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Abstract—A comprehensive performance analysis framework
for dual-hop multiple-input multiple-output (MIMO) amplify-
and-forward (AF) relay networks with hop-by-hop beamforming
(i.e. both source and relay perform beamforming) is presented.
The system performance degradation due to practical trans-
mission impairments (i) feedback delays, (ii) channel estimation
errors and (iii) spatially-correlated fading is quantified. To this
end, closed-form expressions for the cumulative distribution
function of the end-to-end signal-to-noise ratio, its moment
generating function, the outage probability, and the average
bit error rate (BER) are derived. The asymptotic high SNR
approximations of the outage probability and average BER
are derived to obtain valuable system-design insights such as
the diversity order and array gain. In order to illustrate the
usefulness of our analysis, four applications, which employ dual-
hop MIMO relaying with hop-by-hop beamforming, are also
presented and analyzed. Furthermore, our analyses are validated
through Monte-Carlo simulations.

Index Terms—MIMO, amplify-and-forward, relay networks,
beamforming.

I. INTRODUCTION

COOPERATIVE dual-hop multiple-input multiple-output
(MIMO) relay networks are being investigated for

emerging wireless system standards such as IEEE 802.16m
and Long Term Evolution (LTE)-Advanced [1], [2]. Such
networks may employ transmit beamforming particularly be-
cause of its robustness against severe effects of fading [3]. In
dual-hop MIMO relay networks, this robustness is achieved
by steering the transmitted signal along the maximum eigen-
modes of the source-to-relay (S → R) and relay-to-destination
(R → D) hops. Nevertheless, a comprehensive performance
analysis of hop-by-hop beamforming (i.e. both source and
relay perform independent eigenmode beamforming) for dual-
hop MIMO amplify-and-forward (AF) relay networks, which
allows the use of all MIMO-enabled terminals and considers
practical transmission impairments such as spatially-correlated
fading, channel estimation errors, and feedback delays, is not
available in the literature.

Prior related research: Although beamforming (a.k.a.
maximal ratio transmission (MRT)) at the source has already

Paper approved by D. J. Love, the Editor for MIMO and Adaptive Tech-
niques of the IEEE Communications Society. Manuscript received September
29, 2010; revised August 24 and December 19, 2011.

This work has been presented in part at the IEEE Int. Conf. on Commun.
(ICC), Kyoto, Japan, Jun. 2011.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, AB, Canada T6G 2V4 (e-mail:
{amarasur, chintha, ardakani}@ece.ualberta.ca).

Digital Object Identifier 10.1109//TCOMM.2012.051012.100594

been studied for dual-hop AF MIMO relay networks [4]–
[8], these studies are limited to a single-antenna relay (R)
terminal. In [4], the performance of channel-assisted AF (CA-
AF) relay networks over independent Rayleigh fading chan-
nels is investigated. Reference [5] extends [4] by considering
spatially-correlated fading at the source (S) and destination
(D). Further, in [6], the performance of the system set-up in
[4] is studied over independent Nakagami-m fading channels.
Reference [7] investigates the performance of beamforming
for fixed-gain AF (FG-AF) relay networks over independent
Nakagami-m fading channels. In [8], the system set-up of [7]
is studied over spatially-correlated Rayleigh fading channels.

In addition to the above studies, [9] analyzes the perfor-
mance of dual-hop CA-AF beamforming and its equivalent
systems by using several antenna configurations at S, R and
D. However, in all these system set-ups, one or more terminals
are limited to single antenna setups. Moreover, [10] studies
the effect of multiple antennas at S on the outage probability
by using MRT for the S → R channel, and [11] extends
this study to investigate the effect of feedback delays on
MRT beamforming. Although the system setups in [10], [11]
employ multiple-antennas at S, both R and D are single-
antenna terminals. References [12]–[14] study designing of
MIMO precoding matrices for dual-hop MIMO relay networks
by using optimization theory. In [15], a power allocation
scheme is proposed for MIMO orthogonal frequency divi-
sion multiplexing (OFDM) AF relay networks systems with
beamforming. Moreover, in [16], beamforming is studied for
improving the spatial multiplexing gains of dual-hop MIMO
AF relay networks.

Motivation and our contribution: Therefore, the limitation
of all the previous studies [4]–[8], [10], [11] is the presence
of one or more single-antenna terminals, and beamforming is
done only at the source. In other words, the most general
case of all MIMO terminals where both the source and
the relay perform beamforming has not been treated before.
Furthermore, all the previous analyses except [11]1 make the
ideal assumption of the availability of perfect CSI. In our
work, this ideal assumption is replaced by more realistic
one, and thus, a much more general performance analysis
of beamforming in MIMO AF relay networks is presented.
Specifically, the transmission strategies proposed in [12]–[14]
do not provide mathematically tractable end-to-end signal-to-

1The analysis in [11] is limited to feedback delay effect only on S → R
for CA-AF relay networks with multiple-antenna S, and single-antenna R
and D.
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noise ratio (e2e SNR) expressions, and hence, no closed-form
performance metrics can be derived due to heavily involved
MIMO precoders at the source and relay resulted from the
complex optimization problems. Further, the studies in [12]–
[16] do not consider practical transmission impairments.

More specifically, in our system model, all three terminals,
S, R and D, are equipped with Ns, Nr and Nd antennas,
respectively. Our analysis in fact renders itself to study the
detrimental impact of practical transmission impairments; (i)
outdated channel state information (CSI) due to feedback de-
lays, (ii) channel estimation errors and (iii) spatially correlated
fading. The main contributions of our work can be listed as
follows:

1) A mathematically tractable e2e SNR expression is de-
rived and used to quantify the performance degradation
due to aforementioned transmission impairments.

2) A general closed-form expression for the cumulative
distribution function (CDF) of the e2e SNR is derived,
and thereby, the outage probability is evaluated.

3) The MGF of an upper bound of the e2e SNR is derived
in closed-form. A lower bound for the average bit
error rate (BER) of binary phase shift keying (BPSK)
is derived. These bounds are tight in the moderately
low-to-high SNR regime and in fact are asymptotically
exact, and hence, render them useful as benchmarks for
practical system design.

4) Moreover, a unified high SNR performance analysis
approach applicable to any hop-by-hop MIMO trans-
mission scheme (i.e., beamforming, transmit antenna
selection (TAS)/maximal ratio combining (MRC), trans-
mit/receive antenna pair selection, etc.), is presented and
used to obtain valuable system-design parameters such
as diversity order and array gain.

5) An asymptotically exact and tight outage probability
lower bound is derived by considering the arbitrarily-
correlated transmit and receive correlation matrices at
each terminal. In order to quantify the amount of
degradation (compared to the case of the uncorrelated
antennas) due to antenna correlation, the asymptotic
outage probability and average BER are also derived
for the correlated fading case.

6) The impact of the presence of the direct channel between
the source and the destination on the system perfor-
mance is studied by deriving a tight upper bound of the
e2e SNR and then evaluating an accurate approximation
of the average BER of BPSK.

7) In order to illustrate the usefulness of our analysis, four
direct applications are presented and analyzed as well.
Our results related to these applications are (i) the ca-
pacity bounds of MIMO beamforming under an adaptive
transmission, (ii) high SNR performance metrics and
ergodic sum-capacity of multiuser relay networks with
and without opportunistic user selection, respectively,
(iii) best relay selection networks, and (iv) multi-hop
relay networks.

The rest of this paper is organized as follows: Section II
presents the system and the channel model. In Section III, the
performance analysis is presented. Section IV provides four

applications of our analyses. Section V contains the numerical
and simulation results. Section VI concludes the paper. The
proofs are given in the Appendix.

Notations: Kν (z) is the Modified Bessel function of the
second kind of order ν [17, Eq. (8.407.1)]. J0(z) is the Bessel
function of the first kind of order zero [17, Eq. (8.402)].
2F1(α, φ; γ; z) is the Gauss Hypergeometric function [17, Eq.
(9.14.1)].En(μ) is the Exponential integral of order n [17, Eq.
(8.211.1)]. Q(z) is the Gaussian Q-function [18, Eq. (26.2.3)].
�{z} is the real part of z. ‖Z‖F is the Frobenius norm of Z.
A circular symmetric complex Gaussian random variable with
mean μ and variance σ2 is defined by z ∼ CN (μ, σ2). EZ{z}
is the expected value of z over the random variable Z . Tr(Z)
and [Z]i,j denote the trace and (i, j)-th element of matrix Z.

II. SYSTEM AND CHANNEL MODELS

We consider a dual-hop AF relay network (Fig. 1) with
MIMO-enabled S, R and D having Ns, Nr and Nd antennas,
respectively. The channel matrices S → R and R → D are
denoted by H1 and H2. The channel coefficient from the j-th
transmit antenna to the i-th receive antenna is denoted by hi,jl ,
for l = 1, 2 and is assumed to be independent and identically
distributed Rayleigh fading unless otherwise stated2; hi,jl ∼
CN (0, 1). The additive noise at the terminals is modeled as
complex zero mean white Gaussian noise. All the terminals
operate in the half-duplex mode, and the e2e data transmission
takes place in two time-slots [19]. The direct link S → D
is assumed to be unavailable unless otherwise stated3 due to
impairments such as heavy shadowing and path-loss.

A. Channel state information

In practical MIMO systems, the estimated channel matrices
are generally perturbed by addition of Gaussian errors due
to channel estimation errors. Moreover, the beamforming
vectors could be selected by using outdated CSI matrices
due to feedback delays. The channel matrices with practical
transmission impairments can be modeled as follows [20]–
[22]:

Hl(t) = ρlĤl(t− τl) +Ee,l +Ed,l, for l ∈ {1, 2}, (1)

where Ĥl(t − τl), for l = 1, 2 is the τl-delayed estimated
channel matrix with mean zero and variance (1−σ2

e,l) Gaus-
sian entries, and ρl is the normalized correlation coeffi-
cient for the τl-delayed feedback channel given by ρl =

E
{
ĥi,jl (t)[ĥi,jl (t−τl)]H

}
/(1−σ2

e,l). Here, Ee,l=Hl(t)−Ĥl(t)

is the channel estimation error matrix, independent with both
Ĥl(t) and Ed,l, with mean zero and variance σ2

e,l Gaussian
entries. The additional channel estimation errors perturbed by
the feedback delay are modeled by Ed,l=Ĥl(t)−ρlĤl(t−τl)
with mean zero and variance (1−σ2

e,l)(1−ρ2l ) Gaussian entries.

