has been investigated, for both the Poisson
point process (PPP) and the Binomial point process (BPP)
distributed interferers. Yet, the expression (see [16, eq. 6])
leaves the channel as an expectation, furthermore the interfered
user is only placed at the center. In [17], the nth-moments
of the interference for various practical spatial configuration
are investigated with finite areas. An exact expression is
provided for the special case of circular annulus (i.e., as later
defined, case B in Fig. 1), whereas all other settings are
provided with several integration formulation. Moreover, note
that the authors in [16] and [17] do not investigate the final
performance of the interfered node.

Motivated by those issues, we introduce in this work a
reconfigurable spatial model based on three finite radii. As
further discussed in the system model, the spatial model enjoys
a wide applicability such as the IEEE 802.22 scenario, and
interferers with different path loss exponent (PLE). In par-
ticular, the reconfigurable spatial parameters introduce more
general structure to the system model in contrast to the more
frequently used cell centered PU model.

In this paper, we focus on the analytical performance of the
PU due to finite area SUs corresponding to PLE factors 2 and
4, over Rayleigh fading. We first derive new exact expressions
for the MGF, cumulants, moments as well as the first order
expansions of the cumulative distribution function (CDF) of
the aggregate interference. Our results show that the moments
are more sensitive to the radius of the SU area for a PLE of
2 than for 4. This in turn reveals that the common infinite
area assumption with high PLE indices can be reasonable in
some scenarios. Based on the exact MGFs of the interference,
we then investigate the performance of the PU system by
deriving analytical expressions for the outage probability as
well as the amount of fading (AoF). In addition, we present a
comprehensive investigation of the diversity order and coding
gain: the two key parameters dictating performance in the
high SNR regime. Our results show that the PU can achieve
the maximum diversity with the non-zero protective region in
contrast to the reduced diversity without a protective region. It
turns out that the infinite area assumption in general undermine
the system performance for relatively low PLE. This is further
confirmed by our numerical results.

This paper is organized as follows: the general system
model is introduced in Section II. Section III derives the
key MGF results of the aggregate interference and analyzes
the related statistics. The PU performance is evaluated in
Section IV and Section V concludes the paper.

II. SYSTEM MODEL

We consider a CR system which consists of both primary
and secondary networks. The primary network is composed of
PU receivers located anywhere within the primary cell. The
secondary network lays outside the primary cell, where the
SUs are uniformly distributed. This system model is depicted
in Fig. 1. We assume that both PUs and SUs use a single
antenna, and their communications undergo path loss and
Rayleigh fading. We omit shadowing for the sake of analytical
tractability and in view of obtaining some benchmark results.

Fig. 1. System model and cases identification, defined by the three radii R1,
R2 and R3. The PU is symbolized by the square and the SUs by the crosses.
SUs are assumed to be uniformly distributed in the finite area between R2

and R3 while the number of SUs are Poisson distributed.

In this paper, we aim at characterizing the statistics of the
aggregate interference generated by the SUs at any given PU
and subsequently evaluate its performance. Note that the PUs
being located anywhere in its cell, and not only at the center,
the relative spatial distribution of the interferers around the
PUs is asymmetric (as in [18]), in contrast to the simple
symmetric case as in most of the previous works e.g., [4]–
[12], [16].

The system spatial parameters are defined by the three radii
R1, R2 and R3 such that R1 ≤ R2 < R3, where R1 is the
distance of the PU from the center, and R3 is the finite radius
of the secondary network. R2 can be simply defined as the
primary cell radius (Rp), but can also account for an additional
guard band around the primary cell [19] (i.e., R2 = Rp +
ε, ε ≥ 0). Thus, PUs are within Rp, and SUs are beyond
R2. This finite three-radii configurable network allows many
practical combinations, thus enjoying wide applicability such
as follows:

1) When designing a CR system, aided by a fixed deployed
wireless sensor network, it is inherently of finite local-
ized size. The interference of interest is the one produced
by this new network, which can allow the design of
appropriate power control policies as in [3] to fulfill the
regulatory requirements.

2) One major application, when R1 > 0 (i.e., the PU is
not located at the center), is the IEEE 802.22 (WRAN)
Digital TV (DTV) (see e.g., [18], [20]). IEEE has
been developing the IEEE 802.22 standard for Wireless
Regional Area Networks (WRAN), to opportunistically
access the spectrum that is not currently used by the TV
broadcasting stations. In a DTV scenario, a base station
(BS) broadcasts the signals within a certain area to a
TV receiver (i.e., R1). The secondary system, based on
the broadcast signal (beacon) strength, can estimate the
distance from the primary BS which is located at the
center of the system. Thus, a minimum protective circle
can be enforced by regulation to the secondary system
(i.e., R2). It is clear that the previous works’ model as-
suming symmetric interferers pattern and corresponding
results cannot apply for this application.
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3) It is known that as the distance increases, the PLE
increases as well. One of the simplest example is the
two-ray model [21] with PLE indices 2 and 4. How-
ever, previous works could only assume one PLE. Our
model allows to cumulate different areas interference
with different PLE (by successively varying the 3 finite
radii configuration and computing the interference in
each area, and finally summing up). However, while
it can be exactly computed when the interfered PU
is at the center, or approximately when close to the
center, the cumulation of different PLE cannot be well
approximated if the PU is at the edge of its cell (since
the PLE-drop is PU-centric and not BS-centric).

In practical scenarios, only the statistical knowledge of
the interferers location is available. Thus, following [10],
we may as well treat them as completely random according
to a homogeneous PPP1 in the two dimensional plan. The
probability of N SUs being inside a region depends only on
the total area and follows a Poisson distribution with mean
λπR32, given by

Pr(N = n) = exp (−λπR32)(λπR32)
n/n!, n ≥ 0 (1)

where R32 = (R2
3 − R2

2) and λ characterizes the SU density
per unit area. The effect of multiple-tiers interferers networks
[22] could be envisioned where each network is defined by
different density and transmit power, but is beyond the scope
of this work. Note that it is possible to consider the case where
each SU only transmits with a probability ρtx, in which case
the set of transmitting SUs also forms a Poisson process with
a new scaled density λ2 = λ1ρtx [10]. This elegant theory
provides a tractable and practical model and has prevailed in
many works e.g., [4], [6]–[8], [10]–[12], [14]. Other models
have also been proposed in the literature (e.g., a BPP has
been investigated in [23] to model the arrangement of the
nodes when N is known, and does not assume independency
of the number of nodes in disjoint areas.). In particular, with
the explosion in the different type of heterogeneous networks
(e.g., femtocells, hotspots, relays, meshing approaches), the
need for different spatial models is essential (see [24, Table
1]).