2The detrimental impact of correlated fading on the system performance
is studied in Section III-E. This scenario is separately treated because the
independent fading case cannot be obtained by substituting identity matrices
for double-correlation matrices in (12).

3The effect of the direct channel on the system performance is studied
separately in Section III-F as it does not lend itself to exact performance
analysis.
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The channel model in (1) can readily be expressed in a
general form as follows:

Hl = ϑlĤl + ξlEl, for l ∈ {1, 2}, (2)

where Hl and Ĥl are the actual and estimated channel matri-
ces, and El, which is independent with Ĥl, is the error matrix,
and all three have zero mean and unit variance i.i.d. Gaussian
entries. The parameters ϑl and ξl account for the channel
estimate quality and can be explicitly given for three cases: (i)
outdated CSI: ϑl = ρl and ξl =

√
1− ρ2l , (ii) channel estima-

tion errors: ϑl = 1/
√
1 + σ2

e,l and ξl =
√
σ2
e,l/(1 + σ2

e,l),
and (iii) both outdated CSI and channel estimation errors:
ϑl = ρl

√
1− σ2

e,l and ξl =
√
1− ρ2l + ρ2l σ

2
e,l.

B. End-to-end SNR

In the first time-slot, S transmits the symbol X , having
E
{[
|X |2

]}
= 1, by employing the transmit precoding vector

selected by using the imperfect CSI matrix Ĥ1. Then the
signal at R is combined by applying the receive filtering
vector, which is again selected by using Ĥ1, as

YR= ûH1

[√
P1H1v̂1X + n1

]
= ûH1

[√
P1

(
ϑ1Ĥ1+ξ1E1

)
v̂1X+n1

]
=ϑ1

√
P1λ̂1X+n̂R, (3)

where û1 and v̂1 are the transmit precoding and receive
filtering vectors4 at S and R, and selected by using the
imperfect channel matrix Ĥ1 as the first columns of Û1 and
V̂1, respectively, corresponding to the largest singular value
of Ĥ1. Here P1 is the transmit power at S and n̂R can be
considered as the effective noise component having mean zero
and variance σ2

n̂R
= P1ξ

2
1 + σ2

1 [22]. Furthermore, λ̂1 is the
largest eigenvalue of the Wishart matrix ĤH

1 Ĥ1.
In the second time-slot, R amplifies the received signal YR

with a gain G and forwards to D again by using beamforming.
The signal received at D, YD is thus given by

YD = ûH2 [GH2v̂2YR + n2] = Gϑ1ϑ2

√
P1λ̂1λ̂2X + n̂D, (4)

where P2 is the transmit power at R and n̂D is the effective
noise component having mean zero and variance σ2

n̂D
=

G2P1λ̂1ϑ
2
1ξ

2
2 + G2λ̂2ϑ

2
2σ

2
n̂R

+ G2ξ22σ
2
n̂R

+ σ2
2 [22]. Again,

the beamforming vectors û2 and v̂2 are selected by using
the imperfect channel matrix Ĥ2 as the first columns of Û2

and V̂2. Here, λ̂2 is the largest eigenvalues of Wishart matrix
Ĥ2Ĥ

H
2 . After some mathematical manipulations, the e2e SNR

γeq can be derived as

γeq=ϑ
2
1P1λ̂1ϑ

2
2λ̂2/(P1λ̂1ϑ

2
1ξ

2
2+λ̂2ϑ

2
2σ

2
n̂R
+ξ22σ

2
n̂R
+σ2

2/G
2) (5a)

The AF relay gain in (5a) is set to G=

√
P2/(P1λ̂1 + σ2

1),
and then the e2e SNR can be derived as

γeq = γ1γ2/(αγ1 + γ2 + β), (5b)

4The singular value decompositions of Ĥ1 and Ĥ2 are given by Ĥ1 =
Û1Σ̂1V̂H

1 and Ĥ2=Û2Σ̂2V̂H
2 . Here Σ̂1 and Σ̂2 are Nr×Ns and Nd×Nr

matrices having the largest singular values
√
λ1 and

√
λ2, as the first elements

on the main diagonals, respectively. Further, Û1, V̂1, Û2 and V̂2 are unitary
square matrices of sizes Nr×Nr , Ns×Ns, Nd ×Nd, and Nr ×Nr .

where α =
P2ξ

2
2ϑ

2
1+σ

2
2

ϑ2
1(P2ξ22+σ

2
2)

, and β =
P2ξ

2
2(P1ξ

2
1+σ

2
1)+σ2

1σ
2
2

(P1ξ21+σ
2
1)(P2ξ22+σ

2
2)

. Here,

γ1 = γ̄1λ̂1 and γ2 = γ̄2λ̂2 are the instantaneous SNRs of
S → R and R → D hops, where γ̄1 = P1ϑ

2
1/(P1ξ

2
1 + σ2

1)
and γ̄2 = P2ϑ

2
2/(P2ξ

2
2 + σ2

2). Furthermore, λ̂1 and λ̂2 are
the largest eigenvalues of the Wishart matrices Ĥ1Ĥ

H
1 and

Ĥ2Ĥ
H
2 , respectively.

Remark II.1: One important advantage of using hop-by-hop
beamforming is that it allows resolving all available eigen-
modes of both the first hop and the second hop. Although, we
only consider the dominant eigenmode transmission, one could
also use all the eigenmodes to improve the overall capacity.
Thus, eigenmode mapping and optimal power allocation can
now be performed.

III. PERFORMANCE ANALYSIS

This section presents the performance analysis. First, a
general expression for the CDF of e2e SNR is derived, which
is then used to derive the MGF, outage probability, and
average BER. These performance metrics provide valuable
insights into practical system-designs quantifying the adverse
effects of the outdated CSI, and channel estimation errors.
In particular, the impacts of spatially-correlated fading and
presence of a source-to-destination direct channel on the
system performance are studied. Moreover, in order to obtain
valuable system-design parameters, such as the diversity and
array gains, the asymptotic outage probability and average
BER are derived.

A. Statistical characterization of the end-to-end SNR

1) CDF of the e2e SNR: The general CDF of the e2e SNR
(5b) for dual-hop CA-AF relay networks with beamforming
is given by (see Appendix I for the proof)

Fγeq(x)=1−
min(Ns,Nr)∑

a=1

(Ns+Nr)a−2a2∑
b=|Ns−Nr|

min(Nr,Nd)∑
k=1

(Nr+Nd)k−2k2∑
l=|Nr−Nd|

×
l∑

m=0

m∑
u=0

b∑
v=0

2αu
(
m
u

)(
b
v

)
d1(a, b)d2(k, l)(k)

u+v+m+1
2

b! m!(a)
u+v−m−2b−1

2

× x
m+2b+u−v+1

2 (αx + β)
m−u+v+1

2

(γ̄1)
2b−u−v+m+1

2 (γ̄2)
u+v+m+1

2

e
−x

(
a
γ̄1

+αk
γ̄2

)

×Ku+v−m+1

(
2
√
akx(αx+β)/(γ̄1γ̄2)

)
, (6)

where the coefficients5 dl(i, j)|2l=1 satisfy dl(i, j) =∑min(N,M)
i=1

∑(N+M)i−2i2

j=|N−M| dl(i, j)=1 and can readily be com-
puted by using the efficient algorithm in [23].

2) MGF of the e2e SNR: The MGF is a useful statistic,
which can be used efficiently for unified performance analysis.
The MGF of an asymptotically exact upper bound of the e2e

5In fact, dl(i, j)|2l=1 is the coefficient of the term e−ixxj in the expansion
of d

dx
[Sl(x)], where Sl(x) is an al ×al Hankel matrix with elements given

by S(i,j)
l (x) = γ(bl − al + i + j − 1, x). Here, a1 = min(Ns, Nr),

a2 = min(Nr , Nd), b1 = max(Ns, Nr), and b2 = max(Nr , Nd) [22].
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Fig. 1. Hop-by-hop beamforming for a MIMO AF relay network

SNR is thus derived as (see Appendix II for the proof)

Mγub
eq
(s) = 1−

∑
a,b,k,l,m

m+b∑
u=0

2
(
m+b
u

)
d1(a, b)d2(k, l)

b! m!(a)
u−m−2b−1

2

× (αk)
u+m+1

2

(γ̄1)
2b−u+m+1

2 (γ̄2)
u+m+1

2

Jμ,ν,ψ,ω(s), (7a)

where the function Jμ,ν,ψ,ω(s) is given by

Jμ,ν,ψ,ω(s) =

√
π(2ω)νΓ(μ+ ν) Γ(μ− ν)

(ψ + ω)
μ+ν

Γ
(
μ+ 1

2

)
× s2F1

(
μ+ ν, ν +

1

2
;μ+

1

2
;
ψ − ω

ψ + ω

)
. (7b)

In (7a),∑
a,b,k,l,m =

∑min(Ns,Nr)
a=1

∑(Ns+Nr)a−2a2

b=|Ns−Nr|
∑min(Nr,Nd)

k=1∑(Nr+Nd)k−2k2

l=|Nr−Nd|
∑l
m=0, μ = m + b + 2, ν = u − m + 1,

ψ = s+ a/γ̄1 + αk/γ̄2, and ω = 2
√
aαk/(γ̄1γ̄2).