We assume that each SU has the same transmit power
PSU , decays according to the path loss law, and undergoes
independent and identically distributed (i.i.d.) Rayleigh fading.
Thus, the aggregate interference I at the PU can be defined
as

I =

N∑
i=1

Ii =

N∑
i=1

PSUd
−α
i |hSUi |2 , (2)

where Ii is the interference due to the ith SU, di is the
distance between the PU and the ith SU, α is the PLE, and
|hSUi |2 is the exponentially distributed power envelope, i.e.,
with density function f|hSU |2(x) = (1/Ω) exp (−x/Ω), where

1The spatial Poisson process is a natural choice in such situations, given that
the PDF of a node position inside a region is conditionally uniform. Moreover,
the Poisson process has maximum entropy among all homogeneous processes
[14].

Ω is the mean power2. Without loss of generality we assume
in the sequel a unit mean power, i.e., f|hSU |2(x) = exp (−x).
Moreover, we assume that |hSUi |2 is independent of di.

In most practical situations, the PLE generally varies be-
tween 1.6 (e.g., hallways inside buildings) and 6 (e.g., dense
urban environments) [21]. However, in this work, due to
mathematical tractability, we mainly focus on the two most
frequently used propagation scenarios in the literature, namely
with PLE given by 2 (i.e., free space) and 4.

We consider four different practical configurations in terms
of the finite radii R1, R2 and R3 as summarized in the table
given in Fig. 1. This spatial model is easily reconfigurable to
obtain a spectrum of useful spatial structures as mentioned
earlier. Case A is the most general setting which incorporates
the three other cases: B, C and D. The general use of our
model, depicted in Fig. 1, can be summarized as follows:

1) The IEEE 802.22 scenario with the PU being the TV re-
ceiver, as well as the classical downlink cellular network
with the PU being the mobile, can be characterized by
Case A with R1 > 0, where the center represents the
BS.

2) Case B (i.e., Case A with R1 = 0), Case C, and
Case D, characterize the PU centric interference analysis
scenarios.

Notable configuration is Case D with R2 ≥ 0, which has
been used to analyze the aggregated interference in most of
the aforementioned works, see e.g., [6], [7], [10], [11], [15],
[19], etc... Yet, our analysis still provide further new insights
into the Case D, especially in terms of the PU performance
measures. It is important to note that Case D is only applicable
for α > 2, since the aggregate interference tends to infinity
for α ≤ 2 as R3 → ∞ [10].

III. STATISTICS OF THE INTERFERENCE

In this section, we first derive exact closed-form expressions
for the MGF of the aggregate interference. Subsequently, they
will be employed to evaluate different statistics of I and to
gain insights into the behavior of the CDF of I .

A. Moment Generating Function of I

By definition [26], the MGF of the aggregate interference
I defined in (2), for a specific PLE α, is M(α)

I (s) =
�I {exp (−sI)}. Since the number of interferers N is a
poisson distributed random variable, Mα

I (s) can be written
as [10]

M(α)
I (s) = �N {�I {exp (−sI)|N}}

=

∞∑
N=0

1

N !
�I {exp (−sI)|N}

× exp (−λπR32)(λπR32)
N . (3)

2Following [25, Section 4.2], it can be shown that to model the joint
effect of the shadowing and Rayleigh, it is sufficient to consider the mean
power of the Rayleigh envelope as a lognormal random variable, i.e., using
f|hSU |2(x) = �Ω {(1/Ω) exp (−x/Ω)}, where Ω follows the lognormal
distribution [25, eq. 2.200].
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The random variables Ii, i = 1...N , being i.i.d., we get

�I {exp (−sI)|N} = �I

{
exp

(
−s
∑
N

Ii

)}

= �Ii {exp (−sIi)}N = M
(α)
i (s)N (4)

where M
(α)
i (s) = �Ii {exp (−sIi)} is the MGF of the

interference due to the ith SU. Substituting (4) into (3), the
aggregate interference MGF can be written as

M(α)
I (s) = exp (−λπR32)

∞∑
N=0

1

N !
(M

(α)
i (s)λπR32)

N

= exp
(
λπR32

(
M

(α)
i (s)− 1

))
. (5)

Since M
(α)
i , the MGF of the ith interferer, is independent of i,

in what follows, without loss of generality, we omit the index
i. In our model, the randomness of each individual interference
stems from two factors, the random distance (i.e., d), and
the fading power envelope (i.e., |hSU |2). In the sequel, it is
mathematically more convenient to use the polar coordinates
(r, θ) instead of d, as defined in Fig. 1. Thus, we employ the
following geometric relation

d(r, θ) =
√
r2 +R2

1 − 2rR1 cos θ. (6)

As such, the individual interference MGF can be written as

M (α)(s)

= �r,θ

{∫ ∞

0

exp
(−sPSUd

−α(r, θ)x
)
f|hSU |2(x)dx

}
(7)

where the expectation is taken with respect to r and θ. Now,
the inner integral in (7) can be solved using the MGF of |hSU |2
to yield

M (α)(s) = �r,θ

{
1

1 + sPSUd−α(r, θ)

}
. (8)

Note that the convergence of Laplace transform is satisfied if
�(s)PSU > −dα(r, θ). Thus, we can as well assume in the
sequel that �(s) > 0, since it always satisfies the inequality. It
is important for the expectation evaluation in (8) to carefully
define the spatial distribution of the interferers in terms of
r and θ. Since SUs are uniformly distributed in a circular
area, the larger is r, the larger is the perimeter, and also
more probable is the presence of a SU at a greater distance
r. Therefore, the PDF of r is given by the ratio of perimeter
over area as [10], fR(r) = 2r/R32 for r ∈ [R2, R3], and the
angular distribution is uniformly distributed over [0, 2π) i.e.,
fθ(θ) = 1/2π. Using (6) and the PDF or r and θ, (8) can be
written as

M (α)(s) =
1

πR32

∫ R3

R2

rg(α) (r) dr (9)

where

g(α) (r) =

∫ 2π

0

dθ

1 + sPSU (r2 +R2
1 − 2rR1 cos θ)

−α/2
.

(10)
Finally, evaluating (9) and substituting back results into (5)
gives the exact closed-form expression of M(α)

I (s). However,

the evaluation of (10) for an arbitrary value of α seems
an arduous task. Therefore, we confine ourselves to some
particular values of α. The following propositions characterize
M(α)

I (s) for the special representative cases, α = 2 and
α = 4.