The probability density function (PDF) of γeq can readily
be derived by differentiating the CDF in (6) with respect to
x by using [17, Eq. (8.486.12)]. Further, the generalized SNR
moments γneq = E

{
γneq

}
can also be derived by substituting

(6) into γneq =
∫∞
0
nxn−1

(
1− Fγeq(x)

)
dx and by solving the

integral by using [17, Eqs. (6.621.3) and (6.643.3)]. However,
for the sake of brevity, the PDF and SNR moment results are
omitted.

B. Outage probability

The SNR outage probability6 is the probability that the
instantaneous e2e SNR, γeq, falls below a threshold γth. The
outage probability, Pout, can thus be obtained as Pout =
Pr(γeq ≤ γth) = Fγeq (γth), where Fγeq (γth) denotes the CDF
of γeq (6) evaluated at γth.

C. Average bit error rate of BPSK

In this section, a tight lower bound of the average BER of
BPSK is derived in closed-form. The receive signal, which
is post-processed by using the imperfect CSI matrices at the
destination is given by (4) and re-written as

YD = ûH2 [GH2v̂2YR + n2] = Gϑ1ϑ2

√
P1λ̂1λ̂2X + n̂D,

where n̂D is the effective noise component and is assumed
to be distributed as n̂D|λ̂1,λ̂2

∼ CN (0, σ2
n̂D

), where σ2
n̂D

=

6The information outage probability can be defined as the probability that
the instantaneous mutual information I falls below the target rate Rth;
Pr(I = 1

2
log (1 + γeq) ≤ Rth) = Fγeq (γth), where γth = 22Rth − 1.

G2P1λ̂1ϑ
2
1ξ

2
2 + G2λ̂2ϑ

2
2σ

2
n̂R

+ G2ξ22σ
2
n̂R

+ σ2
2 and σ2

n̂R
=

P1ξ
2
1 + σ2

1 .
The BER of BPSK conditioned on λ̂1 and λ̂2 can be derived

as follows:

Pe|λ̂1,λ̂2
=Pr (� (YD) < 0| X = 1)Pr (X = 1)

+Pr (� (YD) > 0| X = −1)Pr (X = −1) . (8a)

By assuming that the symbols are drawn equiprobably, con-
ditional BER can be further simplified as

Pe|λ̂1,λ̂2
= Pr (� (YD) < 0| X = 1) (8b)

Now, � (YD) is a Gaussian random variable with mean

Gϑ1ϑ2
√
P1λ̂1λ̂2 and variable

σ2
n̂D

2 . Thus, Pe|λ̂1,λ̂2
can be

alternatively presented as

Pe|λ̂1,λ̂2
= Q

(√
2G2ϑ21ϑ

2
2P1λ̂1λ̂2/σ2

n̂D

)
. (8c)

By using (5a) and (5b), the argument inside Q(·) can be further
simplified as

Pe|λ̂1,λ̂2
=Q

(√
γ̄1λ̂1γ̄2λ̂2/(αγ̄1λ̂1+γ̄2λ̂2+β)

)
=Q

(√
2γeq

)
,(8d)

where α , β and γeq are defined in (5b).
An asymptotically exact and tight lower bound of the

average BER of BPSK can be derived (see Appendix III for
the proof)

P̄ lbe =
1

2
− 1

2

∑
a,b,k,l,m

m+b∑
u=0

2
(
m+b
u

)
d1(a, b)d2(k, l)

b! m!(a)
u−m−2b−1

2

× (αk)
u+m+1

2

(γ̄1)
2b−u+m+1

2 (γ̄2)
u+m+1

2

I(μ, ν, ψ, ω), (9a)

In (9a), I(μ, ν, ψ, ω) is defined as

I(μ, ν, ψ, ω) =

√
π(2ω)νΓ(μ+ ν) Γ(μ− ν)

(ψ + ω)
μ+ν

Γ
(
μ+ 1

2

)
× 2F1

(
μ+ ν, ν +

1

2
;μ+

1

2
;
ψ − ω

ψ + ω

)
, (9b)

where μ = m+b+3/2, ν = u−m+1, ψ = 1+a/γ̄1+αk/γ̄2,
and ω = 2

√
aαk/(γ̄1γ̄2).

D. High SNR analysis

In this section, the asymptotic performance metrics for the
perfect CSI case (ρl = 1 and σe,l = 0) are derived in
order to obtain valuable system-design parameters such as
the diversity order (Gd) and array gain (Ga). These analytic
expressions in fact, render themselves to quantify the amount
of performance degradation due to the impact of outdated CSI,
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channel estimation errors and spatially correlated fading with
respect to perfect CSI case.

1) Asymptotic outage probability: As a direct insight of our
analysis, the asymptotic outage probability can be derived as
(see Appendix IV for the proof)

P∞
out=Ω(γth/γ̄)

Gd + o
(
γ̄−(Gd+1)

)
, (10a)

where Gd = Nrmin(Ns, Nd) and Ω is given by

Ω=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Γn1 (n1)

Γn1(m1+n1)k
NsNr
1

, Ns<Nd
Γn1(n1)

Γn1(m1+n1)k
NNr
1

+
Γn2(n2)

Γn2(m2+n2)k
NNr
2

, Ns=Nd=N

Γn2(n2)

Γn2(m2+n2)k
NdNr
2

, Ns>Nd.

(10b)

In (10b), Γa(b) =
∏a
i=1 Γ(b−i+1) is the normalized complex

multivariate gamma function. Further, m1 = max(Ns, Nr),
m2=max(Nr, Nd), n1=min(Ns, Nr), and n2=min(Nr, Nd).

2) Asymptotic average BER : At high SNRs, the average
BER of BPSK can be approximated as P̄∞

e ≈ (γ̄Ga)
−Gd ,

where Gd is the diversity order, and Ga is the array gain [24].
By using (10a) and the integral expression of P̄e in Section
III-C, the asymptotic average BER is derived as

P̄∞
e =

ΩΓ(Gd +
1
2 )

2
√
π(γ̄)Gd

+ o
(
γ̄−(Gd+1)

)
. (11a)

Now, by using (10a) and (11a), the diversity order and array
gain can be obtained as

Gd=Nrmin(Ns,Nd) and Ga=
[
ΩΓ(Gd+1/2)/(2

√
π)
]−1
Gd. (11b)

E. Impact of correlated fading among antenna elements

In this subsection, the impact of correlated fading among the
antenna elements of S, R and D on the system performance is
investigated7. Assume that H1 and H2 undergo flat spatially
arbitrary-correlated Rayleigh fading. Then H1 and H2 can be
decomposed according to the Kronecker correlation structure

as follows: H1 = Υ
1
2
1 H̃1Φ

1
2
1 and H2 = Υ

1
2
2 H̃2Φ

1
2
2 , where

Υ1 and Υ2 are the transmit correlation matrices at S and R,
and Φ1 and Φ2 are the receive correlation matrices at R and
D, respectively. Further, H̃1 ∼ CN (0Nr×Nr , INr ⊗ INs) and
H̃2 ∼ CN (0Nd×NrINd

⊗ INr ).
1) CDF of the e2e SNR: The exact CDF of the e2e SNR

is mathematically intractable. However, the CDF of an upper
bound of the e2e SNR, which is asymptotically exact at high
SNRs, can be derived. By using the SNR upper bound, γeq ≤
γub
eq = min (γ1, γ2) [25], [26], the CDF of γub

eq can be derived
as Fγub

eq
(x) = Fγ1(x)+Fγ2(x)−Fγ1(x)Fγ2(x), where Fγ1(x)

and Fγ2(x) are the CDFs of the first and second hop SNRs
and given by [27]

Fγl(x)=
(−1)nlΓnl

(nl)det(Υl)
n1−1det(Φl)

m1−1det
(
Ψl

(
x
γl

))
Δnl

(Υl)Δml
(Φl) (x/γl)

nl(nl−1)/2
,(12)

where Δk(·) is a Vandermonde determinant in the eigenvalues
of the k-dimensional matrix argument, and the (i, j)-th ele-
ment of Ψl (x) is given by [27, Eq. (1)]. By evaluating Fγub

eq
(x)

7Eq. (12) does not hold valid whenever the eigenvalues of the correlation
matrices are all equal. Due to this reason, the impact of correlated fading case
is separately treated, because the independent fading case cannot be directly
obtained from (12).

at γth, a tight outage probability lower bound can readily be
derived.

Specifically, this outage probability lower bound is signifi-
cantly tight in medium-to-high SNR regime, and in fact, is
asymptotically-exact at high SNRs [26]. Thus it serves as
an accurate benchmark for exact outage analysis of practical
systems (please refer to Fig. 5 for more details).

2) High SNR analysis: To quantify the amount of per-
formance degradation due spatially correlated fading, the
asymptotic outage probability and average BER are derived.
By following similar steps to those in Section III-D, the
asymptotic outage probability, when each channel undergoes
correlated fading, can be derived by replacing Ω in (10a) with

Ω′=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Γn1 (n1)

det (Υ1)m1det (Ψ1)n1Γn1(m1+n1)k
NsNr
1

, Ns < Nd
Γn1(n1)

det (Υ1)m1det (Ψ1)n1Γn1(m1+n1)k
NNr
1

+
Γn2(n2)

det (Υ2)m2det (Ψ2)n2Γn2(m2+n2)(k2)NNr , Ns=Nd=N
Γn2(n2)

det (Υ2)m2v det (Ψ2)n2Γn2(m2+n2)k
NdNr
2

, Ns > Nd.

(13)

The asymptotic average BER can readily be derived again
by substituting the above Ω′

1, Ω′
2 and Ω′

3 into (11a). Al-
though the diversity order of the system remains the same
(i.e., G′

d = Nrmin(Ns, Nd)) regardless of the amount of
correlation, the array gain significantly reduces with respect
to the uncorrelated fading by a factor of Ω/Ω′.