Proposition 1: The MGF of the aggregate interference at
the PU, for α = 2, is given by

M(2)
I (s) = exp

(
−sPSUλπ lnΨ(2)(s)

)
(11)

where

Ψ(2)(s)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
4sPSUR2

1+(R2
3−R2

1+sPSU )2+(R2
3−R2

1+sPSU )√
4sPSUR2

1+(R2
2−R2

1+sPSU )2+(R2
2−R2

1+sPSU )
Case A

R2
3+sPSU

R2
2+sPSU

Case B
R2

3+sPSU

sPSU
Case C.

Proof: See Appendix A-A.
Proposition 2: The MGF of the aggregate interference at

the PU, for α = 4, is given by

M(4)
I (s) = exp

(
−
√
sPSUλπΨ

(4)(s)
)

(12)

where

Ψ(4)(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arctan

(√
sPSU(R2

3−R2
2)

R2
3R

2
2+sPSU

)
Case B3

arctan
(

R2
3√

sPSU

)
Case C

π/2 Case D.

Proof: See Appendix A-B.
One can note that the special scenario α = 4 Case D

which has been analyzed in most of the previous works (e.g.,
[6], [7], [10], [15], [19], and in particular e.g., [11]), gives a
simple analytical expression. Moreover, the general Case A for
α = 4 seems mathematically intractable (see Appendix A-B).
Therefore, in what follows we only focus on the scenarios
given in Propositions 1 and 2. In the sequel, for brevity,
we will denote, for example the MGF corresponding to the
scenario α = 2 Case A as M(2,A)

I (s).

B. Cumulants of I

By invoking the central limit theorem (CLT), one may tempt
to approximate the PDF of I with a Gaussian PDF. However
simulations have shown (e.g., see[4]) that the PDF is positively
skewed and thus deviates from normality. This stems from
the fact that interferers very close to the receiver terminal
contribute a disproportionately large amount of interference,
thus limiting the applicability of the central limit theorem.
Therefore, the important basic parameters to approximate I
are the mean, the variance, as well as the skewness. We
now evaluate those statistics using the cumulants of I . By
definition, the nth cumulant of I is given by [26]

κ(α)
n = (−1)n

dn

dsn
lnM(α)

I (s)

∣∣∣∣
s=0

.

3Alternatively, arctan
((√

sPSU

(
R2

3 −R2
2

))
/
(
R2

3R
2
2 + sPSU

))
=

arctan
(
R2

3/
√
sPSU

)− arctan
(
R2

2/
√
sPSU

)
.
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The first three cumulants are related to the mean, variance,
and skewness respectively through the relations [26],

μ
(α)
I = κ

(α)
1

σ
(α)2
I = κ

(α)
2

δ
(α)
I = �I

{
exp

(
I − μI

σI

)3
}

=
κ
(α)
3

κ
(α)3/2
2

.

Using (11) in (III-B) followed by the repetitive application of
L’Hôpital rule with some lengthy algebraic manipulation yield
the 1st, 2nd and 3rd cumulants corresponding to the scenario
α = 2, Case A with R1 	= R2 as

κ
(2,A)
1 = λπPSU ln

(
R2

3 −R2
1

R2
2 −R2

1

)

κ
(2,A)
2 =

2λπP 2
SU

{
R4

3R
2
2 −R4

2R
2
3 +R4

1R
2
2 −R4

1R
2
3

}
(R2

2 −R2
1)

2
(R2

3 −R2
1)

2

κ
(2,A)
3 =

3λπP 3
SUg(R1, R2, R3)

(R2
2 −R2

1)
4
(R2

3 −R2
1)

4

where

g(R1, R2, R3) = 2R2
2R

2
1

(
R2

3 −R2
1

)4 − 2R2
3R

2
1

(
R2

2 −R2
1

)4
+ 2R2

2R
2
3

(
R2

2 −R2
1

)2 (
R2

3 −R2
1

)2 − 2R4
3(

R2
2 −R2

1

)4
+R4

2R
4
3

(
R2

3 −R2
2

)2 − 2R4
1R

2
2

R2
3

(
R2

3 −R2
2

)2
+R8

1

(
R2

3 −R2
2

)2
.

Similar calculations yield the first three cumulants correspond-
ing to α = 4, Case B with R2 > 0 as

κ
(4,B)
1 = λπPSU

(
1

R2
2

− 1

R2
3

)

κ
(4,B)
2 =

2

3
λπP 2

SU

(
1

R6
2

− 1

R6
3

)
(13)

κ
(4,B)
3 =

6

5
λπP 3

SU

(
1

R10
2

− 1

R10
3

)
which are consistent with the general cumulant equation given
in [15, eq. 13] for α > 2 Case B and without considering
any fading. It is interesting to observe that including the
Rayleigh fading simply scale the cumulants compared to the
case without fading (i.e., compare (13) with [15, eq. 13]).
Similar observations have been made in [11] when comparing
the PDF/CDF [11, eq. 8] with and without Rayleigh fading.

The three cumulants can be used to approximate the PDF of
I , with limited accuracy, using e.g., Edgeworth expansion or
the shifted log-normal approximations [4]. Furthermore, these
remarkably simple expressions show us how the interference
statistics change with different physical parameters. A careful
inspection of these expressions reveal that the importance of
having the guard radius (i.e., R2 > 0) around the PU. As such,
this protected region controls the severity of the interference
experienced by the PU, thereby stabilizing the PU performance
as we will see in due course. Moreover, the propagation
scenario corresponding to α = 4 induces less interference
to the PU in comparison with the scenario corresponding to
α = 2, on the average. Interestingly, the identical re-scaling
of the spatial parameters (i.e., when R1, R2, R3 are replaced,
for k > 0, with kR1, kR2, kR3, respectively) does not affect

the mean of I corresponding to α = 2. However, it affects the
statistics of α = 4 case.

Note that the cumulants in Case C or Case D are intractable
as the corresponding values of mean and variance tend to infin-
ity. This is consistent with the comments already made in e.g.,
[6], [10], where the interference has been shown to approach
a alpha-stable distribution (or Lévy distribution), when the the
protective region tends to zero (i.e., CLT cannot be applied).
In that situation the path loss model defined in (2) has a
singularity [27] at d = 0 and is generally not valid for d < 1,
as the wireless channel can not amplify the transmitted signal.
In this type of scenario, stable distributions have unbounded
(infinite) second-order moment due to that singularity. In [28],
a truncated-stable distribution has been very recently proposed
for smooth tails and finite moments, offering an alternative
statistical tool to model the aggregate interference in more
realistic scenarios without this singularity. Based on κ

(2,A)
1 ,

if R2 and R3 are fixed and R1 (i.e., PU) varies from the
center of the cell to the edge, the interference mean increases
much faster than with a linear trend. Therefore, one can expect
the average performance of the primary cellular network to
be much better inside than at the edge of the primary cell,
which is also intuitively correct. Since κ

(2)
1 → ∞ while κ

(4,B)
1

remains finite as R3 → ∞, we can analytically verify the
similar claim given in [10] as an observation. Moreover, in [4],
general semi-analytical expressions are provided to compute
the nth cumulant for Case D with R2 = 1, ∀α > 2. Although
they are based on different channels and sensing techniques,
those integral expressions do not provide simple direct insights
and are not valid for scenarios such as Case A or Case B.