F. The effect of direct channel

In this subsection, the impact of the direct channel between
the source and the destination on the performance of hop-by-
hop beamforming for dual-hop MIMO AF relay networks is
studied. We consider same system model as in Fig. 1, but
in the first time-slot, the source transmits its signal to both
the relay and the destination by using a common transmit
precoding (beamforming) vector. In the second time-slot, the
relay transmits an amplified version of its received signal
to the destination again by using the beamforming vector.
By following similar steps to [12, Eq. (23)] and taking into
account the imperfect CSI matrices, the e2e SNR can be
derived as

γeq = γSD + γSRD, (14)

where the effective SNRs of the direct-path and the relayed-
path are given by γSD = P0ϑ

2
0||H0v̂||2/(P0ξ

0
2 + σ2

0) and
γSRD = γ1γ2/(αγ1 + γ∗2 + β), respectively. Here, γ1 =
P1ϑ

2
1||H1v̂||2/(P1ξ

1
2 + σ2

1) and γ∗2 = P2ϑ
2
2λ̂2/(P2ξ

2
2 + σ2

2),
where α, β, σ2, ϑ2, ξ2, and λ̂2 are defined in (2) and (5b).

Now the design objective is to maximize the e2e SNR
(14) by choosing the optimal transmit precoding vector v̂.
Unfortunately, it does not appear to have an analytic solution
for optimal v̂. However, in [12, Eqs. (24)-(26)], a similar
problem has been solved numerically as follows: the optimal
v̂ can be expressed as

v̂∗ = argmax
||v̂||=1

||H1v̂||2

α||H1v̂||2 + β+γ∗
2

P1

+
P0

γ∗2
||H0v̂||2. (15)

The maximum e2e SNR, which is obtained by substituting the
optimal v̂, can be written as

γ∗eq = γ∗0 + γ∗1γ
∗
2/(αγ

∗
1 + γ∗2 + β), (16)

where γ∗0 = P0||H0v̂
∗||2, γ∗1 = P1||H1v̂

∗||2, and γ̂∗2 is defined
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in (14). The e2e SNR in (16) does not render itself to exact
analytic outage and average BER expressions because the
optimal v̂ (i.e., v̂∗) is in fact can only be evaluated numerically.
As a remedy, we derive the MGF of an upper bound of the
e2e SNR in closed-form, and thereby, obtain average BER, its
high SNR approximation, array gain and diversity order.

1) Upper bound of the e2e SNR with direct channel: Let
us assume that three time-slots are used instead of traditional
two time-slot system model described in Section III-F. Thus,
in the first time-slot, the source transmits by using the transmit
precoding vector and the destination receives by using the
receive filtering vector8. These two vectors are the right and
left dominant singular vectors of the channel matrix between
the source and the destination. Similarly, in the second9 and
third time-slots, source-relay and relay-destination transmis-
sion is performed again by using beamforming. Finally, the
destination combines two independent signals received in
the first and the third time-slots by using the corresponding
MMSE (a.k.a weighted MRC) coefficients.

By following similar steps to those in Section II, the e2e
SNR of the aforementioned system model can readily be
derived as

γapprox
eq = γ0 + γ1γ2/(αγ1 + γ2 + β), (17)

where γ0 =
P0ϑ

2
0λ̂0

P0ξ20+σ
2
0

, γ1 =
P1ϑ

2
1λ̂1

P1ξ21+σ
2
1

and γ2 =
P2ϑ

2
2λ̂2

P2ξ22+σ
2
2

.
It can be clearly seen that the e2e SNR in (17) provides

a tight upper bound for the e2e SNR of the optimal system
model, γ∗eq , given in (16). Thus, we claim the aforementioned
relationship as follows:

γ∗eq = γ∗0 +
γ∗1γ

∗
2

αγ∗1 + γ∗2 + β
≤ γ0 +

γ1γ2
αγ1 + γ2 + β

= γubeq .(18)

2) The exact MGF of the upper bound of the e2e SNR with
direct channel: In this section, the MGF of the upper bound of
the e2e SNR with the direct path is derived in closed-form. To
this end, the PDF of the SNR of the direct channel, i.e., γ0 in
(18), is derived by using the statistics of the largest eigenvalue
of central Whishart matrices [3], [22] as follows:

fγ0(x) =

min(Ns,Nd)∑
c=1

(Ns+Nd)c−2c2∑
d=|Ns−Nd|

cd+1d0(c, d)

(γ̄1)d+1 (d)!
xde−

cx
γ̄0 . (19)

The MGF of γ0 can be readily obtained by evaluating
Mγ0(s) =

∫∞
0
fγ0(x) e

−sxdx as

Mγ0(s)=

min(Ns,Nd)∑
c=1

(Ns+Nd)c−2c2∑
d=|Ns−Nd|

cd+1d0(c, d)

(γ̄0)d+1

(
s+

c

γ̄0

)−(d+1)

(20)

The MGF of the relayed-channel SNR, γSRD = (γ1γ2/(αγ1+
γ2 + β), with β = 0 has already been derived in (7a). Now,
the MFG of the upper bound of the e2e SNR with the direct
path, γubeq , can readily be derived by substituting (20) and (7a)
into Mγub

eq
(s) = Mγ0(s)MγSRD(s).

3) Average BER with direct channel: The conditional error
probability (CEP) of BPSK can also be expressed in an
alternative form [28]: Pe|γ = Q(

√
2γ) = 1

π

∫∞
0 exp(−γ(s2 +

8During the first time-slot, the relay remains idle.
9During the second time-slot, the destination remains idle.

1))/(s2 + 1)ds. By using the variable transformation s2 +
2 = 2/(γ + 1), the average BER can be written as P̄e =
1
π

∫∞
0 Mγub

eq
(s2 + 1))/(s2 + 1)ds = 1

2π

∫ 1

−1 Mγub
eq
(2/(γ +

1))/(
√
1− γ2)dγ [28]. Then we use the accurate and com-

putationally efficient method proposed in [28], which uses
the Gauss-Chebyshev approximation [18] to obtain a compact
closed-form approximation for the average BER as follows:

P̄ approx
e =

1

2Np

Np∑
k=1

Mγub
eq

(
sec2 (θk)

)
+RNp , (21)

where Np is a small positive integer, θk = (2k − 1)π/4Np,
and RNp is the remainder term. RNp becomes negligible as
Np increases, even for small values such as 10.

4) High SNR approximation of average BER: In order to
determine the impact of the direct channel more insightfully,
the asymptotic average BER of BPSK at high SNR is derived,
and thereby, the diversity order and array gain are quantified
as follows (see Appendix V for the proof):

P̄∞
e =ΔΩ

′′
Γ
(
G

′′

d+1/2
)
/(2

√
π(γ̄)G

′′
d ) + o

(
γ̄−(G

′′
d +1)

)
, (22a)

where Δ and Ω
′′

are given by

Δ =

⎧⎪⎪⎨
⎪⎪⎩

Γ(NsNd+1)Γ(NsNr+1)
Γ(Ns(Nr+Nd)+1) , Ns < Nd

Γ(N2+1)Γ(NNr+1)
Γ(N(Nr+N)+1) , Ns = Nd = N

Γ(NsNd+1)Γ(NdNr+1)
Γ(Nd(Ns+Nr)+1) , Ns > Nd

(22b)

Ω
′′
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Γn0(n0)Γn1(n1)

Γn0(m0+n0)Γn1(m1+n1)(k0)
NsNdkNsNr

1

, Ns<Nd
Γn0(n0)

Γn0 (m0+n0)kN
2

0

[
Γn1(n1)

Γn1(m1+n1)k
NNr
1

+
Γn2(n2)

Γn2(m2+n2)k
NNr
2

]
, Ns=Nd=N

Γn0(n0)Γn2(n2)

Γn0(m0+n0)Γn2(m2+n2)k
NsNd
0 k

NdNr
2

, Ns>Nd.

(22c)

By using (22a), the diversity order and array gain can be
readily quantified as

G
′′

d =NsNd+Nrmin(Ns,Nd) and G
′′

a=

(
ΔΩ

′′
Γ(G

′′

d+
1
2)

2
√
π

)−1

G
′′
d

.(22d)

IV. APPLICATIONS

In this section, four applications, which employ MIMO hob-
by-hop beamforming, are presented. Specifically, our analyses
in Section III are used to study the performance of adaptive
transmission, multiuser relay networks, best relay selection
networks, and multi-hop networks.

A. Adaptive transmission with beamforming

In practice, a local feedback channel from the receiver to
the transmitter is employed for transmit beamforming. The
performance of such systems can be further improved by
using this feedback channel for adaptive transmission as well
[29]. In this section, three channel capacity upper bounds are
derived for (i) optimal power and rate adaptation, (ii) optimal
rate adaptation with constant transmit power, and (iii) channel
inversion with fixed rate.

1) Optimal power and rate adaptation: The channel capac-
ity under the optimal rate and power adaptation is given by
COPRA = B

2 ln(2)

∫∞
γ0

ln (x/γ0) fγeq(x) dx [30, Eq. (7)], where
B is the channel bandwidth, and γ0 is the optimal cutoff SNR
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below which the transmission is stopped. By using the PDF
of an e2e SNR upper bound fγub

eq
(x), a tight capacity upper

bound is derived as (see Appendix VI for the proof)

CubOPRA =
B

2 ln 2

∑
a,b,c,k,l,m

d1(a, b)d2(k, l)γ
c+m+1
0 ackm

(c)! (m)!γ̄c1γ̄
m
2

× (φγ0Jc+m+1(φγ0)−(c+m)Jc+m(φγ0)) , (23)

where
∑

a,b,c,k,l,m =
∑min(Ns,Nr)
a=1

∑(Ns+Nr)a−2a2

b=|Ns−Nr|
∑b

c=0∑min(Nr,Nd)
k=1

∑(Nr+Nd)k−2k2

l=|Nr−Nd|
∑l

m=0, φ = a/γ̄1 + k/γ̄2 and

Jn(μ) = Γ(n)μ−n∑n−1
j=0 Γ(j, μ)/(j)!. The optimal cutoff

SNR satisfies
∫∞
γ0
(1/γ0−1/x)fγub

eq
(x) dx=1 [30, Eq. (8)] and

can be estimated numerically (see Appendix VI).
2) Optimal rate adaptation with constant

transmit power: The channel capacity under rate
adaptation with constant transmit power is given by
CORA = B

2 ln(2)

∫∞
0

ln (1 + x)fγeq(x) dx [30, Eq. (29)]. In
fact, CORA is the ergodic capacity with full CSI at the
destination. Again, by using fγub

eq
(x), a tight capacity upper

bound is derived by using [17, 3.383.10] as

CubORA =
B

2 ln 2

∑
a,b,k,l

(
Θ1I1(φ)−

b∑
c=1

Θ2 (cIc(φ) − φIc+1(φ))

−
l∑

m=1

Θ3 (mIm(φ) − φIm+1(φ))

−
b∑
c=1

l∑
m=1

Θ4 ((c+m)Ic+m(φ)− φIc+m+1(φ))

)
,(24)

where
∑

a,b,k,l =
∑min(Ns,Nr)
a=1

∑(Ns+Nr)a−2a2

b=|Ns−Nr|
∑min(Nr,Nd)

k=1∑(Nr+Nd)k−2k2

l=|Nr−Nd| , Θ1=d1(a, b)d2(k, l)φ, Θ2=
d1(a,b)d2(k,l)

(c)!