Figs. 2(a) and 2(b) compare the mean, the variance and
the skewness between the analytical results and corresponding
Monte-Carlo simulations averaged over 105 random simula-
tions. As can be seen from the figure, the first two moments
of the aggregate interference is more resilient to the variation
of R3 for PLE index α = 4 than α = 2.

C. Probability Distributions

To evaluate the PDF of the aggregate interference, a natural
method is to directly invert its MGF using the standard
Laplace inversion techniques. This approach, however, appears
intractable for general system configurations due to the com-
plexity of the MGF expressions (11) and (12). Nevertheless,
for the special case α = 4 Case D, the inverse Laplace of
M(4,D)

I (s) = exp
(−√

s
√
PSUλπ

2/2
)

can be found using
[29, eq. 2.2.1.9] to obtain the PDF and CDF of I already given
in [11, eq. 8]. Yet, it is important to note that infinite series
solutions for the probability distributions can be obtained for
general cases using the power series expansion method of
Laplace inversion given in [30, Chap. 4.2]. The main drawback
of this approach in practice is that such infinite series do not
converge rapidly and thus require a large number of terms for
numerical evaluations. Among other methods, there exists a
numerical Fourier inversion method based on the characteristic
function of I [31, eq. 3.6].

A useful alternative approach is to characterize the CDF
of I around the origin which is of paramount importance in
analyzing the performance of general CR systems. Thus, in
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Fig. 2. Illustration of the effect of R1, R2 and R3 on the mean, variance
and skewness of the aggregate interference. Results are shown for λ = 10−4

and PSU = 30dBm.

what follows we focus on obtaining the first order expansions
of the CDFs of I corresponding to α = 2 and α = 4, for
Case A and Case B, respectively. To this end, we utilize the
initial value theorem along with the MGF of I . As such, for
a function f(t) having Laplace transform F(s), the initial
value theorem states limt→0 f(t) = lims→∞ sF(s). Before
proceeding, let us define the CDF of I as F

(α)
I (z) which in

turn gives the Laplace transform M(α)
I (s)/s. Now, invoking

the initial value theorem yields

lim
z→0

F
(α)
I (z) = lim

s→∞ s
M(α)

I (s)

s
= lim

s→∞M(α)
I (s). (14)

It turns out that the behavior of the CDF of I around the
origin is governed by the behavior of the MGF of I at
infinity. Therefore, we consider the expansion of M(α)

I (1/z)
around z = 0, where z = 1/s. The following proposition
characterizes the behavior of the CDF of I pertaining to
α = 2, 4 at the origin.

Proposition 3: The first order expansions of the CDFs of I
corresponding to α = 2 Case A and α = 4 Case B with finite
R3 are respectively given by

F
(2,A)
I (z) ≈ exp (−λπR32) + exp (−λπR32)

λπ
((
R4

3 −R4
2

)
+ 2R2

1R32

)
2PSU

z,

(15)

F
(4,B)
I (z) ≈ exp (−λπR32) + exp (−λπR32)
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Fig. 3. Comparison of the exact and first order expansion approximation
of MI (1/z) around z = 0. The constant parameters are: λ = 10−4 and
PSU = 30dBm.

× λπ
(
R6

3 −R6
2

)
3PSU

z. (16)

Proof: See Appendix B.
Remark: It should be noted that α = 4 Case D has been

excluded from Proposition 3. Clearly, under this scenario (i.e.,
when R3 → ∞), the infinite series expansion (39) converges
only at the point z = 0. Therefore, we cannot simply set
R3 → ∞ in (15) to characterize F

(4,B)
I (z) in the vicinity of

the origin.
The results in Proposition 3 reveal that there exists a

non-zero finite probability of having zero interference (i.e.,
FI(0) = exp (−λπR32)) at the PU in a finite area cognitive
network for α = 2 and 4. This behavior of I has been unob-
served in the previous works, since the infinite R3 assumption
in turn gives FI(0) = 0. As such, for finite R3, the PDF of
I contains a discrete probability mass at the origin, which is
usually represented with a Dirac delta function. This behavior
stems from the fact that the number of SUs, N , is randomly
distributed according to the Poisson process (1). Thus, there
is a non-zero probability that N = 0, which intuitively
increases as the area becomes smaller, corroborating with
FI(0) = exp (−λπR32). Obviously, this probability drops
rapidly in terms of radius because of the negative exponential.
Nevertheless, it is useful to know that the probability is not
simply zero. This behavior can be of paramount importance
in interference management, especially in small size systems.

Fig. 3 illustrates the accuracy of Proposition 3 for both α =
2 Case A and α = 4 Case B with λ = 10−4. Moreover, the
interferes radii are set to R2 = 1m and R3 = 2m respectively.
Clearly, the linear behavior of MI(1/z) around the origin
perfectly matches with the results given by Proposition 3.

Having armed with the various statistical parameters of I ,
let us now focus in analyzing the PU performance in a finite
area cognitive network.

IV. PU SYSTEM PERFORMANCE

Here we investigate the performance of the primary system
based on the MGF developed in the previous section.

A. Outage Probability (Pout)

The outage probability is an important measure in deter-
mining the quality of service. It is defined as the probability
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that the instantaneous received SINR (signal-to-interference-
noise-ratio) γ drops below a threshold γth i.e., Pout (γth) =
Pr (γ ≤ γth). Also, by definition Pout (γth) = Fγ (γth) where
Fγ (γth) is the CDF of γ. The average received power at the
PU is defined as PPU . Thus, assuming unit variance noise4 at
the PU, the instantaneous SINR at the PU can be written as

γPU =
PPU |hPU |2

I + 1
(17)

where I is the aggregate interference due to SUs as defined in
(2) and |hPU |2 is the exponentially distributed power envelope
with unit mean. Furthermore, it is reasonable to assume that
|hPU |2 and I are independent. Based on these assumptions,
P

(α)
out (γth) can be written as

P
(α)
out (γth) =�I

{
Pr

(
|hPU |2 ≤ γth (I + 1)

PPU

∣∣I)}

=�I

{
F|hPU |2

(
γth (I + 1)

PPU

)}
(18)

where the CDF of |hPU |2 is F|hPU |2(x) = 1 − exp (−x).
Finally, (18) can be written as

P
(α)
out (γth) = �I

{
1− exp

(
−γth(I + 1)

PPU

)}

= 1− exp

(
− γth

PPU

)
M(α)

I

(
γth

PPU

)
. (19)

It is interesting to note that the primary user outage prob-
ability is explicitly governed by the MGF of the aggregate
interference. Since M(α)

I

(
γth

PPU

)
≤ 1 for γth ≥ 0, a simple

calculation gives

P
(α)
out (γth) ≥ 1− exp

(
− γth

PPU

)
.

This in turn reveals that the interference due to SUs degrades
the outage of the PU.

Fig. 4(a) compares the outage probability between the
analytical (i.e., (19) with (11) and (12)) and simulated Monte-
Carlo results with several settings for both α = 2 and α = 4.
As can be seen from the figure, the impact of the secondary
network radius (i.e., R3) on the outage of the PU is more
significant for α = 2 than α = 4. In the light of this
observation, we can conclude that the theoretically infinite
assumption for R3 can be a reasonable approximation for
propagation scenarios with relatively high PLE. Fig. 4(b)
illustrates the effect of the PLE on the outage of the PU. The
outage curves corresponding to the PLE indices 1.5, 3, 4 and 6
are obtained by numerically evaluating (9) with (5) and (19).
It is easy to note that beyond α = 4, the outage results for
higher exponents are nearly similar. This in turn reveal that
the analytical results in the case of α = 4 can be considered as
good approximations to the propagation scenarios correspond-
ing to the PLE indices higher than 4. Note that if one consider
the additional shadowing effect, the investigations performed
in e.g., [6], [7], [15], have shown that increasing the standard

4For the sake of generality we do no omit the noise, since by increasing
the guard band (i.e., R2), the system will shift from an interference-limited
to the classical noise-limited environment. Note that scaling the noise simply
implies rescaling the powers, PPU , and PSU in (2).
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Fig. 4. Illustration of the outage probability. The constant parameters are:
λ = 10−4, N0 = 1, PPU = 50dBm and PSU = 80dBm.

deviation of the shadowing deteriorates the outage probability
at the PU. Thus, the results obtained here, considering only
Rayleigh fading, could provide a benchmark, i.e, a minimum
Pout to be expected.

B. Amount of Fading (AoF)

The AoF at the PU is an important performance measure
which quantifies the severity of the fading channel. By defi-
nition, it is expressed as [32]

AoF =
(
m2 −m2

1

)
/m2

1 (20)

where m1 and m2 are the first and second moments of γPU ,
respectively. Now the 1st moment can be written as

m
(α)
1 =�γPU {γPU} = �I

{
�|hPU |2 {γPU}

}
=PPU�|hPU |2

{
|hPU |2

}
�I

{
1

I + 1

}
. (21)

The next challenge is to evaluate the expected value in (21).
To this end, we use the following representation

Γ(p)

xp
=

∫ ∞

0

vp−1 exp (−xv) dv, p > 0, x > 0 (22)

with p = 1 in (21) to yield

m
(α)
1 = PPU

∫ ∞

0

exp (−v)M(α)
I (v)dv. (23)

Although this integral seems analytically intractable for the
most general MGFs, a simple closed form solution can be
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Fig. 5. Illustration of the AoF performance. The constant parameters are:
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obtained for the special case α = 4 Case D. Under this
scenario, using [33, eq. 3.462], we can obtain the exact closed-
form expression

m
(4,D)
1 = PPU

(
1−

(
ζ√
2

)
exp

(
ζ2

4

)√
π

2
erfc

(
ζ

2

))
(24)

where ζ =
√
PSUλπ

2/2, and the complementary error
function is defined as erfc(x) = 1 − erf(x) = 1 −
(2/

√
π)
∫ x

0
exp (−t2)dt. Following a similar approach, the 2nd

moment can be written as

m
(α)
2 = �γPU

{
γ2
PU

}
= 2P 2

PU

∫ ∞

0

v exp (−v)M(α)
I (v)dv. (25)

Using again [33, eq. 3.462], this integral can be solved in
closed form in the special scenario α = 4 Case D as follows

m
(4,D)
2 = 6P 2

PU exp

(
ζ2

8

)
D−4

(
ζ√
2

)
(26)

where Dp(z) is the parabolic cylinder function. Moreover,
using the three term recurrence relation (see e.g., [34, eq. 10])

D−(p+1)(z) =
D−(p−1)(z)− zD−p(z)

p
(27)

with D0(z) = exp
(−z2/4

)
and D−1(z) =

exp
(
z2/4

)√
π/2 erfc

(
z/

√
2
)
, D−4(ζ/

√
2) can be expressed

as

D−4

(
ζ√
2

)
=
1

3
exp

(
−ζ2

8

)(
1 +

ζ2

4

)

−
√
π

12
ζ exp

(
ζ2

8

)
erfc

(
ζ

2

)(
3 +

ζ2

2

)
.

Finally, using (23) and (25) (for α = 4 Case D, (26) instead),
the AoF in (20) can be obtained.

Fig. 5 compares the analytical curves and Monte-Carlo
simulated curves for AoF performance. The analytical curve
for α = 4 Case D is obtained from the closed-form expressions
based on (24) and (26), whereas α = 2 Case A and α = 4
Case B are obtained by numerical evaluation of (23) and (25),
respectively. We can see that the effective channel of the PU
is more resilient to the variations in the SU power levels for
α = 4 than α = 2. This effective channel hardening has
already been observed related to the outage probability of the
PU.

C. Diversity Order, Coding Gain and Asymptotic Behavior

It has been shown in [35] that for high SNR, the symbol
error probability (SEP) and the outage probability are dictated
by two key parameters: the diversity order and the coding
gain. The diversity order, Gd, determines the slope of the SEP
versus average SNR curve, at high SNR, in a log-log scale. On
the other hand, the coding gain, Gc (in decibels), determines
the shift of the curve in SNR relative to a benchmark SEP
curve. In particular, under mild conditions and using polyno-
mial approximations, the SEP for high SNR can be expressed
as PE ≈ (Gcγ̄)

−(Gd), where γ̄ is the average SNR. Similarly,
Pout can also be expressed as [35]

Pout(γ̄) ≈ (Ocγ̄)
−(Od) (28)

where Od is called the outage diversity order such that
Od = Gd and Oc is the coding gain which differ by a
constant (in decibel) with Gc. In what follows, we only focus
on the modeling of P

(α)
out (γth) as described in [35]. Before

proceeding, let us define γ̄ = PPU and ρ = γth/γ̄. Now the
following proposition gives the diversity order and coding gain
(array gain) of the PU.