(
a
γ̄1

)c
,

Θ3 = d1(a,b)d2(k,l)
(m)!

(
k
γ̄2

)k
, Θ4 = d1(a,b)d2(k,l)

(c)! (m)!

(
a
γ̄1

)c (
k
γ̄2

)k
and In(μ) = Γ(n)eμ

∑n
i=1

Γ(−n+i,μ)
μi .

3) Truncated channel inversion with fixed rate:
The channel capacity under truncated channel
inversion with fixed rate is given by CTCIFR =

B
2 ln(2) ln

(
1 +

[∫∞
γ0
x−1fγeq (x) dx

]−1
)
F̄γub

eq
(γ0), where

F̄γub
eq
(γ0) is the complementary CDF of γubeq evaluated at γ0.

A tight upper bound for CTCIFR can be derived by using the
closed-form expressions for

∫∞
γ0
x−1fγub

eq
(x) dx and F̄γub

eq
(γ0)

given in (53) and (54), respectively.

B. Multiuser relay networks

1) Multiuser relay networks without user scheduling: We
consider a multiuser AF relay network having MIMO-enabled
single-source, single-relay and L destinations (Dl|Ll=1)10. Both
the source and relay are equipped with Ns and Nr antennas
whereas the L destinations are single-antenna terminals. This
scenario arises in practice, where the base-station communi-
cates with multiple single-antenna mobile terminals with the
aid of an infrastructure relay constituting a downlink broadcast
channel.

In the first time-slot, S transmits Ns parallel data streams
by using transmit precoding matrix Û1 and R receives it by

10It is assumed that Nr ≥ Ns and Nr > L.

using the receiver filtering matrix V̂1 as11

YR = ÛH
1

[√
P1H1V̂1X + n1

]
=

√
P1ϑlΣ̂1X + n̂R, (25)

where n̂R ∼ CN (0, (P1ζ
2
1 + σ2

1)INr ) is the effective noise
vector [22].

In the second time-slot, the relay broadcast YR to L
destinations by using transmit zero forcing (ZF) beamforming
[31]. The received symbol vector at L destinations is given by

YD = ĜRH2ŴRΠRYR + nL

=
√
P1ĜRϑ1

(
ϑ2IL + ζ2E2ŴR

)
ΠΣ̂1X

+ ĜR

(
ϑ2IL + ζ2E2ŴR

)
ΠRn̂R + nL, (26)

where ŴR is the transmit ZF beamformer constructed by
taking the pseudo-inverse of Ĥ2 as ŴR = ĤH

2 (Ĥ2Ĥ
H
2 )−1

[31]. In (26), ΠR is a L × Nr permutation matrix12,
which ensures only L data streams pertaining to L des-
tinations are transmitted by the relay. Moreover, ĜR is
the long-term power normalizing factor introduced by R
and given by Ĝ2

R =
√
(P2/((P1ζ21 + σ2

1)T1 + P1ϑ22T2),
where T1 = Tr{E

[
ŴRŴ

H
R

]
} = L/(Nr − L) and T2 =

Tr{E
[
ŴRΣ̂1Σ̂

H
1 ŴH

R

]
}. In (26), nL is the L×1 Gaussian

noise vector with mean zero and variance σ2
2 .

Eq. (26) clearly reveals that the orthogonality of the transmit
ZF does not hold due to the imperfect CSI. In this context,
the received signal at the l-th destination is given by

yD,l =
√
P1ĜRϑ1xl

(
ϑ2

√
λ̂1 + ζ2

[
E2ŴRΠΣ̂1

]
l,l

)

+
√
P1ĜRϑ1ζ2

L∑
j �=l,l=1

xj

[
E2ŴRΠΣ̂1

]
j,l

+ ĜR

[(
ϑ2IL + ζ2E2ŴR

)
ΠRn̂R

]
l
+ [nL]l. (27)

The first and second terms of (27) account for the desired
signal and the inter-user interference, respectively, and the
remaining terms represent the effective noise. Thus, the signal-
to-interference ratio (SINR) at the l-th destination can be
derived as

γ(l)eq =

P1ϑ
2
1

∣∣∣∣
(
ϑ2
√
λ̂1 + ζ2

[
E2ŴRΠΣ̂1

]
l,l

)∣∣∣∣2
N + I

, (28)

where N + I is given by

N + I = P1ϑ
2
1ζ

2
2

L∑
j �=l,l=1

∣∣∣∣[E2ŴRΠΣ̂1

]
j,l

∣∣∣∣2

+

(
ϑ22+ζ

2
2

[
E2ŴRŴ

H
REH2

]
l,l

)(
P1ζ

2
1+σ

2
1

)
+σ2

2/Ĝ
2
R. (29)

Unfortunately, statistical characterization of (28) appears
mathematically intractable. Thus, the ergodic sum capacity
of the multi-user MIMO relay network under imperfect CSI

11The beamforming matrices Û1 and V̂1 are formulated by using the
imperfect CSI, i.e., Ĥ1 = Û1Σ̂1V̂H

1 .
12The permutation matrix, Πi, can be constructed by horizontally concate-

nating a L×L permutation matrix and a L×(NR−L) zero matrix.
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is investigated by using Monte-Carlo simulations13. However,
(28) can be simplified under the perfect CSI assumption (i.e.,
ϑi = 1 and ζi = 0 for i ∈ {1, 2}) to obtain the e2e SNR of
the signal received at the l-th destination as

γ(l)eq =
γ̄1λl

T1

γ̄2
+ γ̄1T2

γ̄2
+ 1

, (30)

where λl is the l-th largest eigenvalue of the Wishart matrix
H1H

H
1 .

In order to highlight the significance of (30), the ergodic
sum capacity of a multiuser MIMO relay network with Ns =
3, Nr = 3 and L = 2 is derived as (see Appendix VII for the
proof)

C =
1

2 ln (2)

[
5∑

n=1

a(n)

γ̄eq
In

(
γ̄−1
eq

)
− 3

γ̄eq
I1

(
3

γ̄eq

)]
, (31)

where a = (3,−6, 6,−2, 0.25), γ̄eq = γ̄1
T1
γ̄2

+
γ̄1T2
γ̄2

+1
and

In(μ) = Γ(n)eμ
∑n

i=1
Γ(−n+i,μ)

μi .
2) Multiuser relay networks with user scheduling: We con-

sider a multiuser AF relay network having beamforming with
MIMO-enabled single-source, single-relay and L destinations
(Dl|Ll=1) equipped with Ns, Nr and Ndl antennas, respec-
tively. This network set-up can be seen in practice, where a
base-station is communicating with L destinations with the
aid of a relay under a multiuser schedule. The SNR optimal
scheduling selects the user with the largest e2e SNR. The e2e
SNR of the best user is thus given by γMRN

eq = γγl∗
γ+γl∗+1 , where

γ is the S → R link SNR, and γl∗ is the R → Dl∗ link SNR.
The best destination Dl∗ is selected as l∗ = argmax

1≤l≤L
(γl). This

multiuser scheduling algorithm can further be simplified as
l∗ = argmax

1≤l≤L
(λl), where λl is the largest eigen value of the

channel matrix between the relay and the l-th destination.
Let us consider only the high SNR performance metrics.

The asymptotic outage probability and average BER of BPSK
can readily be derived by substituting ΩMRN in (32) into (10a)
and (11a), respectively.

ΩMRN=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Γn(n)
Γn(m+n)kNsNr , Ns<

∑L
l=1Ndl(

Γn(n)
Γn(m+n)(k)NNr

+
∏L
l=1

[
Γnl

(nl)

Γnl
(ml+nl)k

NNl
l

])
, Ns=

∑L
l=1Ndl =N∏L

l=1

[
Γnl

(nl)

Γnl
(ml+nl)k

Ndl
Nr

l

]
, Ns >

∑L
l=1Ndl

(32)

The diversity order of multiuser relay scheduling is given by

GMRN
d = Nrmin

(
Ns,

L∏
l=1

Ndl

)
. (33)

C. Best relay selection networks

Consider a MIMO beamforming CA-AF relay network
with best relay selection having a single source, Q number
of potential relays (R|Qq=1), and a single destination, each
equipped with Ns, Nrq and Nd antennas, respectively. In

13It is worth noticing that even for single-hop MIMO transmit ZF beam-
forming systems, the exact analysis under imperfect CSI appears to be
mathematically intractable [31].

best relay selection, the Rq∗ -th relay is selected as q∗ =

argmax
1≤q≤Q

(
γs,RqγRqD

γs,Rq+γRq,D+1

)
, where γs,Rq and γRq,D are S →

Rq and Rq → D channel SNRs. The asymptotic outage
probability can be derived as

P∞
out =

(
Q∏
q=1

Ωq

)(
γth
γ̄

)∑Q
q=1 Gdl

+o
(
γ̄−(

∑Q
q=1 Gdl

+1)
)
, (34)

where Ωq can be obtained by replacing Nr of Ω in (10a) by
Nrq , and Gdl = Nrq min(Ns, Nd). Similarly, the asymptotic
BER of BPSK is given by

P̄∞
e =

(∏Q
q=1 Ωq

)
Γ(GBRS

d + 1
2 )

2
√
π(γ̄)G

BRS
d

+ o
(
γ̄−(GBRS

d +1)
)
, (35)

where the diversity order is GBRS
d = min (Ns, Nd)

∑Q
q=1Nrq .