Proposition 4: The diversity order and coding gain of the
PU corresponding to α = 2 Case A and α = 4 Case B, D are,
respectively, given by

O
(2,A)
d = 1,

O(2,A)
c =

1

γth

(
1− PSUλπ ln

(
R2

2 −R2
1

R2
3 −R2

1

))−1

, R1 	= R2,

O
(4,B)
d = 1,

O(4,B)
c =

1

γth

(
1 + PSUλπ

(
1

R2
2

− 1

R2
3

))−1

, R2 > 0,

O
(4,D)
d =

1

2
,

O(4,D)
c =

1

γth

(√
PSUλπ

2

2

)−2

. (29)

Proof: Our objective is to obtain an expansion for
P

(α)
out (ρ) around ρ = 0 in the form

P
(α)
out (ρ) ≈

a

t+ 1
ρt+1 (30)

so that Od and Oc in (28) are given, respectively, by Od = t+1

and Oc =
1
γth

(
a

t+1

)− 1
t+1

.

First let us consider the detailed derivation corresponding to
α = 2 Case A, since α = 4 Case B follows similarly. Rewrite
P

(α)
out (γth) in (19) for α = 2 Case A as

P
(2,A)
out (ρ)

= 1− exp (−ρ)

×
(√

4ρPSUR2
1 + ξ2(R2, ρ) + ξ(R2, ρ)√

4ρPSUR2
1 + ξ2(R3, ρ) + ξ(R3ρ)

)PSUλπρ

where ξ(x, ρ) = x2 − R2
1 + ρPSU . Now we use the Taylor
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Fig. 6. Comparison of the analytical and asymptotic approximation of
P

(α)
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are shown for γth = 0dB, λ = 10−4, N0 = 1 and PSU = 80dBm.

expansion of P (α)
out (ρ) at ρ = 0 to obtain

P
(2,A)
out (ρ) ≈ 1−

[
1 +

(
−1 + PSUλπ ln

(
R2

2 −R2
1

R2
3 −R2

1

))
ρ

]

=

(
1− PSUλπ ln

(
R2

2 −R2
1

R2
3 −R2

1

))
ρ

which in turn gives the values corresponding to O
(2,A)
d and

O
(2,A)
c in (29). Clearly, the above expansion, is valid only

if R1 	= R2. This is because P
(2,A)
out (ρ) is not analytic at

the origin for R1 = R2. Therefore, we cannot analytically
quantify the diversity order and coding gain in that particular
scenario.

It turns out that the order of the first non-zero term of
the power series expansion of P

(4,D)
out (ρ) = 1 − exp(−ρ −

0.5λπ2
√
ρPSU ) around ρ = 0 is 1/2. The corresponding

results O
(4,D)
d and O

(4,D)
c now follows from the power series

expansion.
Interestingly, with non-zero protective region, the PU can

achieve the full diversity even with R3 → ∞. However,
compared to finite area interferers, the achievable diversity
in the case of infinite area assumption with zero protective
region is reduced by a factor of half. This reduction in the
achievable diversity, which is a clear consequence of having
unprotected PU, is overlooked in all previous studies.

Fig. 6 compares the exact theoretical outage probability
given in (19) with the polynomial approximation given by
(28). At high SINR, the asymptotic approximations clearly
match with the exact outage probability curves, thereby veri-
fying our claim.

V. CONCLUSIONS

This paper has investigated the performance of a primary
user subject to Poisson distributed secondary user interferers
in a CR underlay system. In contrast to infinite interferers
area assumption in most of the previous studies, we have
analyzed a more realistic finite interferers area. Moreover, the
system model with configurable radii and the protective area
around the PU enjoys a wide applicability. By employing
the powerful MGF approach, first we have investigated the
statistical properties of the aggregate interference at the PU
due to SUs distributed in a finite area with PLE α = 2

and α = 4. In particular, we have presented new closed
form expressions for the MGF, first three cumulants, first
and second moments and first order expansions of the CDF.
The statistical properties reveal that the statistical moments
are more sensitive to the SU area radius in the propagation
scenario corresponding to α = 2 than α = 4. We have
subsequently applied the MGF to derive the performance
of the PU in terms of the outage probability and AoF as
well as the diversity and coding gains. It turns out that the
theoretical infinite interferers area assumption serves as a
reasonable approximation in many scenarios involving higher
PLE indices.

APPENDIX A
PROOF OF PROPOSITIONS 1 AND 2

A. Proof of Proposition 1

Following (9), the MGF corresponding to α = 2 can be
written as

M (2)(s) =
1

πR32

∫ R3

R2

rg(2) (r) dr (31)

where

g(2) (r) = 2π − 2sPSU

∫ π

0

dθ

r2 +R2
1 − 2rR1 cos θ + sPSU

.

Using the transformation v = tan(θ/2) and [33, eq. 2.172.c]
we have

g(2) (r) = 2π− 2πsPSU√
(R1 + r)2 + sPSU

× 1√
(R1 − r)

2
+ sPSU

. (32)

Substituting (32) back into (31) with some manipulation yields

M (2)(s) = 1−2sPSU

R32

×
∫ R3

R2

rdr√
(r2 + (sPSU −R2

1))
2
+ 4sPSUR2

1

.

Applying the transformation v = r2 in the above integral then
gives

M (2)(s) = 1−sPSU

R32

×
∫ R2

3

R2
2

dv√
(v + (sPSU −R2

1))
2
+ 4sPSUR2

1

.

This integral can be solved using [33, eq. 2.261] and substitut-
ing the result back into (5) with some algebraic manipulation
gives the MGF in (11). Now some trivial substitutions for
R1, R2 and R3 yield the MGF expressions corresponding to
Case B and C.
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B. Proof of Proposition 2

Following (9), the MGF corresponding to α = 4 can be
written as

M (4)(s) =
1

πR32

∫ R3

R2

rg(4) (r) dr (33)

where

g(4) (r) = 2π−2sPSU

∫ π

0

dθ

b0(r)− b1(r) cos θ + b2(r) cos2 θ

with b0(r) =
(
r2 +R2

1

)2
+ sPSU , b1(r) = 4

(
r2 +R2

1

)
R1r

and b2(r) = 4R2
1r

2. Using the transformation v = tan(θ/2)
and the relation cos θ =

((
1− v2

)
/
(
1 + v2

))
in the above

integral then yields

g(4) (r) = 2π − 4sPSU

∫ ∞

0

(
1 + v2

)
dv

c4(r)v4 + 2c2(r)v2 + c0(r)
(34)

where c4(r) = b0(r) + b1(r) + b2(r), c2(r) = b0(r) − b2(r)
and c0(r) = b0(r) − b1(r) + b2(r). Evaluating (34) with the
help of [36, eq. 2.2.10.4] and substituting the answer back into
(33) yields

M (4)(s) = 1−
√
2sPSU

R32

∫ R3

R2

r√
c2(r) +

√
c4(r)c0(r)

×
(

1√
c0(r)

+
1√
c4(r)

)
dr.