D. Multi-hop MIMO AF relay networks

Consider a L-hop (L ≥ 2) MIMO beamforming relay
network having L + 1 terminals each equipped with Nl|L+1

l=1

antennas. The asymptotic outage probability can be derived as
follows:

P∞
out,MH =

∑
l

Θl

Gdlk
Gdl

l

(
γth
γ̄

)GMH
d

+ o
(
γ̄−(GMH

d +1)
)
,(36)

where l ∈ {l|Gdl = min
1≤l≤L

(NlNl+1) , 1 ≤ l ≤ L}, kl = γ̄l/γ̄,

and GMH
d = min

1≤l≤L
(Gdl). Here, Gdl is the diversity order of

the l-th hop; Gdl = NlNl+1. Here, Θl =
(NlNl+1)ΓUl

(Ul)

ΓUl
(Ul+Vl)

,
where Ul = min(Nl, Nl+1), Vl = max(Nl, Nl+1). Similarly,
the asymptotic BER of BPSK can be derived as

P̄∞
e,MH=

Γ
(
GMH
d + 1

2

)
2
√
πGMH

d (γ̄)G
MH
d

∑
l

Θl

(kl)
Gdl

+ o
(
γ̄−(GMH

d +1)
)
.(37)

By using (37), the diversity order and the array gain can be
obtained as

GMH
d = min

1≤l≤L
(NlNl+1) and GMH

a =

[
Γ
(
GMH
d + 1

2

)
2
√
πGMH

d

∑
l

Θl

k
Gdl

l

]−1

GMH
d

. (38)

The overall diversity order is thus governed by the hops having
the lowest diversity orders.

V. NUMERICAL RESULTS

This section presents the numerical results and verifies
our analysis through Monte-Carlo simulations. To capture the
effect of the network geometry, the average SNR of the i-th
hop is modeled by γ̄i = γ̄ (L0/Li)

�, for l ∈ {1, 2}, where
γ̄ is the average transmit SNR, L0 is the reference distance,
and � is the path-loss exponent. The distances between the
terminals S → R, and R → D are denoted by L1 and L2,
respectively.

1) Impact of feedback delays and channel estimation er-
rors on the outage probability: In Fig. 2, the exact outage
probability is plotted for Ns = 3, Nr = 2 and Nd = 3
antenna set-up. The exact and asymptotic outage curves for
the perfect CSI (ρl = 1 and σ2

e,l = 0) are plotted as a
benchmark. Specifically, in Fig. 2, the impact of both the
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Fig. 2. The impact of outdated CSI and channel estimation errors on
the outage probability of MIMO beamforming AF relay networks. The hop
distances are L1 = 2L2 and the path-loss exponent is � = 2.5.

outdated CSI due to feedback delays and channel estimation
errors on the outage probability is shown. The beamforming
vectors at S, R and D are selected based on the outdated CSI
received via the local feedback channels R→ S and D → R
with time delays τ1 and τ2. Moreover, as per (1), the channel
estimates are perturbed by Gaussian errors with variances σ2

e,1

and σ2
e,2. The analysis and simulations are obtained by using

the channel model given in (1). Several outage curves are
obtained by changing ρ1 and ρ2, where they are related to the
time delays by following Clarke’s fading model14. The outage
performance degrades significantly even when the feedback
channels and channel estimates experience slight time delays
or/and channel estimation errors, respectively. In fact, the
achievable diversity gain diminishes completely as the time
delay and/or the channel estimation error variance increase in
either the R → S or D → R feedback channel. The Monte-
Carlo simulation points verify that our analysis is accurate.

2) Impact of channel estimation errors on the average
BER: In Fig. 3, the BER of BPSK is plotted for Ns = 3,
Nr = 2 and Nd = 3 antenna set-up. The BER curve
of the perfect CSI (σ2

e,l = 0) is plotted as a benchmark.
In particular, the asymptotic BER shows that the system
achieves the full diversity order (Gd = 4), and thus verifying
our diversity analysis. Specifically, Fig. 3 depicts the effect
of channel estimation errors on the BER of BPSK. The
channels S → R and R → D are modeled by using (1).
Even a slight estimation error in either channel degrades the
BER performance significantly. When the estimation error is
assumed to be fixed, the BER curves exhibit error floors as

14For Clarke’s model, ρ1 = J0(2πf1τ1) and ρ2 = J0(2πf2τ2), where
f1 and f2 are the Doppler frequencies, and τ1 and τ2 are the feedback delays.
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Fig. 3. The impact of channel estimation errors on the average BER of
BPSK of MIMO beamforming AF relay networks. The hop distances are
L1 = 0.75L2 and the path-loss exponent is � = 2.5.

the average first hop SNR increases. However, in practice,
the estimation errors are inversely propositional to the pilot
symbol SNR, σ2

e,l ∝
(
Ep/σ

2
l

)
, for l ∈ {1, 2}, where Ep is

the pilot symbol energy, and σ2
l is the noise variance [22].

Specifically, when the estimation-error variance decreases as
the SNR of the data symbols increases (the pilot symbols
have the same energy as the data symbols), the error floors
do not occur and the achievable diversity order is likely to
be persevered; however, the array gain is severely degraded.
As observed with the outage probability, the relays having
the knowledge of σ2

e,l and ρl outperform the relays having
no access to σ2

e,l and ρl in terms of the average BER. The
tightness between the analytical lower bounds and the exact
Monte-Carlo simulations demonstrates the accuracy of our
analysis.

3) Impact of both channel estimation errors and outdated
CSI on the average BER: In Fig. 4, the effect of both outdated
CSI and channel estimation errors is shown by using the chan-
nel model (1). Fig. 4 clearly reveals that their combined effect
degrades the system performance more than their individual
effects. Monte-Carlo simulations demonstrate the accuracy of
the channel model in (1), as well as our analysis.

4) Impact of correlated fading on the outage probability:
Fig. 5 shows the effect of correlated fading among the anten-
nas at S, R and D on the outage probability. The transmit and
receive arbitrary correlation matrices Υ1, Υ2, Ψ1 and Ψ2 for
uniform linear antenna arrays at S, R and D are constructed
by using [32, Eq. (4)]. The amount of spatial correlation
between adjacent antenna elements can thus be quantified by
using their relative antenna spacing (l1, l2), angular spreads
(σ2
as,1, σ

2
as,2), and the angle of arrival or departure (θ1, θ2).

Three different correlation scenarios are obtained as (a) high
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Fig. 4. The impact of both outdated CSI and the channel estimation errors
on the average BER of BPSK of MIMO beamforming AF relay networks.
The hop distances are L1 = L2 and the path-loss exponent is � = 2.5.
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correlation: (l1 = l2 =0.2, σ2
as,1 =σ2

as,2 = π/24), (b) medium
correlation: (l1 = l2 = 0.5, σ2

1 = σ2
2 = π/18), and (c) low

correlation: (l1= l2=0.8, σ2
as,1=σ

2
as,2=π/12). Since l1 and

l2 are the relative antenna spacing, and σ2
as,1 and σ2

as,2 are the
angular spreads, smaller values of l1, l2, σ2

as,1 and σ2
as,2 result
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Fig. 6. The impact of direct channel on the average BER of BPSK
of MIMO beamforming AF relay networks. The hop distances are L1 =
L2, and the path-loss exponent is � = 2.5.

in higher spatial correlation [32]. The higher correlation effects
at S, R and D degrade the outage performance significantly.
In fact, at 10−5 outage probability, a 14 dB loss is incurred
when the high correlation fading in effect over the uncorrelated
fading. The asymptotic BER curves reveal that the amount of
correlation does not affect the achievable diversity order, but
the array gain is severely affected by higher correlation. Our
outage lower bounds are not only tight in the moderate-to-high
SNR regime but also asymptotically exact at high SNRs, and
hence, may render then useful in practical system designs.
The exact outage curves are plotted by using Monte-Carlo
simulations.

5) Impact of the direct channel: In Fig. 6, the effect of the
presence of a direct channel between S and D on the average
BER of BPSK is studied. In particular, two sets of BER curves,
(i) direct channel is included, and (ii) direct channel is ignored,
are plotted for comparison purposes. The asymptotic BER
curves in Fig. 6 clearly reveal that the presence of a direct
channel improves the achievable diversity order considerably.
For example, at 10−5 BER, the system with direct channel
provides a 8 dB relative gain over the system without direct
channel. Moreover, the adverse effect of channel estimation
errors on the BER is shown. Specifically, the exact BER curves
are plotted by using (16), which has already been reported in
[12]. Further, the lower bound, which is plotted by using (21),
is significantly tight in low-to-high SNR regime to the exact
BER in (16), and hence, verifies our bounding technique given
in (18) and its computational accuracy.

6) Capacity bounds for adaptive transmission: Fig. 7
shows the performance of adaptive transmission for MIMO
beamforming AF relay networks in terms of channel capacity.
The exact capacity curves are plotted by using Monte-Carlo
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Fig. 7. The capacity bounds of MIMO beamforming AF relay
networks with adaptive transmission. The hop distances are L1 =
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simulations whereas the upper bounds are plotted by using
(23), (24) and (53). The optimal power and rate adaptation
provides the highest capacity gain whereas the truncated
channel inversion performs the worst in comparison with the
optimal rate adaptation with fixed transmit power. Fig. 7 also
reveals that the presence of feedback delays and channel
estimation errors causes severe detrimental impact on the
capacity bounds. Our capacity upper bounds are relatively
tight in the entire SNR regime and can be used to obtain
valuable system-design insights.