Unfortunately, the above integral seems intractable for the
most general spatial configuration depicted in Fig. 1 (i.e., Case
A). However, we can simplify the above integral in the Case
B to yield

M (4)(s) = 1− 2sPSU

R32

∫ R3

R2

rdr

r4 + sPSU
. (35)

Finally, (35) can be evaluated using [33, eq. 2.132.2] which
leads to the MGF given in (12) corresponding to the Case B.
Again, some trivial substitutions for R1, R2 and R3 yield the
MGF expressions corresponding to Case C and D.

APPENDIX B
PROOF OF PROPOSITION 3

First let us focus on obtaining the first order expansion for
α = 2 Case A. To this end, we use the substitution z = 1/s
in (11) to obtain

M(2,A)
I (1/z) = exp

(
−1

z
PSUλπ ln

Q(z,R3)

Q(z,R2)

)
(36)

where

Q(z, x)

=

√
4R2

1

PSU
z +

(
x2 −R2

1

PSU
z + 1

)2

+

(
x2 −R2

1

PSU
z + 1

)
.

Now we can use the Taylor expansion of M(2,A)
I (1/z) around

z = 0 to obtain,

M(2,A)
I (1/z) ≈ a0 + a1z (37)

where

a0 = lim
z→0

M(2,A)
I (1/z) and a1 = lim

z→0

d

dz

(
M(2,A)

I (1/z)
)
.

Using the L’Hôpital rule with some algebraic manipulation
gives

a0 = lim
z→0

M(2,A)
I (1/z) = exp (−λπR32) .

Taking the derivative of M(2,A)
I (1/z) with respect to z yields

d

dz

(
M(2,A)

I (1/z)
)
= PSUλπM(2,A)

I (1/z)

×
(
Q(z,R3)Q′

(z,R2)

zQ(z,R2)Q(z,R3)

− Q(z,R2)Q′
(z,R3)

zQ(z,R2)Q(z,R3)

+
lnQ(z,R3)− lnQ(z,R2)

z2

)

where

Q′
(z, x) =

x2 −R2
1

PSU
+

2R2
1

PSU
+

x2−R2
1

PSU

(
x2−R2

1

PSU
z + 1

)
√

4R2
1

PSU
z +

(
x2−R2

1

PSU
z + 1

)2 .

Again, using the L’Hôpital rule gives

lim
z→0

d

dz

(
M(2,A)

I (1/z)
)

= PSUλπ exp (−λπR32)

× lim
z→0

Q(z,R3)Q′
(z,R2)−Q(z,R2)Q′

(z,R3)

2zQ(z,R2)Q(z,R3)
.

The above limit can be evaluated with the L’Hôpital rule to
obtain

a1 = exp (−λπR32)
λπ
((
R4

3 −R4
2

)
+ 2R2

1R32

)
2PSU

. (38)

Applying the same variable transformation, z = 1/s, as
before and using the Taylor expansions of arctan(R2

3/
√
sPSU )

and arctan(R2
2/
√
sPSU ) [33, eq. 1.643.1] in (12) yield the

MGF corresponding to α = 4 Case B as

M(4,B)
I (1/z)=exp

(
−λπ

{ ∞∑
k=0

(−1)k

2k + 1

R4k+2
3 −R4k+2

2

P k
SU

zk

})
.

(39)

Clearly, the choice of |z| < PSU/R
3
4 (i.e., �(s) > R4

3/PSU >
0) guarantees the convergence. Now, the first two coefficients
of the power series expansion of (39) around the origin give
F

(4,B)
I (z), which concludes the proof.

ACKNOWLEDGMENT

The authors wish to thank the Editor and the anonymous
reviewers for their careful comments that helped to improve
the quality of this paper. The first author wishes to thank Dr. K.
Kansanen and Dr. M. Brandt-Pearce for helpful discussions.



VIJAYANDRAN et al.: ANALYSIS OF AGGREGATE INTERFERENCE AND PRIMARY SYSTEM PERFORMANCE IN FINITE AREA COGNITIVE RADIO . . . 1821

REFERENCES

[1] J. Mitola, “An integrated agent architecture for software defined radio,”
Ph.D. dissertation, Royal Institute Technology (KTH), Stockholm, Swe-
den, 2000.

[2] S. Haykin, “Cognitive radio: brain-empowered wireless communica-
tions,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb.
2005.

[3] E. Hossain, D. Niyato, and Z. Han, Dynamic Spectrum Access and
Management in Cognitive Radio Networks. Cambridge University Press,
2009.

[4] A. Ghasemi and E. S. Sousa, “Interference aggregation in spectrum-
sensing cognitive wireless networks,” IEEE J. Sel. Topics Signal Pro-
cess., vol. 2, no. 1, pp. 41–56, Feb. 2008.

[5] Z. Chen, C. X. Wang, X. Hong, J. Thompson, S. A. Vorobyov,
X. Ge, H. Xiao, and F. Zhao, “Aggregate interference modeling in
cognitive radio networks with power and contention control,” IEEE
Trans. Commun., vol. 60, no. 2, pp. 456–468, Feb. 2011.

[6] X. Hong, C. X. Wang, and J. Thompson, “Interference modeling of
cognitive radio networks,” in Proc. 2008 IEEE VTC – Spring, pp. 1851–
1855.

[7] R. Dahama, K. W. Sowerby, and G. B. Rowe, “Outage probability
estimation for licensed systems in the presence of cognitive radio
interference,” in Proc. 2009 IEEE VTC – Spring, pp. 1–5.

[8] M. Timmers, S. Pollin, A. Dejonghe, A. Bahai, L. van der Perre, and
F. Catthoor, “Accumulative interference modeling for cognitive radios
with distributed channel access,” in Proc. 2008 IEEE CrownCom, pp.
1–7.

[9] M. F. Hanif, M. Shafi, P. J. Smith, and P. Dmochowski, “Interference
and deployment issues for cognitive radio systems in shadowing envi-
ronments,” in Proc. 2009 IEEE ICC, pp. 1–6.

[10] E. S. Sousa and J. A. Silvester, “Optimum transmission ranges in a
direct-sequence spread-spectrum multihop packet radio network,” IEEE
J. Sel. Areas Commun., vol. 8, no. 5, pp. 762–771, June 1990.

[11] M. Souryal, B. Vojcic, and R. Pickholtz, “Ad-hoc, multihop CDMA
networks with route diversity in a Rayleigh fading channel,” in Proc.
2001 IEEE MILCOM, pp. 1003–1007.

[12] S. Singh, N. B. Mehta, A. F. Molisch, and A. Mukhopadhyay, “Moment-
matched lognormal modeling of uplink interference with power control
and cell selection,” IEEE Trans. Wireless Commun., vol. 9, no. 3, pp.
932–938, Mar. 2010.

[13] M. Aljuaid and H. Yanikomeroglu, “A cumulant-based characterization
of the aggregate interference power in wireless networks,” in Proc. 2010
IEEE VTC – Spring, pp. 1–5.

[14] M. Z. Win, P. C. Pinto, and L. A. Shepp, “A mathematical theory of
network interference and its applications,” Proc. IEEE, vol. 97, no. 2,
pp. 1–26, Feb. 2009.

[15] R. Menon, R. M. Buehrer, and J. H. Reed, “On the impact of dynamic
spectrum sharing techniques on legacy radio systems,” IEEE Trans.
Wireless Commun., vol. 7, no. 11, pp. 4198–4207, Nov. 2008.

[16] S. Srinivasa and M. Haenggi, “Modeling interference in finite uniformly
random networks,” in Proc. 2007 Int. Workshop Inf. Theory Sensor Netw.

[17] E. Salbaroli and A. Zanella, “Interference analysis in a Poisson field
of nodes of finite area,” IEEE Trans. Veh. Technol., vol. 58, no. 4, pp.
1776–1783, May 2009.

[18] M. Vu and V. Tarokh, “On the primary exclusive region of cognitive
networks,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3380–
3385, July 2009.

[19] A. Hasan and J. G. Andrews, “The guard zone in wireless ad hoc
networks,” IEEE Trans. Commun., vol. 6, no. 3, pp. 897–906, Mar.
2007.

[20] C. Cordeiro, K. Challapali, D. Birru, and S. Shankar, “IEEE 802.22: an
introduction to the first wireless standard based on cognitive radios,” J.
Commun., vol. 1, no. 1, pp. 38–47, Apr. 2006.

[21] J. D. Parsons, The Mobile Radio Propagation Channel, 2nd edition.
Wiley, 2000.

[22] H. S. Dhillon, R. K. Ganti, and J. G. Andrews, “A tractable framework
for coverage and outage in heterogeneous cellular networks,” in Proc.
2011 IEEE Inf. Theory Applications Workshop, pp. 1–6.

[23] S. Srinivasa and M. Haenggi, “Distance distributions in finite uniformly
random networks: theory and applications,” IEEE Trans. Veh. Technol.,
vol. 59, no. 2, pp. 940–949, Feb. 2010.

[24] J. G. Andrews, R. K. Ganti, M. Haenggi, N. Jindal, and S. Weber, “A
primer on spatial modeling and analysis in wireless networks,” IEEE
Commun. Mag., vol. 48, no. 11, pp. 156–163, Nov. 2010.

[25] G. L. Stüber, Principles of Mobile Communication, 2nd edition. Kluwer
Academic Publishers, 2001.

[26] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochas-
tic Processes, 4th edition. McGraw Hill, 2002.

[27] H. Inaltekin, M. Chiang, H. V. Poor, and S. B. Wicker, “On unbounded
path-loss models: effects of singularity on wireless network perfor-
mance,” IEEE J. Sel. Areas Commun., vol. 27, no. 7, pp. 1078–1092,
Sep. 2009.

[28] A. Rabbachin, T. Q. S. Quek, S. Hyundong, and M. Z. Win, “Cognitive
network interference,” IEEE J. Sel. Areas Commun., vol. 29, no. 2, pp.
480–493, Feb. 2011.

[29] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integral and Series,
Volume 5: Inverse Laplace Transforms. Gordon and Breach Science
Publishers, 1992.

[30] A. M. Mathai and S. B. Provost, Quadratic Forms in Random Variables.
Marcel Dekker, 1992.

[31] J. Abate and W. Whitt, “The Fourier-series method for inverting trans-
forms of probability distributions,” Queueing Syst., vol. 10, pp. 5–88,
1992.

[32] M. K. Simon and M. S. Alouini, Digital Communication over Fading
Channels, 2nd edition. Wiley, 2005.

[33] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and
Products. Academic Press, 1980.

[34] L. Xiao and X. Dong, “Error performance of orthogonal signaling family
in Ricean-fading channels with maximal ratio combining,” IEEE Trans.
Veh. Technol., vol. 53, no. 6, pp. 1942–1947, Nov. 2004.

[35] Z. Wang and G. B. Giannakis, “A simple and general parametrization
quantifying performance in fading channels,” IEEE Trans. Commun.,
vol. 51, no. 8, pp. 1389–1398, Aug. 2003.

[36] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, Integrals and
Series: Elementary Functions. Gordon and Breach Science Publishers,
1986.

Luxmiram Vijayandran (S’08) received his
diplôme d’ingénieur at EFREI, Grandes Ecoles,
France, and the M.Sc. degree at CHALMERS, Swe-
den, in 2005 and 2006, respectively. He is in the pro-
cess of completing his Ph.D. in the Department of
Electronics and Telecommunications at the Norwe-
gian University of Science and Technology (NTNU)
in Trondheim, Norway, in 2012. Since November
2011, he has been with Thales Communication and
Security in France, conducting research on MAC
layer and physical layer issues. Before becoming a

Ph.D. candidate, he was with EADS Telecom and Thales in France from
January 2006 to May 2008. His research interests include optimization,
estimation theory, control theory, queueing theory, and cognitive radio in
general.

Prathapasinghe Dharmawansa (S’05-M’09) re-
ceived the B.Sc. and M.Sc. degrees in electronic and
telecommunication engineering from the University
of Moratuwa, Moratuwa, Sri Lanka, in 2003 and
2004, respectively, and the D.Eng. degree in infor-
mation and communications technology from the
Asian Institute of Technology, Thailand, in 2007. He
subsequently joined the Department of Electronic
and Computer Engineering, Hong Kong University
of Science and Technology (HKUST), as a Research
Associate. Since October 2011, he has been with the

Department of Communications and Networking, Aalto University School of
Electrical Engineering, Finland, as a Postdoctoral Researcher. His research
interests are in communications and signal processing, random matrix theory,
and multivariate statistics. He received the Best Paper Award in Communica-
tion Theory at the IEEE International Conference on Communications (ICC
2011) held in Kyoto, Japan.



1822 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 60, NO. 7, JULY 2012

Torbjörn Ekman was born in Västerȧs, Sweden, in
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