7) Sum capacity of Multiuser relay networks (MRN) with-
out user scheduling: In Fig. 8, both the sum capacity and
the individual capacity of MRN without user scheduling is
plotted. The system set-up consists of a source and a relay,
both equipped with three antennas, and two single antenna
destinations. Since the individual e2e SNR is solely governed
by the ordered singular values of the first hop channel matrix,
the individual capacity of destinations vary accordingly. Fig.
8 clearly reveals that our system set-up provides significant
gains in terms of the ergodic sum capacity under the perfect
CSI. Counter intuitively, imperfect CSI due to feedback delays
has a severe detrimental impact on the system capacity. This
observation is not surprising as the imperfect CSI for transmit
ZF beamforming results in inter-user interference.

8) MRN with user scheduling, best relay selection (BRS)
networks and multi-hop relay networks: Fig. 9 shows the
BPSK average BER of two network scenarios: (i) MRN and
(ii) BRS network. The exact BER curves are plotted by
using Monte-Carlo simulation results, and the asymptotic BER
curves are plotted by using the results in Sections IV-B and
IV-C. Two MRN set-ups are considered, (i) Ns=2, Nr=1 and
Ndl =2 for l ∈ {1, 2, 3}, and (ii) Ns=2, Nr=2 and Ndl =2
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Fig. 8. The sum capacity of multiuser relay networks without user
scheduling. The source and relay are equipped with Ns = 3, and Nr = 3
antennas. Two single-antenna destinations are considered. The hop distances
are L1 = 2L2 and the path-loss exponent is � = 2.5.

for l ∈ {1, 2, 3}. Similarly, two BRS network set-ups are also
considered: (i) Ns=2, Nd=2 and Nrq =1 for q ∈ {1, 2, 3},
and (ii) Ns = 2, Nd = 2 and Nrq = 2 for q ∈ {1, 2, 3}. In
both the MRN and the BRS cases, the corresponding set-
up (ii) always outperforms the set-up (i) because of set-up
(ii)’s higher number of antennas at the relay terminals. In Fig.
10, the exact and asymptotic BER curves of four-hop MIMO
beamforming relaying are plotted to verify our analysis in
Section IV-D. Our asymptotic BER curves accurately reveal
the diversity order and array gains of all three systems.

VI. CONCLUSION

The performance of dual-hop MIMO AF relay networks
with hop-by-hop beamforming was studied. To this end, the
outage probability, average BER and ergodic capacity were
derived. The performance impact of spatially-correlated fad-
ing, outdated CSI and channel estimation errors was derived,
thereby quantifying the amount of performance degradation.
Our results show that these practical transmission impairments
result in significant performance degradations. As well, the
impact of a presence of the direct channel between the source
and the destination was studied, and the resulting performance
improvement was quantified. Specifically, valuable system-
design parameters such as the diversity order and array gains
were derived by using our asymptotic analysis of performance
metrics. Furthermore, four applications of our main results; (i)
adaptive transmission with beamforming, (ii) multiuser relay
networks, (iii) best relay selection networks, and (iv) multi-
hop relay networks were presented to illustrate the usefulness
and applicability. The analytical results were validated through
Monte-Carlo simulations. Our analytical and simulation results
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Fig. 9. The average BER of BPSK for multiuser relay networks and best
relay selection networks with MIMO beamforming AF relay networks. The
hop distances are L1 = 2L2 and the path-loss exponent is � = 2.5.

provide valuable insights for designing practical dual-hop
MIMO relay networks with beamforming.

APPENDIX I
PROOF OF THE CDF OF END-TO-END SNR

The CDF of γeq in (5b) can be derived as follows:
Fγeq(x) = Pr(γ1γ2/(αγ1 + γ2 + β) ≤ x) = Fγ1(x) +∫∞
x

Pr(γ2 ≤ (αy + β)x/(y − x)) fγ1(y) dy. By using a vari-
able change z = y−x, Fγeq(x) can be expressed in a compact
form as Fγeq(x)=1−

∫∞
0
F̄γ2([α(x+ z) + β]x/z)fγ1(z+x)dz,

where fγ1(x) is the PDF of γ1 and F̄γ2(x) is the complemen-
tary cumulative distribution function (CCDF) of γ2. In order
to derive Fγeq(x), one needs the closed-form statistics of λ̂1
and λ̂2, the largest eigenvalues of the central Wishart matrices,
Ĥ1Ĥ

H
1 and Ĥ2Ĥ

H
2 , respectively. By using [3], [22], fγ1(x)

can be obtained as

fγ1(x) =

min(Ns,Nr)∑
a=1

(Ns+Nr)a−2a2∑
b=|Ns−Nr|

ab+1d1(a, b)

(γ̄1)b+1 (b)!
xbe

− ax
γ̄1 . (39)

Similarly, F̄γ2(x) can readily be derived as

F̄γ2(x)=

min(Nr,Nd)∑
k=1

(Nr+Nd)k−2k2∑
l=|Nr−Nd|

l∑
m=0

kmd2(k, l)

(γ̄2)m (m)!
xme

− kx
γ̄2 , (40)

where d1(a, b) and d2(k, l) are defined in (6). By substituting
(39) and (40) into the integral representation of Fγeq(x) and
evaluating it using [17, Eq. (3.471.9)], the desired result (6)
can be derived.
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Fig. 10. The average BER of BPSK for a four-hop MIMO
beamforming AF relay network. The hop distances are L =
[0.25L0, 0.15L0, 0.20L0, 0.40L0] and the path-loss exponent is � = 2.5.

APPENDIX II
PROOF OF THE MGF OF END-TO-END SNR

The MFG of the e2e SNR can be derived as follows:

Mγeq(s)=

∫ ∞

0

e−sxfγeq(x) dx=1−
∫ ∞

0

se−sx
[
1−Fγeq(x)

]
dx. (41)

However, the integral resulting by substituting (6) into (41)
does not render itself to a closed-form solution. Hence an
upper bound of the e2e SNR, which lends itself to analytic
MGF expression is formulated as [33]

γeq =
γ1γ1

αγ1 + γ2 + β
≤ γ1γ1
αγ1 + γ2

= γubeq . (42)

Specifically, γubeq in (42) provides asymptotically exact and
tight SNR bound for γeq in moderate-to-high SNR regime
[26], [33]. Now by substituting (6) with β = 0 into (41), a
single-integral expression is obtained as

Mγub
eq
(s) = 1−

∑
a,b,k,l,m

m+b∑
u=0

2
(
m+b
u

)
d1(a, b)d2(k, l)

b! m!(a)
u−m−2b−1

2

× (αk)
u+m+1

2

(γ̄1)
2b−u+m+1

2 (γ̄2)
u+m+1

2

Jμ,ν,ψ,ω(s), (43a)

where the integral Jμ,ν,ψ,ω(s) is given by

Jμ,ν,ψ,ω(s)=

∫ ∞

0

sxm+b+1e
−x

(
s+ a

γ̄1
+ k

γ̄2

)
Ku−m+2

(
2x

√
kaα

γ̄1γ̄2

)
dx.

(43b)

In (43b), μ, ν, ψ, and ω are defined as μ = m + b + 2,
ν = u−m+ 1, ψ = s+ a

γ̄1
+ αk

γ̄2
, and ω = 2

√
kaα/(γ̄1γ̄2),

respectively. Now, Jμ,ν,ψ,ω(s) can be solved by using [17, Eq.
(6.621.3)] as in (7a).
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APPENDIX III
PROOF OF THE BER OF BPSK

The average BER, P̄e, can be derived by averag-
ing the conditional BER over the SNR PDF as P̄e =∫∞
0 Q

(√
2γ

)
fγeq(γ) dγ. Alternatively, P̄e can also be written

as P̄e = 1/2 − 1/2
√
1/π

∫∞
0
γ−

1
2 e−γ

[
1−Fγeq(γ)

]
dγ. A tight

and asymptotically exact lower bound of the average BER of
BPSK can be derived by substituting (6) with β = 0 into the
integral representation of P̄e as follows15 :

P̄ lbe =
1

2
− 1

2

√
1

π

∑
a,b,k,l,m

m+b∑
u=0

2
(
m+b
u

)
d1(a, b)d2(k, l)

b! m!(a)
u−m−2b−1

2

× (αk)
u+m+1

2

(γ̄1)
2b−u+m+1

2 (γ̄2)
u+m+1

2

I(μ, ν, ψ, ω), (44a)

where the integral function I(μ, ν, ψ, ω) is given by

I(μ, ν, ψ, ω)=

∫ ∞

0

xm+b+ 1
2 e
−x

(
1+ a

γ̄1
+ k

γ̄2

)
Ku−m+1

(
2x

√
kaα

γ̄1γ̄2

)
dx.

(44b)

In (44a), μ, ν, ψ, and ω are defined as μ = m + b + 3
2 ,

ν = u −m + 1, ψ = 1+ a
γ̄1

+ αk
γ̄2

, and ω = 2
√
kaα/(γ̄1γ̄2),

respectively. The integral (44a) can be evaluated by using [17,
Eq. (6.621.3)] as given in (9a).

APPENDIX IV
A UNIFIED HIGH SNR ANALYSIS FOR HOP-BY-HOP

MIMO TRANSMISSION SCHEMES

This section provides a unified high SNR analysis for multi-
hop (L ≥ 1) MIMO CA-AF relay networks with hop-by-hop
transmission schemes, for example, beamforming, TAS/MRC,
and transmit/receive antenna selection, etc., or any combina-
tion of these schemes. For such schemes, the l-th hop SNR can
always be independently decomposed and its CDF an PDF can
be approximated by a single term polynomial approximation,
which is exact at high average transmit SNR γ̄, as

Fγ∞
l
(x)=

βlx
dl

dl (γ̄l)
dl
+o

(
xdl+1

)
, fγ∞

l
(x)=

βlx
dl−1

(γ̄l)
dl

+o
(
xdl

)
,(45)

where the l-th hop average SNR is given by γ̄l = klγ̄. Let
us start with the asymptotically exact multi-hop SNR upper

bound in [26], γeq =
[∑L

l=1
1
γl

]−1

≤ γub
eq =

(
1
X1

+ 1
X2

)−1

,

where X1 = min
1≤l≤P

(γl) and X2 = min
P+1≤l≤L

(γl).

The asymptotic CDFs of X1 can be derived by using
substituting (45) into FX1(x) = 1 −

∏P
l=1 (1− Fγl(x))

and by using the identity,
∏L
l=1(1 − xl) = 1 +∑L

l=1(−1)l
∑L−l+1

λ1=1

∑L−l+2
λ2=λ1+1 · · · · · ·

∑L
λl=λl−1

∏l
n=1 xλn ,

as follows:

FX∞
1
(x) =

∑
l

βl

dlk
dl
l

(
x

γ̄

)dmin
1

+ o
(
xd

min
1 +1

)
, (46)

15It is assumed that an exact phase reference can be maintained with respect
to the signal component in the destination receiver, which is reasonable for
slow fading channels.

where l ∈ {l|dl = dmin
1 , 1 ≤ l ≤ P} and dmin

1 = min
1≤l≤P

(dl).

Similarly, the asymptotic CDF of X2 can be derived as

FX∞
2
(x) =

∑
l

βl

dlk
dl
l

(
x

γ̄

)dmin
2

+ o
(
xd

min
2 +1

)
, (47)

where l ∈ {l|dl = dmin
1 , P + 1 ≤ l ≤ L} and dmin

2 =
min

P+1≤l≤L
(dl). The CDF of γub

eq can then be derived as [4]

Fγub
eq
(x)=Pr

(
X1X2

X1+X2
≤x

)
=

∫ x

0

Pr

(
X1 ≥ λx

λ−x

)
︸ ︷︷ ︸

=1

fX2(λ)dλ

+

∫ ∞

x

Pr

(
X1 ≤ λx

λ− x

)
fX2(λ)dλ. (48)

If x → 0+, then λx/(λ − x) → 0+. Thus, without loss
of generality, Fγub

eq
(x) can further be simplified by using

the asymptotically exactness of γub
eq to γeq as Fγ∞

eq
(x) =

FX∞
1
(x)+limx→0+ Pr (X1 ≤ x)

∫∞
x fX2(λ)dλ = FX∞

1
(x)+

FX∞
2
(x)−FX∞

1
(x)FX∞

2
(x) . For beamforming, βl in (45) is

given by [34] βl = (NlNl+1)ΓUl
(Ul)/ΓUl

(Ul+Vl), where Nl
andNl+1 are the number of antennas at the l-th hop transmitter
and receiver, and the desired results can be derived as in (10a)
and (36).

APPENDIX V
HIGH SNR BER APPROXIMATION WITH THE DIRECT

CHANNEL

The single term polynomial CDF approximation for x →
0+ of the direct channel SNR can readily be obtained by using
(19) and [34] as follows:

Fγ∞
SD
(x)=

Γn0(n0)

Γn0(m0+n0)k
NsNd
0

(
x

γ̄

)Ns+Nd

+ o
(
x−(NsNd+1)

)
. (49)

The corresponding single term polynomial CDF approxima-
tion for x→ 0+ of the relayed-channel SNR has already been
derived in Section III-D and can be obtained by replacing γth
in (10a) by x. Next, the single term polynomial approximation
of the effective e2e SNR by considering both the direct
channel and the relayed-channel can be derived as follows:

For the sake of notational simplicity, the single term
polynomial CDF approximations for x → 0+ of the
relayed-channel and direct channel SNRs are denoted by
Fγ∞

SRD
(x)=ΩSRD (x/γ̄)GdSRD + o

(
x−(GdSRD+1)

)
, and Fγ∞

SD
(x) =

ΩSD (x/γ̄)
GdSD +o

(
x−(GdSD+1)

)
, respectively. The single term

polynomial approximations for the MGFs of γSRD and γSD

can be derived by substituting Fγ∞
SRD

(x) and Fγ∞
SD
(x) into

MΛ(s) =
∫∞
0 sFΛ(x) e

−sxdx as follows [35]: Mγ∞
SRD

(s) =

ΩSRDΓ(GdSRD+1)/(γ̄s)
GdSRD +o

(
s−(GdSRD+1)

)
and Mγ∞

SD
(s) =

ΩSDΓ(GdSD+1)/(γ̄s)
GdSD +o

(
s−(GdSD+1)

)
. Next, a single term

polynomial approximation of the CDF of the e2e SNR approx-
imation (γapprox

eq = γSD + γSRD) for x → 0+ can be derived
by using L−1

(
Mγ∞

SD
(s)Mγ∞

SRD
(s) /s

)
, where L−1(·) denotes

the inverse Laplace transform, as follows:

Fγapprox,∞
eq

(x) =
ΩSDΩSRDΓ(GdSD+1)Γ(GdSRD+1)

Γ(GdSD +GdSRD+1)

(
x

γ̄

)GdSD+GdSRD
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+ o
(
x−(GdSD+GdSRD+1)

)
. (50)

Next, the asymptotic approximation for the average BER of
BPSK at high SNRs can be derived by substituting (50) into
P̄∞
e = 1/2

√
1/π

∫∞
0
x−

1
2 e−xFγapprox,∞

eq
(x) dx and evaluating

the simple integral by using [17, Eqn. (3.351.3)] as

P̄∞
e =

ΩSDΩSRDΓ(GdSD +1)Γ(GdSRD+ 1)Γ(GdSD +GdSRD+
1
2 )

2
√
π(γ̄)GdSD+GdSRDΓ(GdSD +GdSRD+1)

+ o
(
γ̄−(GdSD+GdSRD+1)

)
, (51)

By substituting corresponding values of ΩSD, ΩSRD, GdSD , and
GdSRD given in (49) and (10a) into (50), the desired result can
be obtained as in (22a).

APPENDIX VI
CAPACITY BOUND

This section presents the sketches of the proof of COPRA

(23). In order to obtain the closed-form capacity bound,
a commonly used and mathematically tractable e2e SNR
minimum upper bound is used. Let γeq ≤ γubeq = min (γ1, γ2).
Then the PDF of γubeq is given by

fγub
eq
(x)=

∑
a,b,c,k,l,m

d1(a,b)d2(k,l)(φx−(c+m))xc+m−1

a−ck−m (c)! (m)!γ
−(c+m+1)
0 γ̄c1γ̄

m
2

e−φx, (52)

where
∑
a,b,c,k,l,m and φ are defined in (23). Now, COPRA

in (23) can be derived by substituting (52) into COPRA =
B

2 ln(2)

∫∞
γ0

ln (x/γ0) fγub
eq
(x) dx and solving the resulting in-

tegral by using [30, Eq. (3.381.3)]. The optimal cutoff SNR
γ0 satisfies

∫∞
γ0
(1/γ0−1/x)fγub

eq
(x) dx = 1 and can be eval-

uated as 1/γ0F̄γub
eq
(γ0) −

∫∞
γ0

1/xfγub
eq
(x) dx = 1, where∫∞

γ0
1/xfγub

eq
(x) dx is evaluated by using [17, (3.351.2)] as

in (53), where
∑

a,b,k,l,Θ1,Θ2,Θ3 andΘ4 are defined in (24).
F̄γub

eq
(γ0) is the complementary CDF evaluated at γ0 and given

by

F̄γub
eq
(γ0)=

∑
a,b,c,k,l,m

d1(a, b)d2(k, l)γ
c+m+1
0 ackm

(c)! (m)!γ̄c1γ̄
m
2

γc+m0 e−φγ0 ,(54)

where
∑

a,b,c,k,l,m is defined in (23). Now, γ0 can be estimated
efficiently by using (53) and (54), and a simple numerical
technique such as the Bisection method.

APPENDIX VII
SUM CAPACITY OF MULTIUSER MIMO RELAY NETWORKS

WITHOUT USER SCHEDULING

In order to derive the sum capacity in closed-form, the
marginal PDFs of ordered eigenvalues, λl|Ll=1, in (30) are
required. However, fλl

(x) of generalized N × N Wishart
matrix are heavily involved [36], and hence, may not render
compact closed-form expression for the sum capacity. Thus,
a specific system set-up (i.e., Ns = 3, Nr = 3 and L = 2) is
considered.

The joint PDF of the ordered eigenvalues of 3× 3 Wishart
matrix H1H

H
1 is given by [36]

fλ1,λ2,λ3(λ1, λ2, λ3) =
1

2
e−(λ1+λ2+λ3)(λ1 − λ2)

2(λ1 − λ3)
2

× (λ2 − λ3)
2, where λ1 ≥ λ2 ≥ λ3. (55)

The marginal PDFs of λ3, λ2 and λ1 are derived as

fλ3(x) =

∫ ∞

x

∫ ∞

λ2

fλ1,λ2,λ3(λ1, λ2, x) dλ1dλ2 = 3e−3x, (56)

fλ2(x) =

∫ x

0

∫ ∞

λ2

fλ1,λ2,λ3(λ1, x, λ3) dλ1dλ3

=−6e−3x + e−2x
[
6− 6x+ 3x2 + x3 + x4/2

]
, (57)

fλ1(x) =

∫ x

0

∫ λ2

0

fλ1,λ2,λ3(x, λ2, λ3) dλ3dλ2

= 3e−3x − e−2x
[
6− 6x+ 3x2 + x3 + x4/2

]
+ e−x

[
3− 6x+ 6x2 − 2x3 + x4/4

]
, (58)

The sum capacity is then derived by using C =∑2
l=1

∫∞
0

log2 (1 + x) /(2γ̄eq)fλl
(x/γ̄eq) dx as given in (31).
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